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ABSTRACT
At present, there is no cure or vaccine for the devastating new highly infectious severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) that has affected people globally. Herein, we identified
potent phytocompounds from two antiviral plants Momordica charantia L. and Azadirachta indica used
locally for the treatment of viral and parasitic infections. Structure-based virtual screening and molecu-
lar dynamics (MD) simulation have been employed to study their inhibitory potential against the main
protease (Mpro) SARS-CoV-2. A total of 86 compounds from M. charantia L. and A. indica were identi-
fied. The top six phytocompounds; momordicine, deacetylnimninene, margolonone, momordiciode F2,
nimbandiol, 17-hydroxyazadiradione were examined and when compared with three FDA reference
drugs (remdesivir, hydroxychloroquine and ribavirin). The top six ranked compounds and FDA drugs
were then subjected to MD simulation and pharmacokinetic studies. These phytocompounds showed
strong and stable interactions with the active site amino acid residues of SARS-CoV-2 Mpro similar to
the reference compound. Results obtained from this study showed that momordicine and momordi-
ciode F2 exhibited good inhibition potential (best MMGBA-binding energies; �41.1 and �43.4 kcal/
mol) against the Mpro of SARS-CoV-2 when compared with FDA reference anti-viral drugs (Ribavirin,
remdesivir and hydroxychloroquine). Per-residue analysis, root mean square deviation and solvent-
accessible surface area revealed that compounds interacted with key amino acid residues at the active
site of the enzyme and showed good system stability. The results obtained in this study show that
these phytocompounds could emerge as promising therapeutic inhibitors for the Mpro of SARS-CoV-2.
However, urgent trials should be conducted to validate this outcome.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is a novel strain of the coronavirus which is considered a glo-
bal public health emergency (WHO, 2020; Read et al., 2020). It
was first discovered in December 2019 in the city of Wuhan,
Hubei province, China, and has since spread across the globe
affecting over 36 million people with over 1.1 million deaths as
of 10 October 2020. In humans, SARS-CoV-2 is believed to
cause mild respiratory infections, such as those observed in
the common cold to severe pulmonary disease with an
extreme case of death (Khan et al., 2020; Lu et al., 2020).
Studies suggest that the SARS-CoV-2 can be transmitted
through infected droplet (respiratory secretions) and close per-
son-to-person contact (Khan et al., 2020) where it binds to the
primary target cells such as enterocytes and pneumocytes,

thereby establishing a cycle of infection and replication (Wu
et al., 2020).

Coronaviruses are a large family of enveloped, positive-
sense, single stranded-RNA viruses with nucleocapsid belong-
ing to the family of Coronaviridae and order Nidovirales
(Zhou et al., 2020). They are classified into four main sub-
groups: alpha, beta, gamma and delta depending on their
genomic structure (Fehr & Perlman, 2015). So far, seven
strains of the human CoVs, which include 229E, NL63, OC43,
HKU1, Middle East respiratory syndrome (MERS)-CoV, SARS-
CoV and 2019-novel coronavirus, which are responsible for
mild respiratory tract infection associated (both lower and
upper respiratory tract) (Walls et al., 2020). The seventh and
highly contagious “COVID-19” is taxonomically positioned in
the genus Betacoronavirus and exhibits 89.1% and 60%
nucleotide sequence similarity with SARS and MERS

CONTACT Collins U. Ibeji ugochukwu.ibeji@unn.edu.ng Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal,
Durban 4041, South Africa; Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Enugu
State, Nigeria.

Supplemental data for this article can be accessed online at https://doi.org/10.1080/07391102.2020.1837681.

� 2020 Informa UK Limited, trading as Taylor & Francis Group

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS
https://doi.org/10.1080/07391102.2020.1837681

http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2020.1837681&domain=pdf&date_stamp=2020-10-24
https://doi.org/10.1080/07391102.2020.1837681
https://doi.org/10.1080/07391102.2020.1837681
http://www.tandfonline.com


coronaviruses, respectively (Wu et al., 2020). Coronaviruses
main protease (Mpro) also known as 3-chymotrypsin-like pro-
tease (3CLpro) is an important protein that is required for
proteolytic maturation of the coronavirus (Wu, et al.). The
main protease is considered the “Achilles hill” of coronavi-
ruses (Fehr & Perlman, 2015) inhibiting the activity of this
enzyme could block viral replication. Moreover, the Mpro is
highly conserved across coronaviruses thus, the main pro-
teases are considered an attractive target for the develop-
ment of effective antiviral drugs in structure-based drug
design for the treatment of SARS-CoV-2 and other coronavi-
ruses (Garc�ıa-Fern�andez et al., 2016; Krishnan & Anirudhan,
2002; Zhang et al., 2020).

Currently, there is no known cure or vaccine for the
COVID-19. A rapid search is on-going for the development of
vaccines and new antiviral drugs for the effective treatment
of the highly transmissible SARS-CoV-2. Many researchers are
attempting to find new inhibitors for the SARS-CoV-2 main
protease Mpro both from synthetic and naturally active com-
pounds (Elfiky, 2020; Khan, et al., 2020). Several drugs have
been repurposed and used as a frontline therapy for SARS-
CoV-2 and relief of symptoms for patients infected with
COVID 19, and these drugs include hydroxychloroquine anti-
malaria and anti-HIV drugs. On the 1 May 2020, the FDA ref-
erence drug an emergency use authorization of remdesivir
for the treatment of hospitalized patients with COVID-19
(FDA, 2020). Yet the clinical safety and efficacy against
COVID-19 remain to be fully established.

Several crystal structures of SARS-CoV-2 3C-like proteinase
have been solved and made are available on protein databank.
However, only one complex structure of SARS-CoV-2 3C-like
proteinase (PDB: 6W63) was bound to a broad spectrum non-
covalent covalent inhibitor (X77) in Data Bank (https://www.
rcsb.org). It has been observed that most of the current
research effort focus on finding potential SARS-CoV-2 Mpro
covalent inhibitors while the possibilities to identify non-cova-
lent inhibitors remain less investigated. For that reason, we
decided to screen new natural phytocompounds against the
6W63 crystal structure to find potential non-covalent pharma-
cophores against SARS-CoV-2 3C-like protease. Previous stud-
ies have shown that covalent and non-covalent inhibitors have
been designed and discovered to inhibit 3C proteinases and
therefore to treat related diseases. These inhibitors can be
used as guidance to design drugs for SARS-CoV-2
(Zhavoronkov et al. 2020). Active compounds have been
obtained by covalent bonding with the cysteine at the cata-
lytic site. However, side effects and toxicity can often be
caused by covalent bonding ( Zhavoronkov et al. 2020). Thus,
prevents their use for clinic therapy. Hence, for SARS-CoV-2
treatment, it is more attractive to design and discover nonco-
valent inhibitors. Virtual screen by molecular docking of chem-
ical databases is one of the most powerful approaches to
discover non-covalent inhibitors. We report herein the screen-
ing of potential Phyto non-covalent inhibitors against SARS-
CoV-2 3C-like proteinase.

Medicinal plants provide an excellent source for antiviral
drugs due to fewer side-effects, low cost, bioavailability and
easy availability along with less potential to cause resistance

(Mukherjee et al., 2007). Hence, the utilization of herbal
drugs in viral infections is an important future therapeutic
strategy. Medicinal plants contain numerous phytochemicals
responsible to exhibit the antiviral effect. Two commonly
used anti-viral herbs: Momordica charantia L. (Cucurbitaceae)
and Azadirachta indica A. Juss. (Meliaceae) are potent medi-
cinal plants used in traditional medicine in Nigeria and trop-
ical countries for the treatment of many ailments including
inflammatory, anti-diabetic, parasitic and viral infections.
Traditionally, these plants have been reported to exhibit
potent antiviral activities by inhibiting several viruses includ-
ing herpes simplex virus, hepatitis B virus, smallpox virus and
human immunodeficiency virus (Liu et al., 2009; Mohammad
et al., 2016; Pongthanapisith et al., 2013). Considering the
wide potent antiviral activity of these plants, it is, however,
possible that potent non-inhibitors could emerge from these
plants against SARS-CoV-2 main protease Mpro. In this study,
virtual screening of potent medicinal bioactive compounds
from plants of M. charantia L. and A. indica as potential
inhibitors against SARS-CoV-2 main protease Mpro was carried
out. Based on the docking scores, six compounds we ranked
and preceded for molecular dynamics (MD) simulations and
pharmacokinetic studies.

Materials and methods

Virtual screening and molecular docking

Three-dimensional X-ray crystallographic structure of SARS-
CoV-2 Mpro was downloaded from the RCSB Protein Data
Bank (PDB). The SARS-CoV Mpro bound to a noncovalent
inhibitor with PDB ID: 6W63 (resolution 2.1 Å) (Zhavoronkov
et al., 2020) was used for this study. Before the virtual
screening, the protein structures were prepared using the
‘Protein Preparation Wizard’ workflow in the Schrodinger
suite. This involved the addition of hydrogen atoms to the
protein, assignment of bond orders, and deletion of unneces-
sary water molecules. The key water molecules interacting
with the active site residues of the enzyme were retained.
Sidechains were added, disulphide bonds were formed, miss-
ing atoms were added, and the partial charges were
assigned. Energy minimization was done using OPLS_2005
(Optimized Potentials for Liquid Simulations) force field. As
the downloaded protein was co-crystallized with X77(N-(4-
tert-butylphenyl)-N-[(1R)-2-(cyclohexylamino)-2-oxo-1-(pyridin-
3-yl)ethyl]-1H-imidazole-4-carboxamide) a non-covalent
inhibitor, the ligand-binding site was used to define the
active site of the protein. Receptor grid generation workflow
was used to define a grid (box) around the ligand, to keep
all the functional residues in the grid (Sastry et al., 2013).
The residue used for preparations is Cys145.

Molecular dynamic simulation

Structural preparation

2-Dimensional structures of 86 compounds from M. charantia
and A indica were identified and retrieved from the PubMed
literature as test ligand molecules, two antiviral drugs and 1
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anti-malarial drug were retrieved from PubChem database as
a reference. Ligprep, pre-processing of the ligands was done,
which includes the formation of tautomers and ionization
states at pH 7.0 ± 2.0 using Epik, hydrogen atoms were
added, charged groups were neutralized and geometry of
the ligands was optimized. Virtual screening of compounds
was performed in three stages involving a high throughput
virtual screening (HTVS), standard precision (SP) and extra
precision (XP) using the using glide tool (grid-based ligand
docking with energetics) algorithm implemented in
Schrodinger (Friesner et al., 2006). Stage one and two, HTVS
and SP employ the self-scoring function, whereas XP reduces
the intermediate conformations and thoroughness of the tor-
sional refinement and sampling. A total of 86 compounds
and three reference FDA drugs was docked against each tar-
get protein with the co-ligands X77 and a-ketoamide was
used as a positive control. Next, top scorers were set forth
for SP docking, and the output of SP docking was put for-
ward in XP docking with positive control. All the results were
analysed in XP visualizer. Compounds with the highest bind-
ing energies against SARS-CoV-2 Mpro was selected for fur-
ther MD and in silico pharmacokinetic studies.

Production step

The six top screened Phyto-ligands (of the 86 compounds)
with high binding energy, three FDA reference drugs and
the apo-enzyme (APO) of the target was subjected to
MD simulation.

The graphical processing unit (GPU) version of AMBER 18
software package was used to perform the molecular
dynamic (MD) simulations of all the systems. Optimization of
the systems was carried out using ANTECHAMBER (Wang
et al., 2001) and LEap module of Amber 18 to ensure all the
appropriate parameters were available for MD simulations.
The protein parameters were assigned using FF14SB (Perez
et al., 2015) version of the Amber force field. The LEap mod-
ule of Amber 18 was applied for adding the missing hydro-
gen atoms and counter ion to neutralize the systems. The
systems were suspended with an orthorhombic water box of
TIP3P (Jorgensen et al., 1983) to restrain the protein within
10Å of the box edge. Long-range electrostatics were treated
with the particle-mesh Ewald method (Kholmurodov et al.,
2000) implemented in AMBER 18 with direct space and a
12�A van der Waals cut-off while periodic boundary condi-
tions were adopted. Before the commencement of MD, initial
and final minimization, gradual heating and the equilibration
steps were performed. The final MD production was per-
formed as previously reported (Emmanuel et al., 2019b; Ibeji,
2020). The CPPTRAJ and PTRAJ modules (Roe & Cheatham,
2013) of the Amber18 suite was used to carry out post-ana-
lysis such as Radius of Gyration, root mean square deviation
(RMSD), root mean square fluctuation (RMSF) and solvent-
accessible surface area (SASA). Structural visualization and
plots were done using UCSF Chimera software package
molecular modelling tool and Origin data analysis software
version 6 (Seifert, 2014) (http://www.originlab.com).

Thermodynamic calculations

MM/GBSA a key tool used in predicting macromolecular sta-
bility and protein–ligand binding affinity (Genheden & Ryde,
2015; Zhou & Madura, 2004; Zhou et al., 2009) were applied.
It gives an idea of the binding mechanism which equally
includes the contribution of enthalpy, entropy to the
molecular recognition and ligand–protein association
(Genheden & Ryde, 2015). The binding free energy was aver-
aged over 1000 snapshots which were extracted from the
100 ns trajectory as described by the set of equation.

DGbind ¼ Gcomplex–Greceptor– Gligand (1)

DGbind ¼ Egas þ Gsol–TS (2)

Egas ¼ Eint þ Evdw þ Eele (3)

Gsol ¼ GGB þ GSA (4)

GSA ¼ cSASA (5)

where Egas is the gas-phase energy; Eint is the internal
energy; Eele stands for the Coulomb and Evdw are the van der
Waals energies. Egas is obtained from the FF14SB force field
terms. The solvation free energy, Gsol, is split into polar and
non-polar solvation state of contribution. Here the polar solv-
ation, GGB, contribution is calculated by solving the GB equa-
tion while the non-polar solvation contribution, GSA is
estimated from the SASA calculated with the water probe
radius of 1.4 Å. T and S are the temperatures and the solute
entropy, respectively. To examine the individual amino acid
contribution to the total binding free energy between the
natural products and main protease, the per-residue free
energy decomposition analysis was computed at the atomic
level using the MM/GBSA method in AMBER 18.

Cheminformatic evaluation of pharmacological
properties

A comparative evaluation of the pharmacological properties
of the natural phytocompounds and FDA reference drugs
was performed. This was done by predicting their individual
pharmacokinetic (ADMET) properties with online and offline
tools. The bioactivity of the various compounds was esti-
mated using selected and offline tools. The prediction tools
employed include Molsoft program (http://molsoft.com/
mprop/), Molinspiration Cheminformatics (Husain et al.,
2016), ProTox webserver (Banerjee et al., 2018) and the
OSIRIS DataWarrior property explorer (L�opez-L�opez et al.,
2019; Sander et al., 2015). More than one prediction tools
were used for precise validation and reproducibility of com-
parative analysis. The pharmacokinetic (ADMET) properties of
the studied compounds were evaluated using Molsoft online
program, this is to investigate if they adhered to Lipinski’s
rule of five (RO5). An additional step was equally taken to
validate the obtained pharmacokinetic properties by employ-
ing data warrior property explorer (Sander et al., 2015), this
program helps to predict ligand efficiency (LE) (Abad-
Zapatero, 2007; Hopkins et al., 2014), lipophilic ligand effi-
ciency (LLE) and lipophilicity-correlated ligand efficiency
(LELP) (Hopkins et al., 2014; Johnson et al., 2018). Toxicity of
compounds reveals their safety state for consumption. Thus,
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in silico prediction of oral toxicity gives a faster route of
obtaining information about doses that could be toxic
in animals.

Results and discussion

Virtual screening and molecular docking

In the present study, we screened 86 compounds from M.
charantia L. and A. indica as potential inhibitors against
SARS-CoV-2 Mpro (PDB ID: 6W63) using structure-based drug
design. This approach is based on computationally fitting
compounds into the active site of the target protein, fol-
lowed by a ranking of these compounds based on their low
binding energies and interaction with the residues of the
binding pocket. The docking scores of the compounds were
when compared with a standard Mpro inhibitor, a-ketoamide
13b and X77. The a-ketoamide 13b is a broad-spectrum
inhibitor with an IC50 value of 0.67 ± 0.18lM against purified
recombinant SARS-CoV-2 Mpro (Zhang et al., 2020). A com-
prehensive list of the 86 docked phytocompounds can be
found in the supplementary file (Supplementary material
Table S1). Thus, among the 86 phytocompounds and 3 anti-
viral drugs screened (Supplementary material Table S1), 6
phyto ligands exhibited appreciable binding energies against
the SARS-CoV-2 Mpro and strong interactions within the bind-
ing pocket. The top six hit phyto-compounds were momordi-
cine, deacetylnimninene, margolonone, momordiciode F2,
nimbandiol, 17-hydroxyazadiradione with binding energies of
6.6, 6.1,�5.5, �5.2, �4.8 and �4.0 kcal/mol, respectively.
Also, the FDA reference anti-viral drug remdesivir and riba-
virin showed binding energies of �8.4 and �6.2 kcal/mol,
respectively (Table 1). In comparison, standard Mpro inhibitor;
a-ketoamide 13b and X77 displayed binding energies of
�8.5 and �9.1 kcal/mol, respectively. The results show that
all the lead compounds were tightly bound into the sub-
strate-binding pocket, through a good number of hydrogen
bonds as well as hydrophobic interactions (Figure S1). The
glide 2D interaction suit was used to reveal the interacting
residue information. In particular, the best phyto ligand
“momordicine” (M. charantia) was seen to interact with the
target enzyme with a binding energy of �6.6 kcal/mol.
Momordicine formed five hydrophobic interactions with Leu
27, Met 49, Cys145, Met165, Leu167, Pro168 and established
two hydrogen bonds with Glu 166 and Asn 142 (Figure
S1(a)). The second lead phytocompound i.e.
Deacetylnimninene (A. indica) showed two hydrogen bonds
with residues Cys 44 and Glu 166 and eight hydrophobic
interactions with Cys 44, Met 49, Pro 52, Tyr 54, Cys145, Met
165, Leu 167 and Pro 168 (Figure S1(b)). Furthermore, it was
observed that the FDA antiviral drug; remdesivir exhibited
the highest binding affinity among all tested compounds
with a binding affinity of �8.4 kcal/mol (Table 1). This dis-
played three hydrogen bond interactions with Cys145,
Gln166 and Thr 190 residues and eight hydrophobic inter-
action with key residues (Cys 44, Met 49, Tyr 54, Pro 52, Phe
140, Leu141, Cys145, Met 165, Leu 167, Pro 168, Val 186, Ala
191) (Figure S1(g)). Notably, the top lead phyto ligand and
redemsivir were able to establish hydrogen bond and

hydrophobic interactions with residues crucial for the inhib-
ition of SARS-CoV-2 replication similar to phyto ligands and
the standard Mpro inhibitor, alpha- ketoamide and X77
(Figure S1(h,j)). The SARS-CoV-2Mpro substrate-binding site
mainly consists of a cysteine–histidine dyad (His41 and
Cys145) which controls the catalytic activity of SARS CoV-2
Mpro. Also, our share similar binding interaction patterns with
a previous study on virtual screening of novel non-covalent
inhibitors against SARS-CoV Mpro (Liu et al., 2005). Inhibition
by these compounds reflects the possible inhibitory tenden-
cies against the COVID-19. SARS-CoV-2 Mpro with other
papain-like proteases is important for processing the poly-
proteins into various non-structural proteins by cleaving at
specific sites that are translated from the viral RNA. Several
key amino acids in the active site of Mpro enzyme have been
documented to be Leu, Gln, Ser, Ala, Gly along with the Cys-
His dyad which marks the cleavage site. Based on the results
obtained we further subjected the 6 phyto ligands and the
antiviral drugs remdesivir and ribavirin to MD simulation to
establish the mode of interaction with Mpro protease.

Exhaustive evaluation of protein systems
conformational dynamics

Previous reports have suggested main protease (Mpro,
3CLpro) as a very attractive target for coronaviruses due to
the crucial role it plays in processing the translated polypro-
teins of the viral RNA (Zhang et al., 2020). To verify the
dynamics of the protein–ligand complex a 100 ns MD simula-
tion was run, to reveal the conformational trends which
occurred in the protein’s backbone to the initial conforma-
tions. From Figure 1, all the studied systems showed a
favourable stability state during the 100 ns of the MD simula-
tion after converging at around 8 ns. From the average
RMSD of all the systems in Table 2, the apo-enzyme exhib-
ited almost the lowest average RMSD when compared with
the ligand-bound systems. However, exceptions exist in the
case of hydroxychloroquine with almost a close mean RMSD
(1.711 Å) value to that of the apo (1.713 Å) and deacetylnim-
binene with lower RMSD of 1.667Å. The average RMSD
observed in all the systems revealed a tractable structural
trend in the natural products and the reported FDA refer-
ence drugs. The slightly lower average RMSD of the apo cor-
roborate with the reported structural behaviour of proteases
(Munsamy et al., 2018). The observed collective marginal
structural deviation could be an indication of the characteris-
tic mechanistic inhibitory mode of Mpro. Previous reports
suggested that proteases exhibit consistent open/close and
twisting dynamic motion mechanisms at the flap, flexible
domain and hinge regions which promotes ligand binding
(Munsamy et al., 2018). It is therefore suspected that this
reported structural motion is transmitted to the entire pro-
tein structure which resulted in a higher conformational
deviation of the complexed systems relative to the apo.
Hence the observed higher structural deviation of the ligand-
bound systems relative to the apo is an indication of inactiv-
ity of the viral Mpro due to ligand binding. Although high
RMSD is an indication of atomic deviation, which suggest
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structural instability, based on the reported structural/con-
formational behaviour of proteases, the high RMSD of the
bound systems relative to the apo does not suggest struc-
tural instability but rather a functional display in line with
the reported structural behaviour of proteases. This indicates
viral mechanism of viral protein inactivity.

From the plots, momordicine stabilized immediately after
attending convergence and maintained this stabilized trajec-
tory till the end of the simulation whereas margolonone fluc-
tuated from 50–85 ns within an RMSD between 2.5 and 3.5 Å
and eventually reassumed stability till the end of the simula-
tion whereas the RMSD of the other systems remained below
3Å.

However, the lower average RMSD value of deacetylnimbi-
nene and hydroxychloroquine when compared with the apo
and observed little conformational changes in momordicine
and margolonone were not of much different and does not
indicate that ligand binding causes serious conformational
changes. The structural dynamics of the ligands to the Mpro
at the active site was further investigated by tracking the lig-
and confirmation and/or orientations during the MD simula-
tion. The ligand RMSD indicate the stability of the ligands
concerning the protein and its active site residues. As it is
anticipated that binding pocket architecture could influence
the mobility, orientation and interaction of drug molecule
with protein residues. From Figure 1(A1–C1) remdesivir
exhibited serious orientational/positional deviation to the
other ligands examined, however, all the natural products
exhibited lower conformational deviation relative to the ref-
erence drugs with ribavirin maintaining a very similar con-
formational trajectory with all the natural products. The plot
revealed that momordicine fluctuated from 35 to 72 ns
before stabilizing again. On the other hand, momordicoide
F2 elicited higher structural deviation to the starting con-
formation while exhibiting higher structural deviation relative
to the other natural products and the reference drugs except
for remdesivir. A large conformational change was exhibited
by remdesivir at the beginning of the simulation before
attaining and maintaining stability; this initial wide conform-
ational change of remdesivir could be a result of the orienta-
tional adjustment to properly fit into the binding pocket. To
further gain insight into the conformational trends which
resulted to the high conformation deviation of remdesivir in
the ligand RMSD plot, a visual analysis/representation of the

average conformational orientation of all the ligand at the
active site of Mpro was done. As shown in Figure 2, remdesi-
vir (blue) drifted towards the edge of the pocket and does
not have contact with virtually all the ligands in the pocket
except ribavirin. However, a look at the pocket, revealed that
the rest of the ligands have a common contact point(s). The
nature of motion exhibited by these ligands could have a
relationship with the most favourable optimal orientation
needed for most suitable interaction with active site residues.
At the long run remdesivir has the highest average RMSD
followed by momordicoide F2 and finally hydroxychloroquine
this is an indication of close conformational/orientational
behaviour of the natural product with that of the reference
drugs as both ligand types did not have much difference in
conformational trend. This minor difference in the mean
RMSD values of all the simulated systems indicates that the
binding of the ligand does not severely perturb the global
structure of the protease.

Systematic estimation of whole protein and active site
residues flexibility

To gain insight into the nature and feature of the fluctua-
tions displayed by the backbone atoms of the proteins, the
C-a RMSF was investigated. RMSF plots reveal the precise
conformational transition within the residues that make up
the proteins secondary structure during MD simulation. It fur-
ther shows the nature of residual fluctuation and motion to
ligand binding and unbinding. A higher value of RMSF indi-
cates an increase in flexibility while a lower value correlates
with a decline in flexibility. Figure 3(A–C) shows that the resi-
dues in all the systems maintained a relatively similar pattern
but varied levels of fluctuations.

As indicated in Table 2, all the systems had a near
approximate value of average RMSF with deacetylnimbinene,
momordicine and nimbandiol exhibiting the lowest residual
fluctuation. However, regions of interest can be noticed in
the plots, these are areas where the residues exhibited peak
fluctuations. The nature/degree of residual drift from their
mean positions in these interesting regions has been indi-
cated with 3D images in the plots in Figure 3 for clarity.
These are residues in the active site the play crucial role in
system stabilization. They are residues that are actively
involved in protein–ligand interactions(Ibeji, 2020; Olotu

Table 1. Interaction of the SARS-CoV-2 main protease with phyto-compounds and FDA anti-viral drugs.

Compounds name Source PubChem CID ABB Docking score (kcal/mol) Key residue interaction

Momordicine M. charantia L. 14807332 MDC –6.6a H-bond: Asn 142; Glu 166
Deacetylnimninene A. indica 102004582 DCN –6.1a H-bond: Cys 44; Glu 166
Margolonone M. charantia L. 189726 MGN –5.5 H-bond: His 163, Glu 166, Ser 144, Gly 143
Momordiciode F2 M. charantia L. 44445567 MDF –5.2 H-bond: Pro 168, Glu 166
Nimbandiol A. indica 157277 NBD –4.8 H-bond: Glu 166, Asn 142, Gln 198, Pi-pi: His 41
17-Hydroxyazadiradione A. indica 52951892 HXD �4.0 H-bond: Glu 166
Ribavirin 37542 RBV –6.2a H-bond: His 163; Phe 140
Remdesivir 121304016 RMS –8.4a H-bond: Glu 166; Cys 145; Thr 190
Hydroxychloroquine 178396 HCQ –3.4 H-bond: Asn 142; Cys 44

Pi-cation: His 44
Alpha-ketoamide 10129151 AK –8.5 H-bond: Cys 44, Hie 41, Asn 142, His 163, Glu 166
X77 145998279 X77 –9.6 H-bond: Cys 44, Hie 41, Asn 142, Hie 163, Glu 166, Gly 143

ABB, abbreviations.
aThe lowest binding energy for respective ligand with the target protein.
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et al., 2019). These residues with residue numbers 25–27,
39–54, 139–145, 163–173, 185–194 exhibited wider and
unusual fluctuations relative to others. To gain further insight
into the degree and distinctiveness of these fluctuations in
these regions, we performed an active site analysis of the
RMSF of these residues and the results are presented in
Figure 3(A1–C1).

A close look at the average active site RMSF, Table 2 indi-
cates that the phytocompounds have similar average active
site RMSF values to those of the reference drugs. It was also
observed that higher active site RMSF of the entire ligand
systems when compared with apo corroborates with initially
mentioned open/close and twisting mechanism of ligand
inactivation of the viral protease. However, Nimbandiol and
momordicine had a very low average active site RMSF, this

Figure 1. A graphical representation of the evolving conformational trend at the time of the MD simulation. Although the three reference drugs were present in
all the plots, the first codes in all the figure legend represent the investigated compounds. (A–C) The RMSD of the entire protein structure whereas (A1–C1) is that
of the ligand, which reveals their respective momentary re-orientations during the MD run.
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could be due to nonoptimal orientation for maximum inter-
action with the active site residues. Remdesivir equally exhib-
ited lower mean active site RMSF, though not too far from
that of the apo. This lower mobility in the active site RMSF
of these compounds could be suggestive of the need for lig-
and optimization. This further broadened the understanding
of the mobility of the crucial residues in the active site which
is the location of the flap and hinge regions.

Impact of conformation compactness on
structural mobility

RoG measures the degree of compactness of the backbone
carbon atoms of a protein and accounts for the level of
mobility of a protein structure which is an indication of sta-
bility in the protein backbone structure. The conformational
shift/alteration initially suggested to be the mechanism of
activity of proteases in the RMSD plots is validated by the
results obtained in the RoG plot. RoG gives an idea of type/
nature structural deviation exhibited by the RMSD plot. The
average RoG values from the plot in Figure 4 revealed that
the apo has an RoG value that is slightly the lowest
(21.931 Å) relative to the other systems. This low RoG value
which suggests the reduction in mobility validates the mech-
anism of ligand binding at the active site of protease and
the entire proteases. As the previous report has suggested
the ligand-binding mechanism to be via open/close and
twisting motion which induces a high level of conformational
deviation in protein 3D structure.

Elevated average RoG indicates a decrease in compact
structural packing which suggests increased mobility
(Emmanuel et al., 2019a) and a stable state favourable for

ligand binding to proteases. The nature of the trajectories
exhibited by the RoG plot of the ligand-bound relative to
the apo is suggestive of the mechanism of ligand inactiva-
tion of proteases. Hence, inhibiting the activity of this
enzyme will inhibit viral replication and transcription. Figure
4(D) shows a superimposed 3D images of the Mpro starting
structure, that of 17-hydroxyazadiradione complex with the
highest mean RoG value (22.36575Å) and that of the apo at
the end of the simulation. The image reveals a comparative
minor level of the structural deviation which could be sug-
gestive of the level of compact packing of the protein.

Simulation induced re-orientation and intra-migration
of the hydrophobic and hydrophilic residues

Residual mobility which induces side-chain re-orientation was
further studied by examining the intermittent burial and
exposure of the hydrophobic and hydrophilic residues during
the time duration of the MD simulation. Protein folding and
unfolding could correlate with the re-orientation of the side
chains from the hydrophilic phase to the hydrophobic phase.
Hence structural transformation of the surface residues
towards the hydrophobic core could be indicative of protein
unfolding whereas the inward transition of these surface resi-
dues suggests protein folding. This parameter was employed
to examine protein activity and inactivity as indicated in
Figure 5.

Previous reports have revealed that high SASA values con-
note decrease in the exposure of the buried hydrophobic
residues which indicates the reduction in systems stability
while expulsion of the buried hydrophobic residues from the
hydrophobic core indicates an increase in system stability

Table 2. An estimated value of the average parameter used to decode structural stability.

Compound names

Average values

RMSD (Å) RMSF (Å) RoG (Å) SASA (Å2) Ligand RMSD (Å) Active site RMSF (Å)

DCN 1.667 0.908 22.105 14072.19 1.228 12.794
MDC 2.210 0.983 22.045 13915.73 1.516 6.922
NBD 1.862 0.903 22.108 14146.30 1.389 6.389
MGN 2.239 1.361 22.028 14044.94 0.992 9.756
MDF 2.006 1.002 22.056 13841.17 2.655 9.970
HXD 1.965 1.343 22.366 14223.53 0.881 9.792
RBV 2.061 1.171 22.055 14122.35 1.331 9.118
RMS 2.135 1.210 22.189 14297.35 4.397 8.077
HCQ 1.711 1.051 22.189 14190.15 2.079 12.778
APO 1.713 1.040 21.931 14159.60 N/A 9.075

Figure 2. A visual representation of the average PDB orientation of the various ligands at the end of the MD simulation. All ligands were colour coded to match
with their respective plots in Figure 1(A1–C1). (A) The ligands represented in systems plotted in Figure 1(A1), (B) Figure 1(B1) and (C) Figure 1(C1).
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(Emmanuel et al., 2019a). From average SASA values in Table 1
which were obtained in Figure 5, it can be observed that all
the natural products have slightly lower average SASA values
to the apo except for 17-hydroxyazadiranone with slightly
higher average SASA values than the apo. Two of the reference
drugs; remdesivir and hydroxychloroquine individually

produced the highest respective average SASA values relative
to the natural products except for 17-hydroxyazadiranone
thus indicating that the natural products were more stable
than the drugs. Therefore, this lower SASA values in the nat-
ural products systems relative to the apo and the two refer-
ence drugs systems are indicative of an increase in

Figure 3. A plot of per residue fluctuation; revealing regions of interest in the active sites that contributes to ligand stabilization and high-affinity binding. (A–C)
The proteins whole structure with unique regions of outstanding interactions whereas (A1–C1) gives clues as to the nature/degree of active site residue
fluctuations.
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hydrophobicity induced by ligand binding. The results
obtained here corroborate with the observations made from
the RMSD, RMSF and RoG plots. This structural unfolding due
to the exposure of the hydrophobic residues as observed from
the lower average SASA values correlates with the initially
mentioned open/close and twisting mechanism of the protein
activity and inactivity. Conformation transition from the folded
state to the unfolded state could indicate the inhibitory mech-
anism of ligand-bound protease. Figure 4(D) is a 3D represen-
tation of an MDC-bound Mpro (with almost lowest average
SASA value); showing the solvent assessable surface (SAS). It
reveals that the SAS (hydrophilic) occupy the smaller area
around the ligand at the active site than the non-SAS (hydro-
phobic). This trend at the active site is believed to be pass on
to the entire protein residue.

Disclosure of the possible inhibitory potency selected
compounds via MM/GBSA calculation

Previous studies have suggested that inhibition of the activ-
ity of proteases equally inhibit the viral replication and tran-
scription and henceforth viral survival and disease
progression (Ibeji, 2020; Olotu et al., 2019). This gives an idea
of the interaction that is likely to be harnessed to design
novel and more potent anti-viral inhibitors that will block
further viral protein replication. We went further to

investigate the energetic inhibitory potency of the selected
natural product in comparison with reference drugs. MM/
GBSA has recently grown as a very popular computational
tool for estimation of the binding propensity of chemical
compounds to protein. The results obtained in Table 3
revealed thermodynamic interaction of ligands to protein
and hence suggests the capacity of the ligand to block the
replication and transcription of the viral protein which indir-
ectly indicate the inhibitory prowess of the compound. Our
finding as indicated in Table 3 shows that all the selected
reference drugs and the natural product have favourable
binding free energy, efficient enough for good binding inter-
action. As outlined in the table, the three FDA reference
drugs gave binding free energy (DGbind) that are close to the
values obtained for most of the natural products except for
momordicine and momordiciode F2 with very high binding
�41.363 and �43.413 kcal/mol, respectively. This higher
binding energy exhibited by these two compounds could be
due to the similarity in their structural features. And this
large binding energy of these two compounds is suggestive
of the need for further studies to identify the unique moi-
eties which are responsible for high energetic interaction
that produced this high-affinity binding.

Some literature has highlighted crucial residues that play
a vital role in the binding interaction of compounds with
Mpro with inhibitors, some examples are the catalytic

Figure 4. A comparative investigation of Protein 3D structural evolution during the MD simulation. The RoG trajectory reveals the evolutionary pattern of
3D structural packing and unpacking during the 100 ns of the MD simulation.
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residues His41 and Cys145 (Zhang et al., 2020). The decom-
position of the total energy into electrostatic and van der
Waals (Figures 6–8) has equally enabled us to obtain vital
information about more residues that contributed to the
energetic interaction and stabilization of the studied com-
pounds to the main protease.

The estimation was essential to identify crucial active site
residues and their respective energy contributions towards
favourable inhibitory activities of various compounds and
stabilization of the protein. From the plot of the per-residue
energy contribution prominent residues with most

outstanding total energy (with a threshold from 0.5 kcal/mol)
drawn from van der Waals, electrostatic, Polar Solvation and
Non-Polar Solvation are indicated in Table 4 with their corre-
sponding energy values. The consistent reoccurrence of
some residues in addition to the earlier mentioned catalytic
residue His41 and Cys145 is suggestive of the crucial role
they play in the inhibitory activity of different compounds to
Mpro proteases; this will equally provide insight into the
design of compounds that distinctively target these import-
ant residues. The dominance of electrostatic and van der
Waals in the total energy outcome cannot equally be over-
emphasized as the plot also depict the level of the contribu-
tion of the individual residues to these energy types.

To further unveil the interaction dynamics in protein–li-
gand complexes, we proceeded to visually analyse the
nature and/or type of interactions that produced the strong
high-affinity binding in the various systems. Different bond
types indicated in the right of Figures 6–8 were noticed
between the active site residues of Mpro and various ligands
due to diverse constituent functional groups in the ligands
that interacted concurrently.

This enabled us to identify crucial residues that played an
active role in the binding interaction between the ligands
and the protein. From the visual analysis, the dominant

Figure 5. Degree of the solvent of exposure of the active site residues goes hand in hand to determine protein–ligand interaction. The plot indicates the level/
degree of surface residue exposure and burial which is an indirect indicator of catalytic activity.

Table 3. MM/PBSA-binding energy profile of the studied compounds to Mpro.

Compounds
names

Energy components (kcal/mol)

DEvdW DEele DEgas DEsol DGbind
DCN –36.7338 –9.8173 –46.5511 18.2133 –28.3378
MDC –46.0194 –15.5171 –61.5365 20.1702 –41.3663
NBD –39.6483 –21.7271 23.9521 23.9521 –37.4233
MGN –30.4557 25.1539 25.1539 –45.9030 –20.7491
MDF –52.6626 –20.0494 –72.7120 29.2992 –43.4129
HXD –37.2274 –6.2504 –43.4778 16.5647 –26.9131
RBV –25.0251 –27.7128 –52.7379 30.8470 –21.8909
RMS –41.4271 –26.4729 –67.9001 34.9582 –32.9419
HCQ –37.5839 –250.1627 –287.7465 252.7917 –34.9548

DEele, electrostatic energy; DEvdW, van der Waals energy; DGbind, total binding
energy; DGsol, solvation energy; DGgas, gas phase energy.

10 J. O. OGIDIGO ET AL.



interactions include conventional hydrogen bonds, carbon
bonds, charge-charge, Pi-Alky, Pi-Sulphur, Pi-Pi T-shaped
and Pi-Pi stacked bonds. From the residue interactions, it
can be observed that a “consistent” conventional hydrogen

bond, carbon bond and Pi-Alkyl interactions were common
in all the systems apart from 17-hydroxyazadiradione which
did not interact with Mpro via conventional hydro-
gen bond.

Figure 6. Per-residue energy decomposition of active site residues and their corresponding energy contributions towards the binding and stability of (A) DCN, (B)
MDC and (C) NBD. Left: Interacting residues are indicated with distinct colourations. Right: Occurring inter-molecular interactions in the active site and compounds-
functional moieties.
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Figure 7. Per-residue energy decomposition of active site residues and their corresponding energy contributions towards the binding and stability of (A) MGN, (B)
MDF and (C) HXD. Left: Interacting residues are indicated with distinct colourations. Right: Occurring inter-molecular interactions in the active site and compounds-
functional moieties.
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Visual inspection in Figure 6(A) revealed that a conven-
tional (NH–O) hydrogen bond occurred between Ala191 of
Mpro and oxygen atom of Deacetylnimbinene. In another
case (Figure 6(B)), a conventional (NH–O) hydrogen bond
was again observed between Gln192 of Mpro and oxygen
atom of momordicine whereas an oxygen and sulphur atoms
in met49 of Mpro equally established another conventional
(OH–O) hydrogen bond with an OH group in momordicine.
In Figure 6(C), nimbandiol equally had two conventional
(NH–O, OH–O) hydrogen bond; NH group in Met49

interacted with an oxygen atom in nimbandiol, while the OH
group in nimbandiol interacted with an oxygen atom in
Cys44. In Figure 7(A), only one conventional (NH–O) existed
between oxygen atom of margolonone and NH group of
main proteases. In Figure 7(B), two different OH groups in
momordicoide F2 maintained conventional (OH–O) hydrogen
bonds with one oxygen atom in Glu166 and Cys44.

Among the reference drugs (Figure 8), hydroxychloro-
quine has two conventional (NH–O) hydrogen bonds; one
from the NH group in Gln192 interacting with the oxygen

Figure 8. Per-residue energy decomposition of active site residues and their corresponding energy contributions towards the binding and stability of (A) HCQ, (B)
RBV and (C) RMS. Left: Interacting residues are indicated with distinct colourations. Right: Occurring inter-molecular interactions in the active site and compounds-
functional moieties.
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atom on hydroxychloroquine while another NH group from
hydroxychloroquine interacted with an oxygen atom in
Met49 (Figure 8(A)). Ribavirin and remdesivir have three con-
ventional hydrogen bonds each; this is suggestive of a stron-
ger high-affinity binding. In ribavirin (Figure 8(B)), three
conventional (NH–O) hydrogen bonds occurred between this
compound and main protease; NH from Asn142 and Glu166
interacted with different oxygen atoms in ribavirin, while NH
in ribavirin interacted with an oxygen atom in the main pro-
tease. Finally, in Figure 8(C), NH–O and NH–N conventional
interactions were observed between remdesivir and main
protease. Here NH from Gly143 and Ser144 interacted with
different oxygen atoms in remdesivir while another NH
group in remdesivir interacted with an oxygen atom in
Glu166. Visual observation indicates that conventional hydro-
gen bond did not occur in 17-hydroxyazadiradione, but
trends from the occurrence of this strong high affinity short

distant bonding interactions suggest that it is required for
the stabilization of the protein–ligand complexes. Hence fur-
ther structural optimization is needed to improve the bind-
ing dynamics of 17-hydroxyazadiradione to Mpro active site.
The types of reoccurring bonding interaction are indicative
of variations in ligand positioning and proximity to active
site residues of the proteins. Table 4 gives a brief description
of the residues that played an active role in the binding
interaction of this compounds to Mpro and will pave way for
the design of novel inhibitors that will specifically target this
enzyme. From the table, Met165 consistently interacted with
all the inhibitors and could be very vital residue for the
design of novel inhibitors

In silico evaluation of biological activities, toxicities and
pharmacokinetic properties

The pharmacological profiles of the natural products were
when compared with the minimum and maximum accept-
able range and those of reference drugs by predicting their
pharmacokinetic (ADMET) properties as indicated in Tables 5
and 6. It is worth mentioning that the LD50 as a parameter is
very vital in dictating variable toxicities of compounds that
are taken via oral routes (Lipinski, 2004). Hence elevated
LD50 depicts an increase in toxicity whereas a decline in LD50

correlated with a decrease in toxicity(B).
We performed the toxicity class and labelling study with

ProTox webserver; it uses the globally harmonized system for
characterizing the toxicity class and labelling of chemicals
(Banerjee et al., 2018). As estimated and indicated in Table 5.
Ribavirin an FDA reference drug has the highest LD50 which
could be suggestive of high oral toxicity. However, ribavirin
is reported with good bioactivity, bioavailability and no
reported case of toxicity. The observation made from riba-
virin is indicative of the promising attributes of the studied
compounds as possessing the good quality to pass toxicity
test. The estimation of cytotoxicity of the compounds with
ProTox revealed a hepatotoxicity and cytotoxicity values
similar and close to those of the reference drugs thus reveal-
ing their respective safety state at consumption. This hepato-
toxicity and cytotoxicity values corroborates with the
findings in LD50.

A good drug candidate is expected to have an MW
threshold ˂500Da (g/mol) based on Lipinski’s RO5 (Lipinski,
2004; Lipinski et al., 1997; Omran & Rauch, 2014; Veber et al.,
2002). Several studies have revealed a link between the
molecular weight (MW) of drugs and its toxicity, wherein the

Table 4. An overview of crucial active site residues with strong energy
contributions.

Compound names

Energy contributions (kcal/mol)

Residues Energy value Residues Energy value

DCN Met165 –2.029 Leu167 –0.677
Gln189 –1.711 His41 –0.615
Met49 –1.408 Arg188 –0.558
Asp187 –0.767

MDC Met165 –2.562 Cys145 –0.89
His41 –1.428 Leu167 –0.592
Gln189 –1.36 Asp187 –0.834

NBD Met49 –2.989 Ser46 –0.721
Cys44 –1.815 Cys145 –0.619
His41 –1.62 Leu27 –0.64
Met165 –1.608

MGN Gln189 –2.045 Arg188 –0.615
Met49 –1.052 Asp187 –0.589
Met165 –1.165 Thr25 –0.55
Thr190 –0.831 His41 –0.533
Ala191 –0.679 Leu50 –0.511
Phe181 –0.664

MDF Met165 –2.469 Gln189 –1.068
Met49 –1.81 Arg188 –0.956
Cys44 –1.483 Thr25 –0.759
Thr45 –1.48 Ser46 –0.723
His41 –1.233 Glu166 –0.716
Leu167 –1.077

HXD Gln189 –1.936 His41 –1.066
Met49 –1.746 Leu50 –1.032
Met165 –1.553 Asp187 –0.976

RBV Met165 –3.063 His163 –0.747
Cys145 –1.215 His164 –0.793
Glu166 –1.068 Ser144 –0.712
Gln189 –0.963 Asn142 –0.616
Gly143 –0.871 His41 –0.587

RMS Met165 –2.622 Gly143 –1.2
Glu166 –2.422 Leu50 –1.032
Cys145 –2.033 Asn142 –0.648
Pro168 –1.582 Ser144 –0.645
Leu167 –1.46

HCQ Met49 –1.948 Leu27 –0.958
His41 –1.888 Arg188 –0.569
Gln189 –1.705
Met165 –1.215

Note: The residues were colour-coded such that the once that were not
absent in more than five systems were coloured. The colour coding is such
that residues that were absent in five systems have five of the ID uncoloured,
while the once that were absent in four had four of its ID uncoloured, the
same happened for three and so on. The once that were absent in more than
five systems were not coloured. The catalytic residue (Cys145) was equally
double coloured to reveal where it occurred. The second catalytic residue
(His41) occurred consistently.

Table 5. In silico predicted toxicity properties of the investigated compounds.

Compounds names

Predicted pharmacokinetic properties

LD50 (mg/kg) Hepatoxicity Cytotoxicity

DCN 600 0.72 0.75
MDC 186 0.65 0.82
NBD 600 0.67 0.77
MGN 570 0.68 0.83
MDF 1190 0.89 0.52
HXD 1000 0.76 0.80
RBV 2700 0.52 0.72
RMS 1000 0.56 0.55
HCQ 1240 0.94 0.72
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higher the MW of a drug, the higher the toxicity whereas
compounds with lower MW produces reduced toxicity
(Chapman et al., 2013). Therefore lower molecular weight is
better (Omran & Rauch, 2014) because high MW in drugs
decreases the concentration of the compounds at
the intestinal epithelium surface and thus diminish. From
Table 6, all the compounds obeyed Lipinski’s RO5 of MW
threshold ˂500 Da (g/mol), but, surprisingly, momordicoside
F2 had a MW more than 500 Da and remdesivir which is an
already approved drug that has no reported case of toxicity
equally had an MW more than 500 Da. This could be sug-
gesting a need for optimization

The Log P gives an idea of the hydrophobicity of chemical
entities, it is universally defined as the negative of the loga-
rithm of the partition coefficient between n-octanol and
water (Coctanol/Cwater) (Chapman et al., 2013). Hence an
increase in Log P is an indication of a decline in aqueous
solubility, which results in a reduction in absorption. Previous
reports have revealed the chemical entities with Log P range
of �0.4 to 5.6 tend to exhibit a high level of absorption
while values greater than 5.6 and quite lower than �0.4 pos-
sess low hydrophilicity, poor permeability and absorption
(Llorach-Pares et al., 2017; Remko, 2009; Remko et al., 2011).
As presented in Table 6, all the natural products and the
approved drugs exhibited an acceptable level of solubility
which will enhance absorption and distribution. Although
momordicine has a value that is slightly higher than the
acceptable threshold (Sander et al., 2015), the value is within
the range that is suggested to tend towards being well
absorbed. This indicates that these studied compounds did
not violate Lipinski’s rule of 6 (Log P< 5). We took another
step to use Log S parameter to further evaluate the aqueous
solubility of the studied compounds. The estimation is very
crucial because it determines the oral bioavailability of drugs
in line with membrane permeability (Bennion et al., 2017).
Studies available on about 95% of existing drugs has
revealed the acceptable threshold for Log S to be between 0
to �6. A look at Table 6, Section on Log S indicates that all
the studied compounds were within the suggested accept-
able range for Log S, this finding goes further corroborate
the deductions made from the evaluation of Log P. An
important observation to be noted is the value of Log P and
Log S of momordicine. Though it is said to be within the
range of chemical entities that are with the range described
to tend to exhibit a high level of absorption. However, it is

slightly above the acceptable range for Log P and very close
to the limit for the acceptable range for Log S. This is there
suggestive of the need for structural optimization to be
done on this compound.

The topological polar surface area (TPSA) parameter totals
the polar atoms at the surface which are primarily oxygen
and nitrogen in addition to the hydrogen atoms that are
attached to them. This parameter predicts cell permeation
ability of chemical compounds; it is therefore put that the
lower the TPSA value the better (Ertl et al., 2000; Prasanna &
Doerksen, 2009). The metrics describes the size and volume
of compounds which is an indication of physiological trans-
port across the tight junction of the lipid bilayer membrane.
These lipid bilayer membrane transport routes include the
GIT and the blood–brain barrier (Shityakov et al., 2013).
Therefore, the increase in TPSA is suggested to diminish the
transportation capability of drugs which in turn affect their
biological activities (Daga et al., 2018). The table revealed
that all the selected natural products adhered to the accept-
able threshold TPSA value of �140Å2. One is left to wonder
why two of the approved drugs ribavirin and remdesivir with
TPSA values of 143.73 and 203.57, respectively, had values
quite above that of the threshold and are still able to perme-
ate cells and give reasonable efficacy. We suspect that there
could have been other structural modification which was
implemented in this compound; however, this observation is
outside the scope of this present study. The results that we
have obtained however suggests that the studied com-
pounds possessed better physiological transport qualities
than the approved drugs. Hydrogen bonding is connected
with constituent oxygen and nitrogen moieties and largely
related with TPSA which is an indirect indication of polarity
and the capacity of hydrogen bonding(Di & Kerns, 2006;
Prasanna & Doerksen, 2009). The descriptors for hydrogen
bonding are several hydrogen bond donors (HBD) and
acceptors (HBA) present in a molecule. These parameters
have been extensively employed in the evaluation of drug-
likeness of compounds. Lipinski’s RO5 states that for a drug
to be orally active, it must have an HBD count of �5 and
HBA of �10 (Doak et al., 2014). As predicted from the table,
all the natural products and the approved drugs pass the
test for oral bioactivity, however, remdesivir with HBD of 12
once again left an impression for structural optimization.

The drug-likeness of the compounds under investigation
was further assessed using LE, LLE and LELP. These metrics

Table 6. Comparative evaluation of physicochemical properties.

Compounds names

Pharmacological properties

MW (Da) Log P Log S (mol/L) TPSA (A2) HBA HBD
Rotatable bonds

(kcal/mol/heavy atom) LE LLE LELP

DCN 440.22 3.19 –3.23 85.98 6 1 4 0.0425 –2.469 81.418
MDC 472.36 5.60 –5.50 77.75 4 3 5 – – –
NBD 456.21 2.25 –2.27 106.2 7 2 4 0.285 1.337 15.597
MGN 314.15 4.13 –4.26 71.44 4 1 1 0.421 0.624 13.956
MDF 618.41 4.93 –4.58 128.84 8 5 7 0.209 –2.539 92.3
HXD 466.24 3.63 –3.64 93.81 6 1 3 0.279 –2.520 73.722
RBV 244.08 –2.08 –0.84 143.73 7 5 3 0.604 7.375 –8.261
RMS 602.23 2.44 –2.68 203.5 12 5 14 0.231 0.611 10.186
HCQ 335.18 3.69 –3.98 48.38 3 2 9 0.429 0.666 13.786
Acceptable threshold ˂500 Da ˂5 0 to �6 �140 �10 �5 ˂10 >�0.3 LLE>�5 �10–10
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have previously been employed to optimize ligands and
equally identify ligands with improved binding efficiency for
physiological targets (Abad-Zapatero, 2007; Hopkins et al.,
2014; Johnson et al., 2018). The suggested acceptable range
for potential drug candidate for each of the parameters are
LE> �0.3 kcal/mol/heavy atom, LLE>�5 while optimal drug
LELP value ranges between �10 and 10 (Abad-Zapatero,
2007; Hopkins et al., 2014; Johnson et al., 2018). Most of the
compounds were within the indicated range for some of the
investigated parameters, however, a few exceptions exist
which is suggestive of further structural optimization. As indi-
cated, deacetylnimbinene fell short of all the studied param-
eters, this a clear indication of a need for critical structural
optimization. On an additional note, nimbandiol has an LE
value that is close to the acceptable >�0.3, but the LLE and
LELP values are somehow out of the required range thus
suggesting the need for structural improvement.
Momordicoside and remdesivir exhibited LE value that is
slightly lower than the acceptable range. In the case of LLE
and LELP, only ribavirin had LLE and LELP values within the
suggested range. But of least importance is lack of metrics
for momordicine coupled with the shortcomings on some of
the required qualities, this, therefore, raises a need for add-
itional structural optimization to be carried to improve the
drug-likeness properties of these compounds.

Conclusion

Coronaviruses main protease (Mpro) is an essential protein
critically required for proteolytic maturation of the corona-
virus. In this study, 86 compounds and 3 FDA drugs were
screened from M. charantia L. and Azadirachta indica for pos-
sible therapy against SARS-CoV-2 Mpro using structure-based
drug design and MD approach. Analysis from the Root mean
square fluctuations revealed that the higher active site RMSF
of the phytocompounds when compared with apo Mpro cor-
roborates with the reported open/close and twisting mech-
anism of ligand inactivation of the viral protease.
Furthermore, two of the Phyto ligands momordicine and
momordiciode F2, gave binding free energy that is higher
when compared with FDA drugs (Ribavirin, remdesivir and
hydroxychloroquine). Analysis of the per-residue additional
showed that studied compounds interact with these key
amino acid residues in the active site of the main protease,
suggesting that these phytocompounds could emerge as
ideal candidate’s inhibitors against SARS-CoV-2 Mpro and
another virus protease. Pharmacokinetics suggests that the
phytocompounds possessed better physiological transport
qualities when compared with the reference drugs. Our
results present urgent attention since there are no drugs
obtainable against SARS-CoV-2. These findings may provide
insight for developing new treatments for SARS-CoV-2.
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