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Abstract Compounds that selectively modulate multiple targets can provide clinical benefits and are an

alternative to traditional highly selective agents for unique targets. High-throughput screening (HTS) for

multitarget-directed ligands (MTDLs) using approved drugs, and fragment-based drug design has become

a regular strategy to achieve an ideal multitarget combination. However, the unexpected presence of pan-

assay interference compounds (PAINS) suspects in the development of MTDLs frequently results in

nonspecific interactions or other undesirable effects leading to artefacts or false-positive data of biolog-

ical assays. Publicly available filters can help to identify PAINS suspects; however, these filters cannot

comprehensively conclude whether these suspects are “bad” or innocent. Additionally, these in silico ap-

proaches may inappropriately label a ligand as PAINS. More than 80% of the initial hits can be identified

as PAINS by the filters if appropriate biochemical tests are not used resulting in false positive data that are

unacceptable for medicinal chemists in manuscript peer review and future studies. Therefore, extensive

offline experiments should be used after online filtering to discriminate “bad” PAINS and avoid incorrect

evaluation of good scaffolds. We suggest that the use of “Fair Trial Strategy” to identify interesting
ALARM NMR, a La assay to detect reactive molecules by nuclear magnetic resonance; CADD, computer-aided

; EGFR, epidermal growth factor receptor; GSH, glutathione; HER2, human epidermal growth factor receptor 2;

S, liquid chromatography�mass spectrometry; MTDLs, multitarget-directed ligands; QSAR, quantitative

n-assay interference compounds; ROS, radicals and oxygen reactive species.
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molecules in PAINS suspects to provide certain structure‒function insight in MTDL development.

ª 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The advantages of multitarget-directed ligands (MTDLs) suggest
that agents capable of modulating multiple targets in a selective
manner can improve the balance between clinical and therapeutic
benefit and safety compared to the characteristics of unique target-
directed agents1,2. The types of scaffolds needed to design MTDLs
require accurate analysis of targetedisease associations, path-
way�target�drugedisease relationships, and adverse event
profiling3. Therefore, the application of computer-aided drug
design technology (CADD), advanced systems biology, and
chemical biology is shifting MTDL development paradigm from
low affinity inhibition of multiple-targets to an approach involving
interactions with mutually regulated targets to achieve synergistic
and detoxifying effects4. However, meaningful interference of
MTDLs with multiple targets has been flagged as undesirable for a
long time due to questionable rationality and selectivity of
MTDLs, which are considered “bad” scaffold suspects (known as
pan-assay interference compounds, PAINS)5. The instances of
“bad” scaffolds are often disguised as a drug combination and may
be involved in nonspecific interactions, leading to artefacts in
biological assays6. For example, arylpiperazine substructure has
been considered a suitable scaffold for fine balancing of D2, 5-
HT1A and 5-HT2A receptor activities to improve antipsychotic
efficacy or mitigate adverse effects7. The prototype of the third-
generation of antipsychotics, aripiprazole, launched into the
market in 2015 was the first designed serotonin-dopamine activity
modulator. However, the compound also displayed unwanted side
effects probably due to sustained interaction as a false positive
structure with post-synaptic D2 receptors7,8.

Exemplary PAINS recognized as small molecule suspects
include anilines, rhodanines, curcuminoids, Michael acceptors as
irreversible inhibitors, and Mannich bases, which are typically
present as substructures in other molecules9e11. PAINS are usually
attributed to nonspecific binding or assay artefacts based on the
structure or binding interactions or to indirect potential function-
alization effects, such as sample fluorescence, which is the most
difficult issue in biochemical assays12,13. To improve the affinity
of PAINS toward targets, medicinal chemists spend considerable
time and effort to produce various analogs and optimize the ac-
tivity of PAINS11. In contrast, excessive screening and unjustified
assessment may often result in abandonment of “good” scaffolds
due to suspected PAINS. These considerations may confuse peer
reviewers in their assessment of the submitted manuscripts and
places many inexperienced chemists in a complex situation due to
required activity evaluation and fragment selection in the de-
velopments of MTDLs5. Thus, these suspects compounds should
be treated with rigorous and investigative “Fair Trail Strategy” to
refrain from advancing a “bad” PAINS or discarding a “good”
scaffold11,14,15. It is appropriate and relevant to screen selective
scaffolds that combine specified multi-target properties according
to the paradigm of targeted pharmacology and “network phar-
macology”3. In case of a concern about PAINS suspects, detailed
and reasonable follow-up experiments are essential to exculpate
the innocent PAINS suspects to enable their development and to
validate the expected functions of the “bad” suspects prior to
discarding these compounds from further consideration16. Publi-
cations should allow authors to quantify the roles of each func-
tional group of the PAINS suspects in their submitted manuscript
rather than firmly reject the candidates due to biased perception.

2. Performance of PAINS suspects in MTDL development

The research and development strategies of MTDLs have been
extensively focus on high-throughput screening (HTS), fragment
based synthetic approaches, and physicochemical, pharmacody-
namic, and network pharmacology aspects17. PAINS alerts are
obviously more frequent for the combination of two or more
specifically selected targets than those for a single target regard-
less of the approach used to develop MTDLs. The false-positive
results caused by real PAINS are predominantly caused by a va-
riety of mechanisms including the formation of colloidal aggre-
gates (1, Fig. 1)18, chelation (2, Fig. 1)19, covalent protein
reactivity (3, Fig. 1)20, interference with assay spectroscopy (4,
Fig. 1)21,22, redox activity (5, Fig. 1)23, membrane disruption24,
high molecular flexibility and hydrophobicity25, decomposition in
buffers26, and photoactivation27. The first five mechanisms are
considered to be the most important factors in the assignment of
PAINS (Table 16,18e21,23). Hence, there is no single diagnostic
analysis system for the entire list of “bad” compounds5.

Most of MTDLs obtained from HTS have relatively small
molecular weight28. Introduction of appropriate fragments or
removal of unnecessary groups from the favorable position is
completely determined by the target and can be used to balance
the effect of multi-target combination therapy. Therefore, general
screening compound decks can be compiled based on the scaffolds
with low structural complexity to increase the number of multi-
target combinations and facilitate rapid hit-to-lead expansion12.
The strategy of fragment recombination may be more popular and
desirable for the customized design of MTDLs. Regardless of the
methods used to obtain the ligands, the structural environment of
potential scaffolds plays a critical role in the development of
MTDLs due to their potential to be flagged as PAINS suspects29.
Multiple evidence provided by the analysis of analog series con-
taining suspected artefacts enables the detection of PAINS in
various scaffolds30. In addition to PAINS, a number of other
agents may have interference potential31. Similarly, in the case of
certain highly promiscuous scaffolds, there is no direct evidence
demonstrating possible assay artefacts31. Relationships between
lack of activity, specific activity, and artificial performance of the
agents with potential liabilities are highly confusing and difficult
to distinguish32. Hence, comprehensive investigation of
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Figure 1 Examples of PAINS suspects and their activity modes and action profiles.
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multitarget activities and assay interference patterns in HTS and
assessment of fragment recombination are the major tasks in
MTDL development (Fig. 2)14,33.

2.1. Performance of HTS in MTDL discovery and PAINS
identification

HTS has become a regular strategy in the discovery of screening
hits as a good starting point for the growing list of validated
multi-targets or as a useful tool for MTDL discovery. Artificial
intelligence, such as neural networks, is critical for prediction of
interactions between the screening hits and related targets to
prioritize the ligands that can be further developed as MTDLs or
to provide analysis of interactions with multiple targets34. The
issues surrounding HTS received considerable attention because
some of the screening hits are truly promiscuous ligands that
potently, specifically, and reversibly bind to a multi-target com-
bination related to a complex disease35,36. However, detection of
desired and undesired ligands by HTS identifies certain scaffolds
that do not necessarily reflect the binding promiscuity of the in-
dividual molecules. In contrast, new conceptual frameworks, such
as systems biology and polypharmacology, may suggest that
molecules, which often produce biological effects in multiple
Table 1 Main chemotypes of PAINS and their mechanisms to cause

Interference Principle

Covalent interaction Covalently bind to all sorts of

macromolecules

Colloidal

aggregation

Non-specifically bind to proteins, confounding

and irrelevant enzymatic responses

Redox cycling Generate ROS and indirectly inhibit the

catalytic activity of proteins

Ion chelation Can form chelate for a lot of potential

proteins and functional systems

Sample fluorescence Fluorophoric properties can affect the

biological evaluation results
tests, do not interfere with bioassays; optimization of these
compounds is challenging but can yield innovative and safe
drugs15.

The use of HTS for exclusion of PAINS suspects from
chemical libraries is another controversial issue. The applications
of public PAINS filters and other HTS methods are important for
identification of undesired scaffolds; however, these methods are
frequently insufficiently developed and are not completely reliable
in identification of all possible relationships between the scaffolds
and protein structures5. Up to 80%e100% of initial HTS hits in
various screening models and various target activators/inhibitors
can be labeled as artefacts if appropriate control experiments are
not employed37e40. The activity of the majority of PAINS is
positive only in a small number of assays14 and depends on spe-
cific experimental conditions and modes of action5. Usually,
PAINS are the compounds with a high hit rate, which interfere
with the screening and detection methods, and poor drug prop-
erties of PAINS are an important issue in drug development35. The
most frequent “bad” PAINS identified by HTS are rhodanine and
its derivatives, which have been extensively reported to have a
wide range of antibacterial activities at the cellular and compound
level in more than 2000 publications41,42. However, due to
extensive and complex mechanism of action, specific targets of
promiscuity.

Chemotypes

Quinones, alkylidene barbiturates, rhodanines, omeprazole,

carbidopa, ethacrynic acid, enones, related heterocycle 6,20

Miconazole, nicardipine, trifluralin, cinnarizine,

tetraiodophenolphthalein, staurosporine aglycone18

Phenol-sulphonamides, pyrimidotriazinediones, b-lapachone,

arylsulfonamides, tolyl hydrazides, quinones and catechols 6,23

Hydroxyphenyl hydrazones, quinones and catechols,

rhodanines, 2-hydroxybenzylamine 6,19

Daunomycin, topotecan, and riboflavin, quinoxalin-imidazolium

substructures21



Figure 2 Rational design of multitarget-directed ligands.
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these compounds cannot be determined, which becomes the main
obstacle for further development32.

2.2. Performance of PAINS suspects in fragmentation-based
MTDL design

Fragmentation-based MTDL design generally requires a certain
degree of synergy and balance between the optimized promiscu-
ous ligands and the targets due to the mutual interactions of the
targets in the clinical treatment of multiple cause diseases. The
theoretical premise of fragmentation-based MTDL design is to
determine the important role of related targets in the pathological
process43. Then, rational structural optimization based on a
pharmacophore skeleton can yield effective ligands for multiple
targets. To achieve a better synergistic effect, the targets of ligand
binding should be confirmed, and then suitable scaffolds need to
be introduced to increase the affinity to the target combination5. A
comprehensive analysis of ligand�target interactions indicates
that multifamily ligands frequently result in multiple interactions
in the binding sites even if the compounds have homologous
bound conformations; these properties rationalize promiscuous
binding events at the molecular level44.

Generally, the mechanisms of action of drugs and targets
involve regulation of the functions of the target proteins through
noncovalent interactions. However, PAINS scaffolds have rela-
tively high chemical activities and can be covalently combined
with proteins, DNA, etc.45. Proteins are often very sensitive to the
PAINS scaffolds containing electrophilic groups, and these scaf-
folds can influence enzyme activity through irreversible reactions
with proteins, which in turn cause false positives screening results.
Additionally, PAINS scaffolds containing electrophilic groups are
easily hydrolyzed or decomposed by organic solvents to generate
active fragments, which act on targets and change enzyme activ-
ity35,46. On the other hand, certain PAINS scaffolds, such as ar-
omatic hydrocarbons, polyphenols, and hyperlipophilic and
conjugated scaffolds, can form aggregates due to molecular in-
teractions and can bind to the targets with high affinity in the
reaction systems thus causing false positive results35.

3. Exculpation of cunning PAINS suspects

As mentioned above, several mechanisms have been proposed to
account for PAINS interference in MTDL development, and it is
impossible to distinguish “bad” compounds only by an inde-
pendent assessment system. The advanced chemical databases of
PAINS filtering are currently available with annotated biological
activities, and several successful applications of PAINS filtering
were described. For example, the application of the Bioassay
and Drug Screening Platform managed by LaBECFar-FIOCRUZ
can routinely and rapidly identify PAINS with selectivity
screens31. However, current public PAINS filters are not suffi-
cient to identify all possible relationships between chemical and
multiple targets as indicated by various types of false negatives
detected in the analysis. Certain PAINS can be inadvertently or
mechanically distinguished from nonspecific interactions or
other undesirable effects leading to detection of irrelevant ac-
tivities of the suspects (real PAINS)6. These “bad” PAINS
frequently escape the judgment by peer reviewers and majesti-
cally appear in publications, since target reactivity or specificity
can be higher than that of the other compounds identified by
screening5.

PAINS are defined in terms of a curated screening library,
which is one of the reasons for exculpation of the suspects in
filtering. These screening libraries reasonably represent chemi-
cal resources of subsequent modifications and were used to
eliminate multiple PAINS suspects in many cases by pre-
liminary filtering11. For example, dicyanoalkene 1 is a recog-
nized “bad” PAINS; however, public filter ene_cyano_A did not
identify 2 (substructure of 1) as a PAINS because 2 did not
include any scaffolds in the initial screening library used to
define PAINS11. Other reactive scaffolds, such as isothiazolones
3 and pyrimidotriazinediones 5, cannot be detected by PAINS
filters because their “bad” characteristics were identified only
after filter definition11,47 (Fig. 3).

Additionally, compounds with PAINS substructures usually
have variable performance in the screening assays, and many
substructures are occasionally or consistently inactive14. Thus,
vulnerability of PAINS filtering may be due to the presence of
these inactive PAINS-containing substructures during the detec-
tion process (1e4, Fig. 4)11. An increase in the activity threshold
of the filtering will result in a lower limit of the hit rates.
Therefore, potential false positive rates of PAINS are generally
higher than the corresponding anticipated values for the com-
pounds that are expected to produce analytical artefacts14. In these
cases, multiple assay activities should be monitored to identify
PAINS interference.

Another reason for incorrect identification of “bad” PAINS is
partially due to tautomerism, such as compounds 1e2 and 3e4 in
Fig. 5; other compounds may cause assay artefacts that are not
defined as PAINS31. However, the compounds initially defined as
PAINS should be considered candidates for subsequent investi-
gation of multitarget activities and molecular mechanisms of
polypharmacology31 to assess the details of “good” promiscuity or
“bad” PAINS. Similarly, the suspects not identified by PAINS
filters provide opportunities for subsequent investigation of assay
interference.



Figure 3 Structures defined in public filters that are not generally

recognized as PAINS. Compounds such as 3 and 5 could not be

considered useful or progressable and should be excluded from

screening libraries. Compound 5 should be redox active and is not

unexpected considering its similarity to the isoalloxazine ring of fla-

vins (6 and 7)48,49.
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4. Injustice to innocent PAINS suspects

The application of public virtual filters for exclusion of PAINS
suspects is controversial, and many drugs approved in the clinic
(such as atovaquone 1, mitomycin 2, and mitoxantrone 3 in
Fig. 6) would never reach the market if medicinal chemists have
relied on these filters10,15,37. These tools do not comprehensively
identify all suspected substructures or promiscuity as PAINS and
may also inappropriately label a compound as an artefact50.
Particularly, some suspects are truly undesired false positives;
however, very simple structural modifications can change the
potency and selectivity of these compounds. Recent publications
suggested that chemical and biological methods identify many
screening hits that contain PAINS alerts and directly define
PAINS as “bad actors” that exhaust the energy and lower the
expectations thus warning medicinal chemists6. Public reports of
private trials make PAINS suspects to leave a subconscious bad
impression on many editors and peer reviewers. Fortunately, this
issue has attracted the attention of many editors-in-chief of ACS
journals, including Journal of Medicinal Chemistry, ACS Central
Science, and ACS Chemical Biology5. According to these fair and
experienced editors, even if some screening hits can be defined as
general PAINS alerts by public filters, the compounds cannot be
considered useless in subsequent well-planned studies5.

Naphthoquinone is one of the PAINS suspects that offers an
easily accessible and extensively investigated scaffold for design
of new drugs. Naphthoquinones and their derivatives undergo
redox cycles in vivo generating semiquinone radicals and reactive
oxygen species (ROS) that may interfere with multiple targets51

resulting in their identification as PAINS by several filtering
tools. In fact, some naphthoquinones are druggable agents with
options for structure optimization by established synthetic path-
ways52. Many antitumor naphthoquinone derivatives are selective
toward cancer versus normal cells due to specific metabolism53.
For example, naphthalene-5,8-dione-1-sulfonamide-based STAT3
inhibitor 9 (Fig. 7) was designed by advanced multiple ligand
simultaneous docking (AMLSD) and is characterized by superior
druggability compared with other representative inhibitors.
Compound 9 selectively binds to p-STAT3(Y705) versus STAT1/
5, p-AKT, and p-ERK kinases in the similar pathways and versus
other proximal sites. Analysis by the online public filters and
biochemical assays identified compound 9 as a PAINS suspect54.
Quinoline derivatives are also considered to cause PAINS
interference in many cases55. Neratinib (Fig. 7) is a new irre-
versible dual-target inhibitor on the market that has antitumor
activity and targets EGFR and HER2. Neratinib was designed to
bear a Michael acceptor warhead and to take advantage of high
sequence identity of the ATP-binding domains of EGFR and
HER2 (82%)56. However, neratinib displays no activity against
other serineethreonine kinases, such as AKT, cyclin D1/CDK4,
cyclin E/CDK2, cyclin B1/CDK 1, IKK-2, MK-2, PDK1, c-RAF,
and TPL-2 and tyrosine kinase c-MET57.

5. “Fair Trial Strategy” for validation of PAINS suspects in
MTDL development

The development of MTDLs is typically driven by the nature of
the targets, availability of the starting points, and chemical trac-
tability. The rational design of MTDLs is far from being an easy
task and has to consider the crucial issues of interaction with
specific targets58, achieving a synergistic effect toward them, and
“designing out” unwanted interactions with any undesired target
while retaining drug-like properties59. Discrimination between
multitarget activity and assay interference is a major problem in
biological screening and medicinal chemistry5. However, ration-
alization and prediction of potential assay interference of PAINS
suspects is a complex problem14,15,31,60. The importance of PAINS
issues is clearly indicated by medicinal chemists; however, PAINS
alerts do not necessarily disqualify the agents from further
consideration and do not invalidate the available data31. The
compounds can be characterized as PAINS only after in silico
filtration is augmented by experimental follow-up; defining a
compound as PAINS allows to stop their development and has a
greater significance for future studies61.

The “Fair Trial Strategy” (Fig. 8) encourages assessment that
can eliminate unnecessary problems in MTDL developments by
avoiding PAINS and should avoid elimination of good compounds
and excellent resources for the development of new drugs. In
particular, PAINS suspects that have frequent biological effects in
diverse assays and do interfere with bioassays can be optimized
via a challenging process into innovative and safe MTDLs using
new conceptual frameworks, such as systems biology and poly-
pharmacology62. The verification of molecule selectivity and
specificity for disease related multitargets is the key strategy for
excluding false positive hits. Covalent protein reactivity, colloidal
aggregates, redox activity, and ion chelation are considered the
main mechanisms accounting for PAINS. These types of com-
pound interference can result from the compounds them-
selves63,64, e.g., in the case of fluorescent compounds. Thus,
detailed description of effective computational and experimental
validation methods is presented below with case analysis to
illustrate the ‘Fair Trial Strategy’ of these mechanisms.

5.1. Verification of covalently interacting PAINS suspects

Traditionally, promiscuous scaffolds that rely on reactive elec-
trophilic groups are difficult to optimize toward lead compounds
because these scaffolds often interfere with biochemical analysis
rather than actually alter the activity of the target65. Even if the
target modulation is real, the undifferentiated target binding
response is considered to trigger insurmountable toxic events65.
These toxic events were increasingly believed to be associated
with covalent on-target or off-target binding because irreversible
covalent interactions may exacerbate possible adverse reactions65.



Figure 4 Representative PAINS structures of numerous consistently inactive compounds.
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The main consequence of irreversible covalent binding is to
covalently bind reactive metabolites to various proteins. In this
case, the leads are metabolically bioactivated to form reactive
species that potentially bind covalently to all types of macro-
molecules65. Hapten formation is another potential negative
consequence that must be considered for covalent and irreversible
kinase inhibitors because it can trigger an immune response to the
protein adducts65. Nonspecific irreversible inhibitors are generally
regarded as suspected PAINS by medicinal chemists and consid-
ered impurities and typical undesirable products unless special
screening of selective covalent modification was originally plan-
ned5. Therefore, identification of irreversible covalent inhibitors
by using specialized libraries and techniques is a necessary means
to eliminate PAINS interference in MTDL developments.
5.1.1. Computational validation of non-specific irreversible
covalent artefacts
Verification of a compound as a nonspecific irreversible covalent
artefact requires complex and innovative methodology; the results
have considerable variety in accuracy, precision, and acquired
information. In contrast to single-target inhibitors, the develop-
ment of MTDLs is more complex making traditional drug-like
rules and empirical parameters unsuitable for assessment of
safety2. MTDLs need to have high selectivity against unintended
targets and good physical and chemical properties, including ab-
sorption, distribution, metabolism, excretion, and toxicity2.
Rational structural optimization-based computational approaches,
such as cheminformatics and virtual screening, pharmacophore
development, molecular docking, and molecular dynamics, can
yield effective ligands for multiple targets66. Efficient MTDL
Figure 5 PAINS structures are not recognized by the public filters

due to tautomerism.
design uses a number of computational approaches to scaffold
optimization, including machine learning techniques of random
forests, support vector machines, and Bayesian learning67. After
acquisition of the feedback activity data from animal experimental
models, multitarget QSAR analysis and skeleton transition can be
used to optimize MTDLs to adjust their activity68. In addition to
the developmental relevance of MTDLs, scaffolds with truly
multitarget activities may be analyzed by computational methods
to determine why and how these chemical entities specifically
interact with multiple targets, especially if these targets are only
distant relatives or are completely irrelevant and have different
functions69. On the other hand, computational approaches have
some defects and biases in assessment of the structure of PAINS;
however, these methods are powerful for preliminary evaluation of
the references and enable the use of more accurate and fair virtual
approaches of reliable identification. When the designed MTDLs’
information data are supplemented in time and more precise al-
gorithms are developed, it is possible to make these calculation
methods more precise and accurate for PAINS identification.
Some computational approaches to MTDL development and
PAINS recognition are discussed below.

5.1.1.1. Molecular docking. Molecular docking studies can be
used to confirm nonspecific irreversible covalent interactions be-
tween the selected ligands and multiple targets before experi-
mental synthesis70. Molecular docking is generally used to access
possible conformations of the ligands, estimate the most stable
binding modes of the ligands with the targets, and optimize the
geometry of the docked ligand‒target complexes. The most
commonly used docking computational suites in MTDL design
include Schrödinger71, CDOCKER72, DOCKovalent73, GOLD74,
and DPubChem75. The docking simulations have been success-
fully used in MTDL development to design the treatments of
many neurodegenerative diseases76,77. For example, the imple-
mentation of Autodock Vina in the design of MTDLs targeting
AChE/BuChE/MAO-A/MAO-B for the treatment of AD led to the
synthesis of DIH1578 and DPH1479, which have the best drug-like
characteristics. However, due to rugged free energy landscape of
these simulations and minor differences in the initial velocities,
studies relying only on the outcome of a single molecular docking
method instead of multiple simulations may lead to false positive
conclusions80. Thus, multiple replicates and subsequent experi-
mental validation are needed to draw conclusions based on mo-
lecular docking. Molecular docking is the critical step and a
standard component that should be included in any ligand dis-
covery process80,81.

5.1.1.2. Machine learning techniques. Over the last decade,
deep learning and machine learning techniques have been
extremely successful and are widely used to develop artificial



Figure 6 FDA- and worldwide-approved drugs contain PAINS chemotypes.
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intelligence in almost every domain82e86. Numerous machines
learning techniques have been successfully used in model opti-
mization for efficient MTDL design and validation of nonspecific
irreversible covalent interaction, including support vector ma-
chines, random forests, and Bayesian learning. For example, a
screening platform for cloud computing proteomics called
“Ligand Express” leverages the combined efficiency of
biophysics, biological data, and artificial intelligence technolo-
gies87. These machine learning methods enable medicinal chem-
ists to efficiently explore new pathways of drug discovery and
PAINS identification.

Identification of unexpected drugeprotein interactions is
important for drug repurposing and PAINS identification. A
comprehensive ligand homology modeling approach FINDSITE-
comb is used for prediction of drugeprotein interactions, human
protein targets, and side effects of the drugs88. Construction of a
library of target protein structures of a proteome enables expedient
prediction of interactions of millions of molecules against a
typical proteome using a medium-sized computing cluster. The
application can be openly accessed on the DR. PRODIS (DRu-
gome, PROteome and DISeasome) webserver at http://cssb.
biology.gatech.edu/dr.prodis/ 88.

5.1.1.3. Public filtering tools. Generally, the complexity of the
interactions between MTDLs and targets requires considerations
of various readout methods used in various assays under various
conditions to identify PAINS; thus, definition of PAINS suspects
by virtual screening cannot be achieved5. However, public filtering
tools can be implemented for approximate PAINS identification if
all available chemical and biological information is taken into
account5. Although virtual filtering cannot be 100% successful in
ruling out PAINS, it can help medicinal chemists to exclude
considerable interference in MTDL development. Unlike experi-
mental biological assays, public filtering tools can analyze
massive in silico libraries of molecules59. Application of filters to
rule out PAINS requires an organic combination with subsequent
experimental biological assays to improve the success of validated
trial probability. Therefore, the improvement of filtering methods
generating highly reliable activity data, such as characterization
and identification of detailed thiol-reactive chemotypes, are
needed for PAINS suspects to pass through the filters33. Moreover,
experimental approaches should be supplemented with computa-
tional methods to accelerate triage of potential PAINS alert, guide
screening library design, and prevent follow-up on undesirable
chemical entities5.

Several well-established public filtering tools are available
online or as application software, including https://sandbox.ntp.
niehs.nih.gov/interferences/, http://zinc15.docking.org/patterns/
home, cbligand5, RDKit89, ZINC90, ToxAlerts48, and FAF-
Drugs4 server91. However, due to insufficient analysis of PAINS
definitions, the existing filtering tools always miss a substantial
proportion of PAINS substructure-containing compounds in an
independently curated molecular data-set. To address this short-
coming and allow visual exploration of the reasons for the pre-
diction, Maksim Koptelov and coworkers92 developed PrePeP.
PrePeP uses benchmark datasets from the literature to compensate
for a number of shortcomings of existing PAINS alerts that have
been pointed out recently92. Another improved filter system,
Vertex’s REOS, can identify and remove toxic, reactive, or other
undesirable molecules from the database by combining the char-
acteristics of molecules with certain principles that are based on
the requirements for the medicinal properties93. More than 90% of
high hit rate molecules and 91% of nonhigh hit rate molecules
could be distinguished by this filtering model93.

5.1.1.4. BadApple. BadApple is a biological test data asso-
ciative promiscuity pattern learning algorithm combining general
and domain-specific features to assist with and accelerate identi-
fication of possible nonspecific irreversible covalent artefacts13.
This engine generates a score associated with a pragmatic
empirical definition of irreversible interferences with the overall
goal to identify PAINS and streamline workflows13. Unlike
methods that rely on experts to manage chemical substructure
patterns, BadApple is a completely evidence-driven, automated,
and self-improving method that can integrate additional data13.

5.1.2. Experimental validation of non-specific irreversible
covalent artefacts
As mentioned previously, virtual computer technologies can only
assist medicinal chemists with the analysis of interaction modes of
ligands or PAINS with proteins in targeted or untargeted MTDL
design, and their target prediction and PAINS exclusion are not
100% correct. Therefore, the development of rapid and robust
experimental methods to distinguish PAINS suspects in the vali-
dation of nonspecific irreversible covalent artefacts is particularly
important. Irreversible covalent artefacts are usually manifested as
confusing phenomena in biochemical assays, such as lack of
correlation between structure and activity, time-dependent activ-
ity, and steep inhibition curve5. To determine whether these ar-
tefacts are “bad”, conclusive experimental evidence from at least
two different biological experimental tests should be provided. If
both tests report that the compounds are specifically active and the
apparent activity is not artificial, the suspect can be excluded5. In
the “Fair Trial Strategy”, full concentrationeresponse curves are a

http://cssb.biology.gatech.edu/dr.prodis/
http://cssb.biology.gatech.edu/dr.prodis/
https://sandbox.ntp.niehs.nih.gov/interferences/
https://sandbox.ntp.niehs.nih.gov/interferences/
http://zinc15.docking.org/patterns/home
http://zinc15.docking.org/patterns/home


Figure 7 Structures of compound 9 and neratinib.
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simple and critical evidence to rule out PAINS suspects because
the investigator can obtain considerable important information
based on the steepness of the curve and sampling quality5.

5.1.2.1. Counter-screening validation by incubation time-
dependent activity. Covalent inhibitors usually display
concentration-dependent and incubation time-dependent activity
in in vitro enzymatic assays94. Generally, a time-dependent in-
crease in apparent inhibitory potency suggests irreversible cova-
lent binding (Table 2)4. Counter-screening verification of an
irreversible covalent inhibitor THZ531 (Fig. 9a) of CDK12/13
used changes in incubation time during radiometric kinase activity
assay (Fig. 9)95,96. Counter-screening verification assessed the
ability of recombinant CDK12 to phosphorylate the Pol-II-CTD
peptide substrate in the presence of the cofactor cyclin K; the data
were normalized to the relative [32P] transfer, and DMSO was
used as a control (Fig. 9b)95. The effect of incubation time on the
activity may be caused by CDK12; however, the results still
indicate covalent inhibition95.

5.1.2.2. Washout experiments. In cell-based assays, cells are
exposed to the solutions of PAINS suspects, washed, and allowed
to grow in the medium without PAINS suspects. The washout
experiment is an effective method to verify irreversible mecha-
nism of action (Table 2)95. A continuous increase in inhibition in
the washout experiments is attributed to irreversible target bind-
ing95. This method was also used in the verification of the effect of
THZ531 in Jurkat T cells (acute lymphoblastic leukemia cells)95.
In this experiment, the effects of THZ531 were maintained for
72 h after washout, while a negative control of a reversible
compound THZ531R had no effect (Fig. 10)95.

5.1.2.3. X-ray crystallography and in situ labeling followed by
LC�MS/MS analysis. Due to the complexity of poly-
pharmacology, the rational design of MTDLs is an equally chal-
lenging and attractive research area97,98. X-ray structures are used
to analyze the covalent binding of MTDLs with target proteins,
associate MTDLs with multitarget activities to protein binding site
similarity or identify multifamily ligand PAINS suspects bound to
targets (Table 2)44. Effective and direct methods for identification
of covalent binding in vitro are X-ray crystallography and in situ
labeling followed by LC�MS/MS analysis. These strategies were
used to validate the covalent binding of THZ531 to CDK12/
Figure 8 The principles of inve
CDK13 in vitro95. Mass spectrometry analysis showed the for-
mation of covalent adducts, and a peptide containing the exact site
of modification was identified after proteolysis. Then, X-ray
crystallography of CDK12-cyclin K bound to THZ531 confirmed
irreversible mechanism of action95.

5.1.2.4. Chemoproteomic approaches. A series of chemo-
proteomic approaches have been developed to identify specific
targeted binding and to eliminate nonspecific covalent in-
teractions. These methods include activity-based protein profiling
(ABPP) in combination with MS-based proteomics (Table 2)99

and stable isotope labeling with amino acids in cell culture or
tandem mass tagging (TMT) click chemistry pull-down experi-
ments100. Recently, a chemoproteomic approach called CITe-Id
has been developed to capture, identify, and quantify dose-
dependent covalently bound Cys sites in cell lysates101. CITe-Id
verification demonstrated that THZ1, a covalent kinase inhibitor
initially presumed to specifically bind to CDK7, forms covalent
bonds with other proteins, including nonkinase targets95.

5.1.2.5. ALARM NMR. The most common nonprotein thiol-
based reporters may fail to mimic the local environment on the
protein surface thus not reflecting the reactivity of the agents with
physiologically relevant protein side chains102. Therefore, a fast and
reliable NMR-based approach ALARM NMR (Table 2)20 (a La
assay to detect reactive molecules by nuclear magnetic resonance)
has been developed to identify PAINS suspects, including the
compounds that may target oxidized or alkylated protein targets20.
The detection is based on monitoring of DTT-dependent 13C
chemical shift changes of the human La antigen in the presence of
PAINS suspects. These chemical shifts can be attributed in an
ALARM NMR experiment using a thiol in a potentially more bio-
logically relevant environment that may be different from that used
in the experiments with small molecule thiols (such as GSH)99.

5.2. Verification of PAINS suspects caused by colloidal
aggregation

Small colloidally aggregating molecules (SCAMs) are the largest
causative source of PAINS in MTDL discovery and one of the
most common mechanisms for false-positive readouts5,83. SCAMs
are diverse and well represented in academic and commercial
screening decks and even in approved drugs103. A mechanistic
study demonstrated that SCAMs aggregate via phase separation
and particle formation at concentrations above a compound-
specific critical aggregation concentration (CAC)5,18,103. The
consequences of colloidal aggregates include nonspecific binding
to protein surfaces and partial denaturation of a protein to produce
confounding and irrelevant enzymatic responses due to nonspe-
cific molecular recognition mechanisms103e105. Tight binding of
SCAMs produces partial and local protein denaturation resulting
in time-dependent enzyme and protein inhibition83,106. The
deceptive effects of the aggregates can be extended to cell-based
detection systems, where SCAMs may lower anticipated
stigation of suspected PAINS.



Table 2 Comparison of experimental methods for the verification of irreversible covalent binding.

Assay Principle Feature Readout

Incubation time-dependent

activity

Time-dependent increase in inhibition indicates

irreversible covalent binding

Easy to operate and

low cost

Enzyme inhibition

Washout experiments The continuous growth of covalent inhibitors

is attributed to irreversible covalent binding

Can be used to verify

irreversible MOR

Enzyme inhibition

X-Ray crystallography

and in situ labeling

Can analyze the covalent binding situation

with proteins

Provide more detailed

binding information

Ligand‒targets analysis

Chemoproteomic

approaches

Can identify specific targeted binding and

eliminate non-specific covalent interaction.

Provide more detailed

binding information

Ligand‒targets analysis

Alarm NMR Monitor the DTT-dependent 13C chemical shift

changes of the human La antigen

Provide more detailed

binding information

Ligand‒targets analysis
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activities due to reduced cell membrane diffusion thus reducing
intracellular concentrations107. SCAMs can account for up to 95%
of false positives in HTS campaigns, which makes SCAMs the
most prevalent cause of erroneous ligand‒target associations83.
Therefore, the pernicious effects of SCAMs in MTDL discovery
cripple the readout of target- and cell-based assays; hence, vali-
dation of these effects at the early stages of MTDL design is
essential83. Considerable efforts have been invested in the devel-
opment of methods for validation of potential SCAMs; however,
only limited success has been achieved. Since the formation of the
aggregates may be induced by minor changes in concentration, the
formation of potential aggregates is difficult to predict based only
on physical properties83.
5.2.1. Computational prediction of SCAMs
Considering that SCAM and non-SCAM data span over the range
of calculated logP and molecular weight values and have signif-
icant scaffold diversity, their biophysical properties may be reli-
ably analyzed and recognized by computational approaches.
Therefore, machine learning algorithms may play an important
role in expedient identification of potentially liable chemical en-
tities83. Publicly available aggregator advisors (e.g., http://advisor.
bkslab.org and http://advisor.docking.org)6,108 can identify
SCAMs based on the substructure fingerprints of a query entity.
Verification results obtained by these public tools are similar to
over 12,000 experimentally validated SCAMs83. The possibility of
false positive query entities is calculated by triaging the
Figure 9 THZ531 (A) inhibition of CDK12/13 is time dependent. In vit

(C) with different concentrations of THZ531 and varying preincubation tim

activity measurements were normalized to the relative 32P transfer. (B)

Springer Nature.
cheminformatics-based similarity with known SCAMs, observed
affinity range, and calculated logP108. Another effort to identify
SCAMs based on physicochemical properties derived from
chemical structure includes support vector machine-recursive
feature elimination (SVM-RFE) developed as a combination of
several independent studies using orthogonal algorithms109. Un-
like aggregator advisors, SVM-RFE extends the learned data
patterns beyond simple structure equivalence and relies on mo-
lecular similarity to assess aggregation propensity83. Additionally,
the chemical space projection clearly emphasizes that the two
computational methods share similar reference data but provide
different solutions for identification of multiple SCAMs in various
areas83.
5.2.2. Experimental detection methods for prediction of SCAMs
The computational methods can preliminarily identify nuisance
artefacts in pharmaceutical libraries; however, these methods
regularly generate false positive and false negative results110. The
reason for this inconsistency is due to fact that the formation of
SCAMs is triggered by small changes in concentration; thus, it is
difficult to predict potential aggregators strictly based on physical
properties25,110. Moreover, various pH or buffer conditions may
induce aggregation that is no longer related to the target com-
pounds easily leading to false predictions110. Therefore, studies on
the identification and elimination of SCAMs in biological exper-
iments are necessary. The methods listed below are easy to
ro kinase activity assay of CDK12-cyclin K (B) and CDK13-cyclin K

es. For all incubation time series, the counts per minute of the kinase

and (C) Adapted with modification from Ref. 96. Copyright ª2016

http://advisor.bkslab.org
http://advisor.bkslab.org
http://advisor.docking.org


Figure 10 THZ531 retains activity in washout experiment

compared with the effects of two negative control compounds. (A)

THZ531R and THZ532. (B) Jurkat cells were treated with the indi-

cated compounds for 6 h, inhibitor was washed out and cells were

allowed to grow for the remainder of the 72 h. This growth was

compared with the growth of cells treated with inhibitors for the full

72 h. (B) Adapted with modification from Ref. 96. Copyright ª2016

Springer Nature.

3426 Jianbo Sun et al.
implement and can provide robust assessment of the aggregation
propensity of the investigated molecules.

5.2.2.1. Parallel experiments with nonionic detergent wash-
ing. The addition of detergents facilitates the dissociation of the
aggregates into monomers in the solution thus decreasing the
apparent activity of SCAMs in the presence of detergents in the
assay buffers (Table 3)83. If the activity of a compound can be
attenuated by the addition of small amounts of a nonionic deter-
gent, then the compound can be defined as SCAM5. A typical
protocol involves the addition of 0.01% Triton X-100 in
biochemical assays or 0.025% Tween-80 as a gentler detergent for
cell-based assays5. Parallel screening with and without a nonionic
detergent and reliance on model enzymes (such as b-lactamase)
are more rigorous methods for identification of SCAMs83. Parallel
experiments require preliminary confirmation that the detergent
does not contribute to the readouts. Additionally, the changes in
activity obtained by two assays should be statistically evaluated to
ensure the results are not caused by experimental procedures83.

5.2.2.2. Centrifugation before cell-based assay. A convenient
procedure before cell-based assay involves centrifugation of the
solutions of the compounds to precipitate colloidal aggregates.
Parallel activity evaluation can be subsequently performed. If the
activity is reduced after centrifugation, the compound is likely a
SCAM (Table 3)5. The key point of this parallel experiment is to
prove that the active concentration of a SCAM is lower than the
concentration that produces cytotoxicity thus demonstrating that
this apparent activity is not due to cytotoxicity. If the goal of the
assay is assessment of cytotoxicity in tumor therapy, the selec-
tivity of non-SCAMs in tumor cells should be higher than that in
normal cells5.

5.2.2.3. Competitive ligand‒target binding experiment. The
false positive SCAMs are often manifested by enzyme inhibition
via nonspecific aggregation-type binding mechanisms111. Surface
plasmon resonance (SPR) is a label-free technique that is often
used to study the ligand�target binding kinetics and affinity
constants of the active compounds. A powerful Biacore
technology of SPR can contribute to the identification of potential
SCAMs in the early drug discovery by observing and analyzing
the ligand�target binding and interaction patterns (Table 3)83,111.
The operation of this technology is relatively simple and requires
only an injection of the dissolved compounds into the protein
surface. The compounds are attached to the proteins immobilized
on the surface of an optical sensor (association phase), and the
binding data are recorded in real time based on the changes in the
properties of the sensor surface111. This technology allows to
evaluate the association and dissociation of SCAMs with proteins
in real time to determine how SCAMs interact with proteins in
detail111. SPR data can provide information about stoichiometry,
reversibility, and changes in the properties of the compounds
within a certain concentration range111. Based on this information,
SPR can be used to analyze SCAMs in biochemical assays to
expediently determine whether the interference is caused by spe-
cific or nonspecific interactions with the proteins. Thus, hits can
be selected and prioritized for chemical processing by analytical
and/or medicinal chemistry methods111. For specific experimental
operation, please refer to Ref. 111.

The photonic crystal (PC) optical biosensor aggregation assay
is another label-free biophysical technology that has been pro-
ductively used to detect SCAMs by providing direct quantitative
measurement of the mass density of the substances adsorbed on
the transducer surface107,112. The PC sensors contain a sub-
wavelength periodic surface that reflects a narrow wavelength
band after illumination by a broadband collimated light source.
Formation of the aggregates changes the sensor surface and ad-
justs the refractive index of the material to enable expedient
identification of SCAMs107,112. For specific experimental opera-
tion, please refer to Ref. 112.

5.2.2.4. Printable hydrogel microarray. The inhibitory effects
of SCAMs are usually due to the adsorption of a protein on the
surface of the aggregates thus separating the enzyme from the
substrate and resulting in partial denaturation of the protein110.
The hydrogel-based enzyme immobilization platform provides a
system for specific identification and elimination of SCAMs
(Table 3)110. The adjustable porosity of the hydrogels allows se-
lective transport of the substrates to and from the entrapped
enzyme due to size selectivity potentially preventing drug aggre-
gates from reaching the binding site on the enzyme and decreasing
the effects associated with promiscuous inhibition110. The fabri-
cated printable hydrogel microarray combines analytical func-
tionality and easily generated multiple sample substrates to
eliminate time-dependent SCAM interference, significantly
improve the accuracy of lead compound discovery, and simplify
the drug discovery process110. The hydrogel-based screening as-
says demonstrate minimal interference and can be applied to
screening platforms based on high-throughput microarrays for
rapid (<25 min) and low-cost elimination of interfering SCAMs
to identify lead compounds with real inhibitory potential110. For
specific experimental operation, please refer to the literature113.
5.3. Verification of redox cycling PAINS suspects

Discussed mechanisms result in easily formed false positives;
however, the compounds that manifest their apparent activity via
targeted oxidation have not been considered. Certain redox
cycling compounds (RCCs), such as naphthoquinones (NQ), un-
dergo redox-dependent cycling in the presence of strong reducing



Table 3 Comparison of experimental methods for the verification of SCAMs.

Assay Principle Feature Readout Note

Nonionic detergent washing Detergents will promote the formation of

monomers, thus reducing the apparent

activity

Easy to operate and

low cost

Enzyme

inhibition

Detergent should not

contribute to the

readouts

Centrifugation Centrifugation will induce the formation of

pellets originating, thus changing the

apparent activity

Easy to operate and

can be applied to

HTS platforms

Enzyme

inhibition

Selectivity of non-

SCAMs to tumor

cells should be

higher than that of

normal cells

Competitive ligand�target binding

experiment

SPR can identify their nonspecific

aggregation-type binding mechanisms

Easy to operate and

provide more

detailed mechanism

information

Enzyme

inhibition

Compounds should be

injected into the

protein surface and

attached to the

surface of the

optical biosensor

Printable hydrogel microarray The adjustable porosity of the hydrogels

allows selective transport of substrates to

and from the entrapped enzyme via size

selectivity

Easy to operate Enzyme

inhibition

No special

requirements
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agents, such as dithiothreitol (DTT) and tris(2-carboxyethyl)
phosphine (TCEP), resulting in the generation of hydrogen
peroxide (H2O2)

22. H2O2 can indirectly inhibit the catalytic ac-
tivity of proteins by oxidizing accessible cysteine, tryptophan,
methionine, histidine, or selenocysteine residues; thus, these
compounds have pleiotropic effects manifested as nonspecific and
promiscuous inhibition of protein activity (Fig. 11)22,114. RCC-
based interference can lead to exaggerated values of apparent
actives in HTS assays. In an HTS campaign to identify inhibitors
of the dual specificity phosphatase cell division cycle 25B
(Cdc25B), 55% of the concentration-dependent Cdc25B inhibitors
were shown to be RCCs115.

At present, several conventional processes can be used to
identify and eliminate RCCs, including multiple counter-
screening and secondary detection. This type of PAINS suspects
cannot be completely validated; however, probability of their
occurrence can be significantly reduced. Moreover, conventional
validation methods enable significantly easier differentiation of
‘off-target’ activity from the targeted and pathway-specific ac-
tivities22. These methods include: (a) use of LC/MS analysis to
determine the oxidation of a cysteine in the active site of the target
protein116; (b) measurement of the UV/Visible spectrum of RCCs
with or without a reducing agent to determine whether RCCs are
reduced in a time-dependent manner22; (c) investigation of the
inhibitory effects of weak reducing agents, such as GSH, BME, or
Cys on RCCs22; (d) verification that the inhibitory effect of RCCs
on the target activity is time- and concentration-dependent in the
presence of DTT or TCEP22; (e) inhibition of the target protein
activity by RCCs can be abolished by the addition of catalase
(CAT) to the assay to degrade any H2O2 produced115. CAT can
abolish the target inhibition by RCCs in the presence of DTT or
TCEP22. However, the verification process by these detailed an-
alyses is material- and time-consuming, and the results are
insufficient for complete and accurately characterization of
PAINS. The following several methods are more feasible and can
be used to mitigate the serious impact of RCCs on MTLDs.
5.3.1. The phenol red-HRP assay
Recently, a simple, rapid, sensitive, and economical method was
used to investigate RCCs that indirectly modulate target activity
and to identify promiscuous false positives. This assay is based on
the H2O2-dependent horseradish peroxidase (HRP)-mediated
oxidation of phenol red that produces a change in absorbance at
610 nm at alkaline pH and readily detects H2O2 generation (in the
1e100 mmol/L range, Table 4)116. The phenol red HRP assay can
be performed in a 384-well format and was used to profile
w200,000 compounds available from the LOPAC and NIH
MLSCN compound libraries for RCC activity23 due to the ability
of RCCs to generate H2O2

116. Pyrimidotriazinedione is one of the
active dominant scaffolds commonly used in drug design that was
unfortunately identified as an RCC in the presence of 0.8 mmol/L
DTT and has been promiscuously active against a number of target
proteins23. More than 50% of RCCs identified in the RCC
profiling screen are structurally similar to pyrimidotriazinedione
and quinones; however, several other RCC pharmacophores were
identified114. H2O2 is the common cellular messenger; hence,
RCC interference is not limited to biochemical enzyme-based
assays and can also produce promiscuous effects in cell-based
analysis23.

5.3.2. A surrogate assay
In addition to the mechanism described above, RCCS can cause
inhibition by oxidizing susceptible enzyme targets, such as met-
alloenzymes and cysteine-containing enzymes. However, this
redox phenomenon is rarely investigated, and the detection
methods need optimization114. Interestingly, a surrogate assay
using the conversion of resazurin to resorufin in a redox reaction
in the presence of DTT and compounds was used to detect redox
activity of small molecules (Table 4)116. The surrogate assay
couples glucose-6-phosphate production to resorufin via glucose-
6-phosphate dehydrogenase (G6PDH) and diaphorase116. Similar
to other cases, 2203 out of 2262 compounds (considered nuisance
hits) were able to produce resorufin from resazurin in the presence



Figure 11 NQ generates H2O2 accounting for promiscuous

bioactivity profiles in the HTS databases. (A) NQ can be reduced by

DTT to form a hydroquinone (QH2) capable of undergoing a

comproportionation reaction with another NQ to form two identical

radical anions. (B) In the presence of O2 these radicals can form O2
�.

(C) The superoxide can then be reduced by QH2 to form H2O2.
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of only resazurin and DTT116. This surrogate assay was used to
evaluate suspected redox compounds 4 and (�)-dunnione
(Fig. 12) discovered by GSK as irreversible and noncompetitive
inhibitors of caspase-8. A nonredox pancaspase peptide inhibi-
tor Z-VAD (OMe)-FMK (Fig. 12) was used as a competitive
control. The known inhibitor was not positive in this assay,
whereas compounds 4 and (�)-dunnione were identified as
oxidative nuisance compounds117. The reduction of resazurin to
resorufin is a popular assay format used to measure cell
viability; pharmaceutical targets that are involved in redox
chemistry or targets with functional groups susceptible to redox
modification are likely to benefit from analysis using this
assay117.

5.4. Verification of PAINS suspects involved in metal ion
chelation

These false positive results are caused by the pan interference
effects of the compounds or organic impurities; however,
organic entities do not fully account for all false positive results.
Conventional identification methods, such as MS and NMR,
used during synthesis are suitable only for confirmation of the
structure and purity of organic components, while potential
inorganic impurities, such as transition metals that may be used
in compound synthesis, are not identified118. These inorganic
impurities can also cause positive reactions in low micromolar
range in a number of potential protein and functional systems,
including biochemical and biosensor assays118. These positive
effects may result in the selection of organic entities thus
making inorganic impurities the best candidates for PAINS
suspects. For example, organic entities containing zinc impu-
rities may form complexes with multivalent cations that persist
through preliminary procedures, and nonfunctional mechanisms
of inorganic interference on the readout systems may cause false
positive signals119. Additionally, inorganic contaminations in
organic entities during synthesis can cause inconclusive SAR in
later lead optimization. Therefore, design and synthesis of
MTDLs requires constant consideration of the effects of



Figure 13 The effect of strong fluorescence interference on the

results of topoisomerase II (Topo II) inhibition experiment. The image

shows the results of Topo II inhibition assay of compounds currently

investigated by us.
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inorganic impurities that can be ruled out in the presence of a
nonselective chelator, such as EDTA, or a more selective chelator,
such as TPEN (N,N,N0,N0, tetrakis (2-pyridylmethyl)
ethylenediamine)119.

5.5. Verification of PAINS suspects causing sample fluorescence

Interference mediated by sample fluorescence is highly prevalent
in the biological evaluation of MTDLs due to the variability of
detection strategies that use fluorescent labels and light detection.
Fluorophoric properties usually accompany heterocyclic scaffolds
and impurities and can affect the results of biological evaluation to
complicate the analysis and cause false positive and negative re-
sults22 (Fig. 13). Certain promiscuous natively fluorescent com-
pounds may be disguised as valid regulators of target functions
leading to futile pursuit of biologically inactive compounds in
chemical genomics and drug development campaigns21. There-
fore, these PAINS suspects should be eliminated from subsequent
consideration.

Generally, the analytical artefacts arising from fluorescent
compounds are reproducible, and the apparent activity usually
shows a concentration-dependent response21. In this case,
orthogonal assays are a conventional and effective method to
eliminate false positives caused by fluorescence interference
subsequent to the retesting of the primary screening hits21. This
assay is generally used to assess compound interference by
reading the fluorescence intensity of the analysis mixture after the
sample is added prior to initiation of the detection leading to a
change in the fluorophore21. Fluorescence intensity of each well
and the calculated polarization value can rule out PAINS suspects
with above average fluorescence in the analysis based on fluo-
rescence polarization (FP)21.

In addition to the method of calibration using fluorophore stan-
dards, an assay similar to quantitative HTS is used to profile each
compound within a range of concentrations that can be used in
verification125. The concentration response-based analysis measures
fluorescence intensity or potency of each sample based on the known
fluorophores and thus can be used to identify PAINS suspects21.

6. Summary

MTDLs can simultaneously regulate multiple associations in the
disease network thus improving the efficacy and reducing the
adverse reactions. Some MTDLs have been successfully used in
many major diseases and have become very important therapeu-
tics. Reasonable MTDL design may provide novel effective and
promising products. PAINS has become an obstacle in the process
of MTDL development, and medicinal chemists have a complex
task to accurately distinguish “good” PAINS from “bad” PAINS
based on currently available rules and screening tools. Up to 95%
Figure 12 Structures of compou
of “hits” identified from virtual screening can be considered
PAINS; thus, this problem should be taken seriously to ruthlessly
block some of the compounds from entering the next stage of
investigation. Optimistically, use of the ‘Fair Trail Strategy’ and
active investigations of the interference mechanism of PAINS by
efficient and comprehensive approaches to exclude the interfer-
ence suspects can double the output of MTDL research and
development while halving the required effort.

Identification of the relevant targets for disease regulation and
initiation of the search for lead ligands should be followed by the
investigation of the ligand�target interactions using reasonable
methods that can exclude the interference of PAINS. The
complexity of biological systems and properties of ligand�target
interactions may cause variability in the results of virtual
screening. Thus, to avoid the inaccurate classification of com-
pounds as PAINS, computational and experimental approaches
should be combined in an ideal scenario. In the absence of ac-
curate experimental evidence, false positive ligands should be
only flagged as PAINS suspects that can be subsequently excul-
pated to avoid their disappearance from the chemical libraries or
abandoned by medicinal chemists.
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