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Abstract

Recent studies have identified broadband phenomena in the electric potentials produced by the brain. We report the
finding of power-law scaling in these signals using subdural electrocorticographic recordings from the surface of human
cortex. The power spectral density (PSD) of the electric potential has the power-law form P(f )*Af {x from 80 to 500 Hz.
This scaling index, x~4:0+0:1, is conserved across subjects, area in the cortex, and local neural activity levels. The shape of
the PSD does not change with increases in local cortical activity, but the amplitude, A, increases. We observe a ‘‘knee’’ in the
spectra at f0^75Hz, implying the existence of a characteristic time scale t~(2pf0){1^2{4ms. Below f0, we explore two-
power-law forms of the PSD, and demonstrate that there are activity-related fluctuations in the amplitude of a power-law
process lying beneath the a=b rhythms. Finally, we illustrate through simulation how, small-scale, simplified neuronal
models could lead to these power-law observations. This suggests a new paradigm of non-oscillatory ‘‘asynchronous,’’ scale-
free, changes in cortical potentials, corresponding to changes in mean population-averaged firing rate, to complement the
prevalent ‘‘synchronous’’ rhythm-based paradigm.
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Introduction

Neuronal electrical activity may be measured at many scales,

from individual ion channels [1] to the largest scale measurement

of electroencephalographic (EEG) potentials entirely outside the

head [2]. Synaptic current produces a change in the local electric

field, and it is believed that large scale field potentials reveal

primarily the aggregate synaptic activity from large neuronal

populations [3,4]. Our particular experiments measure these

potentials at the brain surface, using arrays of platinum

electrocorticographic (ECoG) electrodes (Figure 1). Interaction

properties between synapses, when averaged across the entire

ensemble, may be revealed by the potential auto-correlation

function:

G tð Þ~
ð

dt V (tzt)V (t) ð1Þ

which is an average over the entire time interval of the recording.

The Fourier Transform of G(t) is the power spectral density

(PSD), and reveals to what degree the potential at one point in

time is correlated with the potential at a later point in time.

Because of this, characteristic phenomena in the cortical potential

PSD have interpretable implications for the interaction properties

between elements within neuronal populations.

For example, since Adolf Beck first described in the 1890s how

simple behavioral change produced widespread amplitude chang-

es in rhythmic properties of the electric potential timeseries [5],

findings of peaked phenomena in the PSD have pointed to

oscillatory activity that is synchronized across the neuronal

population [6–12], and have been linked to known large-scale

brain phenomena like cortical-subcortical feedback loops which

change during behavior [8,13–16]. Simple behaviors produce

robust change in the oscillations: Opening the eyes decreases the

occipital a-rhythm (8–12Hz) amplitude [17,18], and movement

decreases the lateral frontoparietal a and b (18–25Hz) rhythm

amplitudes [19–23].

Other studies have attributed band-specific processes in the so-

called ‘‘high-c’’ range (60–150Hz) to local cortical processing

[24,25], with specific timescales linked to the particular choice of

frequency range. In lateral brain regions, we observed a lack of

distinct peaks in the cortical potential PSD beyond f0^60Hz, and

hypothesized the existence of broadband changes across all

frequencies which were obscured at low frequencies by covariant

fluctuations in the h/a/b rhythms [22,26]. While previous studies

had hypothesized that background power-laws existed in the PSD

[27–30], we hypothesized the existence of behaviorally-associated

changes in a power-law process of the form P(f )*Af {x, and

named attempts to capture it the ‘‘x-band/index,’’ at the higher

frequencies where it is most plainly observed [22,26,31,32]. Our

early studies, sampled at 1kHz, had PSDs that truncated above

*250Hz. Although we observed structure in these PSDs, and

hypothesized the existence of a power-law, we needed data with a

higher sampling rate to establish it firmly. The purpose of this

study was to sample higher, at 10 kHz and determine, as

accurately as possible, whether there is indeed such a power-law

in the human cortical potential power spectrum, and how it might

change with cortical activity. Results from this higher sampling

rate (4 subjects) might then allow us to return, informed, to the

large group of lower sampling rate data (16 subjects), and re-
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examine it with knowledge of how it must behave at higher

frequencies. Here, we identify and characterize a scale-free process

in the ECoG potential PSD, revealed by a power-law. The

existence of such a power-law process points to phenomena with

no special timescale, where the neuronal population beneath is not

synchronously oscillating. We demonstrate through very basic

simulation how such spectra might arise from simple processes,

and how observed broadband power-law changes in the PSD

might simply reflect a change in population mean firing rate.

Results

We measured the surface potential between pairs of surface

electrocorticographic electrodes separated by one centimeter from

each other on the lateral brain surface of 20 human subjects. From

these potentials, we calculated power spectral densities (PSDs)

averaged over several minutes of data. As detailed in the

methodology section below, each PSD was examined for the

presence and character of a power-law form. The strongest empiric

finding from this study was the robust fit of a power-law form

P^
1

f x
, with x~4:0+0:1, for frequencies above 80Hz. We

performed a stringent fitting protocol in the frequency range

80Hzvf v580Hz of the averaged electrode pair PSDs of 4

subjects, and found extremely tight fits to the form P^
1

f x
and

x~4:0+0:1 in each case. This was obtained by fitting 10 kHz

sampled data from subjects 1–4, during a simple fixation task.

Figure 2A–D shows the PSD, averaged over electrode pairs. The

inserts illustrate the robust quality of the power-law form, where the

jitter of data around the fit is more than one decade down from the

signal. The exponent x and the parameters A and C in the form

P~Af {xzC were estimated via a set of log-log least-squares

linear fits of the power spectral density, with a range-shrinking

scheme to ensure that local fits within the fitting range produced the

same fit as the global form. The fitting range chosen for each was a

lower bound of 80 Hz (in order to stay above a ‘‘knee’’ at 75Hz) and

the highest frequency where spectra could be resolved from the

noise floor in each subject (579, 530, 534, 559 Hz for subjects 1–4),

excluding harmonics of 60 Hz. The combined spectra fit values of x
were 3.97, 3.94, 3.97, and 4.02 for subjects 1–4, respectively. The

error estimates (of order +0.1 or less for each subject) were based

Figure 1. Experimental setting. (A) Cortical surface potential measurement: The electrode array locations are shown on a template brain for
subject 1 (black, temporal, positions calculated from x-ray [69]) and subject 2 (white, fronto-parietal). Potentials of all 32 electrodes are measured
simultaneously with respect to a scalp reference and ground, before they are pair-wise re-referenced to obtain 52 electrode pair channels. (B) Spectral
correction and fitting: The raw power spectral density (PSD) of an electrode channel pair (green) is corrected first for amplifier frequency dependent
attenuation (roll-off shown in the blue trace, the corrected PSD is shown gray), and then for amplifier noise floor (denoted by the horizontal black
line, with corrected PSD in black). The corrected PSD was then fit linearly on these log-log axes (red line shows fit here), and the slope of this fit

determines the exponent of an associated power-law form (here P*
1

f 4
). The sharp line noise spikes at 60 Hz and its harmonics were excluded in our

fitting analysis (and are thus omitted in Figures 2–4).
doi:10.1371/journal.pcbi.1000609.g001

Author Summary

For a very long time, the measurement of the large scale
potentials produced by the brain from outside of the head,
using electroencephalography and magnetoencephalog-
raphy, and from inside the head, using electrocorticogra-
phy, has fixated on changes in specific rhythms and
frequency ranges. This fixation presupposes physiologic
changes where neuronal populations synchronously oscil-
late at specific timescales. Here, we demonstrate that there
are phenomena which obey a broadband, power-law form
extending across the entire frequency domain, with no
special timescale. It is shown that, with local brain activity,
there is an increase in power across all frequencies, and the
power-law shape is conserved. Furthermore, we illustrate
through simple simulation how fluctuations in this
phenomenon may be linked to increases and decreases
in ‘‘noise-like’’ patterns of activity in neuronal populations.
Although power-laws have been postulated to exist in
background electrical brain activity, the view that local
activity can be captured by fluctuations in a broadband
power-law in the power spectrum of electric potential
timeseries represents a fundamentally new way of thinking
about changes in the electric potential produced by the
brain, and provides insight into what types of neuronal
processes might produce these potentials.

Power-Law Scaling in the Brain
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on robustness against range shrinking as well as the deviations of the

best fit with respect to the actual data across the entire frequency

range (see insets in Figure 2A–D).

To test for universality, we also performed the same type of fits to

each individual electrode pair spectrum for subjects 1–4, from

80 Hz to 400 Hz. The histogram of these individual fits is shown in

Figure 2E. The mean of the individual fits was x = 4.01, with

SD = 0.13 (N = 151), in strong agreement with the averaged

spectra. Individual electrode pair channel PSDs, fit between

80Hzvf v400Hz, produced the same result as the average

spectrum, without systematic variation by brain area. This power-

law scaling extends over four decades in power and, because x^4 is

large, over one decade in frequency. The noise around this straight

line is minimal, and is robust against range shrinking (that is, the fit

exponent is unchanged if a smaller frequency range interval, within

the total range, is chosen for fitting). This quantitative level of

power-law scaling is rarely seen in experimental data [33].

Preliminary calculations showed a clear crossover (‘‘knee’’) in

the PSD at f^75Hz, below which the PSD takes a different form

(see Figures 2 and 3). A natural question to ask is whether there is a

different power-law form at lower frequencies, with exponent xL.

Previous power-law estimates in the cortical potential focused on

this lower frequency range [34–37], and most naively fit scale-free

exponents directly to spectra known to contain scale-dependent

phenomena (oscillatory brain rhythms peaked at specific frequen-

cies). We wished to avoid the confounding influence of these

rhythms, but, unfortunately, the a&b rhythms were strongly

pronounced in most cortical channel pairs of the data recorded at

10kHz (subjects 1–4, clearly visible in Figure 2). They obscured

whatever asynchronous (scale-free, non-peaked) phenomena might

be present underneath at frequencies below f0, and there were

simply not enough channels without them to be meaningfully

examined in the 10kHz sampled data. Therefore, we returned to

our large set of initial 1kHz sampled data, and circumvented these

rhythms with two approaches: the first was simple avoidance, by

selection of channels where the rhythms were absent during the

fixation task; the second was to use data from an experimental

setting (finger movement) which caused the rhythms and the

underlying broad-band change to vary differently, and the

rhythms could be removed.

In order to evaluate what the exponent in such a lower power-

law would be (below 80Hz), we first naively fit the resting spectra

of a large ensemble of fixation data (subjects 5–20) sampled at

1kHz. Only channel pairs which lacked a&b rhythms, and for

which the noise floor was relatively small compared with the

power, were selected and fit. This naı̈ve fit of a low frequency

power law yielded values of xL = 2.46+0.32 (mean+SD, N = 91)

(Figure 3). We then modified the power spectra of this 1kHz

fixation data, dividing by the product of 2 Lorentzian-like form

factors:

P(f )^
Af {xL

1z
f

f0

� �xH
ð2Þ

based upon the knee observed in the spectra of the 10 kHz data,

subject to the constraint that xLzxH~4:0 (because the 10kHz fit

implied that this must be the case for large f ), and calculated the

values of xL and f0 for which the modified spectra had a slope

closest to zero, on the frequency interval 15–195Hz. These post-

modification fits yielded xL = 2.01+0.18 (+SD, N = 91), and f0

was 77Hz+14Hz, as shown in Figure 3. It should be noted that

this likely represents a true range, where the ‘‘knee’’ at f0 may vary

by location and individual.

Figure 2. The power-law in the cortical spectrum, above 80Hz.
(A) The averaged PSD for all electrode-pair channels from subject 1
(black trace, with 60Hz harmonics omitted; gray line shows PSD prior to
noise floor subtraction) on log-log axes, with the red line showing the
best linear fit from 80Hz until the PSD hits the noise floor at
fmax = 579Hz. The blown-up inset illustrates the quality of the fit in
the higher frequencies at higher resolution. (B)–(D) As in (A), but for
subjects 2, 3, and 4, respectively. The fitting ranges were from 80Hz to
530, 534, 559 Hz for subjects 2–4, respectively. (E) Histogram of the fit
exponents of individual electrode pair channels, stacked for subjects 1–
4, between 80 and 400Hz.
doi:10.1371/journal.pcbi.1000609.g002

Power-Law Scaling in the Brain

PLoS Computational Biology | www.ploscompbiol.org 3 December 2009 | Volume 5 | Issue 12 | e1000609



The change in the shape of the PSD P(f )*A
1

f x
during

different levels of neuronal population activity reveals different

dynamics within the population. A shift in the exponent, x, would

suggest a change in the correlation between neurons, whereas a

shift in the coefficient, A, would suggest an overall increase or

decrease in population activity. In a recent manuscript [38], we

demonstrated how motor-behavior-related variation in the a and b
bands allow them to be removed from the measured PSD in

primary motor cortex. We repeated the same process as that on

pair-wise re-referenced electrode channels and, removed the

oscillatory (peaked) phenomena from the PSDs. Activity-related

changes in individual channel pairs were examined by dividing the

active, movement, spectra (‘‘PM (f )’’) by the inactive, rest, spectra

(‘‘PR(f )’’), element-wise (PM (f )=PR(f )). Calculating the log (f ) vs.

log PM (f )=PR(f )ð Þ slope removes the common shape (including

the effect of f0), and reveals whether there is a shift in the slope, x,

during activity. This shift in exponent, when fit from 25–195Hz,

was insignificant: 0.03+0.09, (+SD, N = 25, p~0:104, by paired

t-test; subjects 16–20, 5 electrode pairs from motor cortex each).

Because there was no significant shift in the exponent, then active/

inactive power ratio R (between the amplitudes A, Figure 4) was

obtained for each channel simply by averaging PM (f )=PR(f )
across frequencies in each channel. The geometric mean of these

ratios was R~1:76 with a variation (standard deviation) of order

0.31 (maximum 2.47, minimum 1.29, N = 25, pv10{14).

A simple simulation using Poisson-distributed pre-synaptic

action potentials to a single neuron beneath one of our electrodes

(*5|105 neurons beneath each [39]) reproduced the spectra that

we see, at different levels of cortical activity with simulated rates of

15, 30, and 60
AP

synapse�s
(Figure 5; ‘‘AP’’ = action potential).

Using a modified leaky integrate-and-fire model (without a firing

component), consisting of an exponentially decaying post-synaptic

current, temporal integration, and passive current efflux to

estimate the time-dependence of a dendritic current-dipole field,

a spectrum with the power-law form P(f )*A
1

f x
emerged. A 1=f 2

factor, contributed by exponentially decaying synaptic current,

directly follows previous work by Bedard et al [27]. The value of x

Figure 3. A power-law fit at lower frequency. The data sampled at 1kHz was first fit naively for a low-frequency power law below 80Hz. It was
then fit iteratively to identify the corner frequency, f0 , and low-frequency exponent, xL , on a case-by-case basis. (A) A single PSD, from subject 19,
showing the raw spectrum (blue) with the form P*1=f 2:5 below 80Hz, with a transition to P*1=f 4 above. After adjusting for a freely-fit Lorentzian
form factor 1z f =f0ð Þ4{xL , it follows P*1=f 2 (i.e. f0*75 and xL*2). (B) The histogram for naı̈ve fits yielded xL = 2.46+0.32 (mean+SD, N = 91, fit
range 15–80Hz). Fits for a more complex form (equation 2, fit from 15–195Hz), yielded exponent xL = 2.01+0.18 (in (C)), and corner frequency
f0 = 77Hz+14Hz (in (D)).
doi:10.1371/journal.pcbi.1000609.g003

Power-Law Scaling in the Brain
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for high frequencies (80–500Hz) in this simulated data was 4.0 at

all three levels of cortical activity (linear fit on log-log axes). The

ratio of the coefficient, A, was 4.03 for 60 vs. 15
AP

synapse�s
, and

1.96 for 30 vs. 15
AP

synapse�s
. Because the PSD of the superposition

of many such uncorrelated model neurons will have the same
1

f x

shape as one, the model in a single neuron will generalize to an

entire neuronal population.

Discussion

Although traditional EEG studies have been limited to

measurements of frequencies below 100Hz, the timing of

fundamental neuronal processes suggests that information content

should be present at much higher frequencies. Propagation time of

a spike along an axon, synaptic neurotransmitter diffusion time, or

the recursion time of reciprocally coupled neurons are all near or

below 10 ms [39–42]. Synchronizations and correlations associ-

ated with these should exist at least up to 1kHz.

The human brain is arguably the most complex and largest

network available to observe scale free behavior in a natural

setting, and at the 5mm2 scale of our electrodes, we have observed

robust power-law scaling. Power-laws represent scale free behavior

– the finding of which typically evokes discussion of scale free

networks, complexity, avalanches, and self-organized criticality

(SOC) [43–45], and if our measured value of x were distinct from

an integer, we might have discussed SOC at the cortical surface.

SOC is a process where very complex global phenomena arise in a

population of interacting elements due to very simple properties of

the individual element, and simple rules that dictate how pairs of

elements interact with one another [43]. The global complexity is

generally not immediately apparent from the simple properties

and rules. A popular example of this is the emergence of

earthquakes of different sizes and the frequencies on which they

occur [46], which have a power-law relationship. The form of this

earthquake distribution that is observed in nature can also be

derived from a simple model where blocks of matter are held

together by springs, but slip against one another with friction

[47,48] – global complexity emerges from basic interaction, and

can be characterized by a power law. One might hypothesize that

the interaction between neurons in a population, producing

sophisticated computation, would exhibit SOC, and be revealed

by a power law. Our experimental finding of power law scaling in

the brain surface electric potential does not suggest SOC. Non-

integer exponents in power-law relationships imply self-organized

criticality in the population of constituent elements, but multiple-

of-two integers, such as our finding of x~4:0+0:1, point towards

simple, noise-like, analytic functions, i.e. to a non-singular, non-

fractal, non-complexity explanation of the shape of the power

spectrum (such as a diffusive process or filtered noise). Perhaps

SOC behavior (if it exists) is only expressed in the PSD in more

subtle ways, within the +0:1 uncertainty, or at finer spatial scales,

in the cortical surface potential. While not present in this study,

evidence for complex neural correlations (and different exponents)

may emerge in different experimental settings, such as power-

fluctuations in the b-rhythm [49], in the magnitude of spatially-

correlated cascades of activity in the LFP [50], or the gain of

neuronal firing in response to cyclical driving potentials [51].

In order to examine the PSD structure at lower frequencies, the

91 channels from subjects 5–20 without a&b rhythms were first

blindly fit linearly on log-log axes up to the knee in the spectrum,

from 15–80Hz, producing an estimate of a low-frequency power-

law with exponent xL^2:5. Based upon the knee at f0, and the

blind fit in Figure 3a, we examined a more complex parameterized

form of the PSD which accounts for the knee, could be fit across a

larger range (15–195Hz), and goes to P*
1

f 4
for large f (i.e. of the

form of equation 2). Note that the discovered factor of f {xL~f {2

might represent a form factor
1

1z f =fLowð Þ2
where the lower

boundary of our fitting range is above fLow, so a lower knee with a

flattening of the spectrum is not appreciated. There may, in fact,

be a lower ‘‘flattening’’ of the spectrum, below 20Hz, that is

masked by the a and (ubiquitous) h/d rhythms (see, for example,

plots in [27,28]). As described by Sigeti and Horsthemke, these

types of ‘‘2+2’’ spectra can emerge from noise-like processes which

have two simple correlation times [52]. There are many such

combinations of two simple known neuronal processes, such as

temporal integration in dendrites or soma, exponentially decaying

membrane currents, low-pass RC filtering by tissue, or local

network connectivity which, when modeled, will produce precisely

this form (one such is illustrated in Figure 5).

In a previous paper [22], we hypothesized that observed high

frequency changes called ‘‘high-c’’ [53] or x [31] were reflective of

Figure 4. The conserved shape of the power spectrum with
brain activity. The average shift in power spectral density in
electrodes after removal of the a/b peaks in the hand cortical area
during finger movement, for subjects 16–20; 5 electrode-pair channels
each (25 total). (A) This shift demonstrates that, in motor cortex,
movement (red) increases the overall power while preserving the shape
of the rest (blue) spectrum. f wf0 power-law fits (grey) are consistent
with x~4. (B) Channel locations (interpolated between the two paired
electrodes) across all subjects, projected to the left-hand side. (C)

Remaining spectra after dividing out a Lorentzian, 1=1z
f

75

� �2

to

illustrate consistency with the two-power-laws form with xL^2. The
residual lines are consistently parallel, and therefore, the exponent shift
with activity in individual channels is negligible (shift in exponent =
0.03+0.09, +SD, N = 25, p~0:104, by paired t-test). The shift up is an
overall factor of 1.76 with a variation (standard deviation) of order 0.31
(maximum 2.47, minimum 1.29, N = 25, pv10{14).
doi:10.1371/journal.pcbi.1000609.g004

Power-Law Scaling in the Brain
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broad-band, power-law shifts, and were obscured by the a&b
rhythms at lower frequencies in motor cortex. Indeed, the

intersection of these two phenomena, ‘‘J0’’, was subsequently

shown to lie at J0~48+9Hz (mean+SD) (range 32–57 Hz) during

hand motor movement [26]. When we made this hypothesis, it was

uncertain whether this shift might reflect a change in the exponent,

x, or the coefficient, A, of a power-law of the form P*A
1

f x
. In a

more recent manuscript, we performed a decomposition technique

which removed the a&b rhythms [38], revealing broadband

increase beneath. Figure 4 shows that when this method is applied,

and the residual broadband spectra are modified with a Lorentzian

form, both active and inactive spectra are approximately linear on a

log-log plot with slope 22. In other words, they can be reasonably

described by a power-law with exponent xL~{2. When individual

channel pairs were examined independently for active and inactive

spectra, there was no difference in fit exponent: the shape of the

PSD was unchanged, but the overall amplitude was. This implies

that, at the spatial scale of our electrodes, after spatially and

temporally averaging, the structure and complexity of the large-

scale neural networks do not change during computation, but the

overall amount of activity does. The active/inactive power ratio

between the amplitudes (*1.76) provides a sense of the dynamic

range of this network in the behaving brain as it shifts between

‘idling’ and ‘computing’ regimes.

An important caveat to these findings is that the PSDs which we

fit were averaged over long periods of time (minutes of fixation or

seconds of movement/rest). If the same is done over very small

windows, there are deviations from the form of the averaged PSD.

It is within these small windows that computations take place, and

the ‘‘instantaneous PSD’’ will not have the power-law shape at all

times. Without reoccurring synchronized oscillatory processes,

however, it averages to the power-law shape over time.

To gain intuition about what may produce these signals, we

performed a simple simulation from the perspective of a single

neuron beneath one of our electrodes (*5|105 neurons

immediately underneath each electrode [39]), and take into

account only three factors: Poisson-distributed input action

potentials, exponentially decaying post-synaptic currents, and

ohmic current in the dendrite, produced a time-dependent signal

with a PSD of the same shape that we measure, and with the same

change during increase in activity. While our particular choice of

model was one of many potential models, we believe that any

simulation of the ECoG PSD should rely on very simple factors,

ubiquitous in the cortical neuronal population, because the effect

must be conserved after averaging across 5|105 neurons.

Although this simulation was largely oblivious both to the details

of dendritic and overall neuronal processing (between neurons,

etc), and to many factors which must influence the creation of

dendritic current dipoles, it does exhibit two things that we would

like to stress. The first is that the knee we observe in the spectra

likely corresponds to the timescale of a very simple process, like

post-synaptic potential current of particular timescale, which

occurs throughout the cortical surface. The second is that changes

in the amplitude, A, of the power-law reflect changes in Poisson-

distributed (after coarse graining) input action potentials beneath

each of the electrodes. Indeed, we have recently shown that the

capture of this broad-band, here demonstrated to obey a power-

law, reveals local cortical activity with high temporal precision

[38]. The values that the simulation obtains (factor of 2/4 increase

in A with a doubling/quadrupling of the action potential rate)

suggest that the difference we observe experimentally during finger

movement might represent roughly a doubling of mean input

action potential rate for the population of neurons.

Collectively, these findings have important implications for

understanding the electric potential at the cortical surface, with the

Figure 5. How these power-law phenomena in the cortical potentials might be generated. (A)–(B) Beneath each one of our 2.3 mm
diameter electrodes, there are of order 5|105 neurons, and each of these has *104 synapses where it receives input [39]. Currents into and out of
each of these N~5|109 synapses, and gradual ohmic current through the dendritic membrane as the post-synaptic charge bolus diffuses toward
the soma, produce transient dendritic dipoles that are thought to be the source of the macroscale potentials, V tð Þ, that we measure with ECoG.
(cross-sectional stain from Ramon y Cajal) (C) In our simple simulation, a single neuron receives 6000 presynaptic inputs. Each of these inputs delivers
a temporally Poisson-distributed series of action potentials (with each arrival time as a delta function). Each of these action potentials induces a post-
synaptic current shape which has an extremely fast rise and an exponential decay. The input from all synapses is combined, and charge accumulates
over time and is lost, ohmically, through the dendritic membrane. We approximate the time dependence of the current dipole that produces our
potentials as the time dependence of this ohmic membrane current (bottom trace in C). The equations to the right of the schematic indicate how
each element of this heuristic illustration would contribute to the experimentally-fit analytic structure of the PSD. (D) The PSD of this signal has a knee

at 70Hz, with power-law of the form P*
1

f 4
beyond. The change in the spectra with increasing mean spike rate of synaptic input strongly resembles

the change observed experimentally over motor cortex during activity (Figure 4).
doi:10.1371/journal.pcbi.1000609.g005

Power-Law Scaling in the Brain
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necessary caveat that the effects seen reflect an average of 5|105

neurons. Because of the connection between the autocorrelation in

the potential and the PSD (equation 1), we can try to connect the

form we observe in the PSD to correlation in the physiologic

processes which produce it. At this coarse level, there is a special

frequency at roughly *75Hz, and this must be accounted for.

This may be due to an exponentially decaying temporal

correlation of 2–4ms from post-synaptic current, tissue low-pass

filter, protein dissociation, or some other. Perhaps this timescale

corresponds to a recurrent process of 11–16ms such as

characteristic reciprocal connectivity in local neuronal circuits,

or to the ‘‘conduction time’’ of single neurons – how much time it

takes for a coordinated pre-synaptic super-threshold pulse to

produce an action potential at the axon hillock. If there is a lower

‘‘knee’’ below our fitting range, and masked by the theta rhythm,

that implies a second timescale with physiologic importance of its

own which must be accounted for. Each of these must also

correspond to a factor of f {2 above the associated characteristic

frequency. Our simple simulation follows that of Bedard et. al.

[27] for the first factor, with exponentially decaying post-synaptic

current accounting for f0 and one factor of 1=f 2, and charge

accumulation in the dendrite producing the second factor of 1=f 2,

with the dendritic current leakage producing a second native

frequency well below any fitting range we examined. Fluctuations

in firing rate produce overall increases and decreases in the PSD,

without a change in the frequency dependence of the PSD.

Our experimental results, in contrast, differ significantly from

the Bedard et. al. paper [27]. They reported a f {1 to f {3

transition in their PSD measurements. As we do, they attribute a

factor of f {2 to Poisson-distributed spikes and the shape of the

post-synaptic current. They attribute the remaining 1=f to passive

tissue filtering, which has since been contradicted experimentally

by Logothetis et. al. [54]. To the eye, the PSD from the Bedard et.

al, study appears as if it may have been better fit by an f {2 to f {4

shape like the one found in this study. By extension of their logic to

our finding, our power-of-two structure may point away from the

presence of 1=f tissue attenuation.

Activity-related narrow-band PSD increases, correlating with

fMRI [55], have been demonstrated in the ‘‘high-c’’ (40–100Hz)

frequency range of the LFP [56–60] and the MEG [61,62]. In each

case, these are peaked phenomena in the PSD, reflecting a coherent,

oscillatory process, which increases with activity, and is specific to

visual cortex. This is a very different phenomenon from the power-

law increase that we demonstrate here. In fact, Siegel and Konig, in

2003, explicitly distinguished between a peaked, lower c, phenom-

ena at 44–53 Hz, and a different, broad-spectral increase,

beginning at 45 Hz extending well beyond 100Hz to the upper

limit of their recording from cat visual cortex [57]. Henrie and

Shapley, as well as Liu and Newsome, made the same distinction,

with similar effect, in visual areas of the non-human primate

[58,60]. Extracted broadband changes across the entire human

ECoG spectrum, after removing the low-frequency rhythms, were

recently demonstrated to capture the timing of individual finger

movements with very high fidelity, and explicitly better than band-

filtered high-frequency changes [38]. Even more recently, broad-

band LFP changes were demonstrated to correlate more highly with

mean firing rate than any particular frequency band in single unit

recordings from human cortex [63]. We suggest that what these

manuscripts identify as broadband change, distinct from c
oscillations, and what others have called ‘‘high-c’’ when referring

to broad spectral increases [24,25,42,53], are primarily shifts in the

noise-like process identified here, captured at frequencies above the

range of band-limited oscillations. This power law process likely

reflects the mean input spike rate to neuronal populations, without a

preferred timescale. True c-oscillation, however, is likely due to

population synchronization by fast-spiking inhibitory interneurons

[64,65], reflected by peaked elements in the PSD, and possibly

specific to visual cortex (note that none of the data in this manuscript

was recorded from occipital visual areas).

When one is sitting on the seashore, it is possible to hear

individual waves breaking, first on the left, and then on the right,

correlated by their relation to shape of the shore. As one walks

away, however, the correlation between individual waves is lost

because many are heard at once, from progressively larger

stretches of the beach. The combination of our empirical and

modeling findings point to a similar picture, where the internal

correlations between neuronal events are lost by averaging over

large spatial areas, but the changes that we measure do inform us

about the overall number of events taking place in the population.

We would like to propose that the popular ‘‘high-c’’ range,

where it has been postulated that synchronous, rhythmic, action

potential activity produces changes, is often a reflection of changes

in asynchronous activity instead, and revealed by this power-law

process. This shift in thinking, to noise-like non-oscillatory

changes, is a fundamentally new addition to the way people think

about changes in the cortical potential spectrum. Whereas changes

in characteristic brain rhythms are thought to reflect synchronized

populations that coherently oscillate across large cortical regions,

power-law scaling likely reflects asynchronous, averaged, input to

the local neural population.

Materials and Methods

In addition this section, there is an extensive methodological

supplement (Text S1), addressing each aspect of the analysis in

further detail, with illustration, for the more involved reader.

Ethics statement
All patients participated in a purely voluntary manner, after

providing informed consent, under a protocol approved by the

Institutional Review Board of the University of Washington

Experimental setting
Twenty epileptic human subjects had subdural electrode arrays

placed on the brain surface of the lateral frontal, temporal, and

parietal cortical areas for the localization of seizure foci. These

arrays were composed of circular platinum electrodes with 2.3mm

diameter exposed, at 1 cm inter-electrode distance (center-to-

center), embedded in silastic. Electrodes lying on top of

vasculature, near seizure foci, or with aberrantly high noise floors

were excluded from the study. All kept data were recorded away

from seizure times. Potentials at each electrode were recorded at

10 kHz (subjects 1–4) or 1 kHz (subjects 5–20). The first type of

experiment, fixation, was performed (subjects 1 to 20) by the

subjects fixating with their eyes open on an ‘‘X’’, on the wall 3m

away, for several minutes. The second type of experiment (subjects

16 to 20) consisted of simple repeated finger movement (visually

cued).

Spectral calculation
The brain surface potentials from the array were first re-

referenced in terms of neighboring differential pair channels

(bipolar re-referencing for all nearest neighbors), which signifi-

cantly reduced the overall noise in the signal.

Fixation spectra. The potential time series were broken-up

into 1s epochs, overlapping by 0.5s. Each was Hann-windowed,

Fourier transformed. The average over epochs was the power

spectral density (PSD).

Power-Law Scaling in the Brain
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Movement spectra. For 5 hand region channels per subject,

one second epochs flanking time of maximum flexion of each

finger movement (dataglove 5dt, Irvine, CA)), and random one

second epochs during times of no movement were identified,

Hann-windowed, Fourier transformed, and absolute squared. A

principal component method was used to remove the a&b
rhythms [38], and the resulting spectra were averaged for

movement and rest separately.

Correction for amplifier artifact
We empirically determined the amplitude attenuation function

of the amplifiers independently using an external function

generator. For the 10kHz data, a ‘‘reasonable range’’ of empirical

amplifier noise floors was determined experimentally by measur-

ing the potential across an equivalent conformation of resistors.

Because there was a range of potential floor values for each

electrode, depending upon the day, temperature, room, etc, the

specific noise floor subtracted from each calculated spectra was

determined within the empiric range using a recursive, self-

consistent method.

Spectral fitting of the 10kHz fixation data
For the 10kHz sampled, fixation task data, the value of the

exponent x in the power-law relation P*
1

f x
was obtained by fitting

a straight line to the experimentally measured PSD, P(f ), on log (f )
vs. log (P) axes, after correcting for amplifier imposed artifacts

(Figures 1–5). An infamous mistake in this procedure is to apply

global least squares fit, and leave it at that. On a log-log plot, that

assigns too much weight to the highest density of datapoints, at high

frequency, where the low power and high relative influence of the

noise floor make the data noisiest. In reality, a fit should be stable

throughout the fitting range, and we employed a technique which is

robust against range shrinking to a sub-range within the total fitting

range. We determined local fits for the exponent x(f ) by performing

least-squares linear fits to the power spectrum (on log frequency by

log Power axes) to obtain local slopes over varying frequency

intervals, fLvf vfH (harmonics of 60Hz were explicitly excluded).

The most appropriate value of x globally is the one that is most

stable across many values of fL and fH , for a given value of the noise

floor, C. Because variation in the noise floor exists and confounds

the quantitative analysis, the appropriate value in a given channel

pair for a given experiment is a self-consistent, recursive, 3

parameter fit to the form P^Af {xzC, over the entire frequency

range 80Hzvf vfmax, treating C, A, and x as free fitting

parameters (C is constrained within the empiric range of

experimentally measured noise floors). In each iteration, x is

determined as the average exponent from a distribution of fit

exponents, each calculated from a different sub-interval fLvf vfH .

Lower fit values ranged from 80vfLv100Hz and higher fits

ranged from 300vfHv500Hz. The smallest value of fL, 80Hz, was

chosen so that it would be sufficiently above an apparent ‘‘knee’’ in

the PSD at ^75Hz. The highest value of fH was dictated by the

noise floor (beyond which the amplitude of the signal was far below

the amplitude of the noise).

One-kHz fixation data and lower frequency fit
After rejecting electrode pair channels which had notable a and b

peaks in the PSD or a high noise floor (leaving 91 channels), the

1kHz fixation data from subjects 5–20 was fit to a power law form

below f0. They were corrected for frequency-dependent amplifier

attenuation, but not for noise floor, since the contribution of the

noise floor to the spectra was not pronounced in the fit range chosen,

or the channel was rejected if an excessive noise floor was observed.

First, a naı̈ve linear least-squares fit was performed between 15–

80Hz on the plot of the PSD the on log (f ) vs. log (P) axes for

each electrode-pair channel independently. We then divided the

PSD through at each frequency by the form of equation 2, and,

based upon the fit of 10kHz data, set the constraint x~xLzxH

~4:0 (i.e. for f wf0, the form goes to P*f {x~f { xLzxHð Þ, so

xLzxH~4:0). We then iteratively fit xL and f0, until both

converged on stable values. Each iteration consisted of two steps.

The PSD is first multiplied by a factor of 1z
f

f0

� �4{xL

 !
, and

the residual is fit on a log-log plot between 15–195Hz to determine

a new value of xL. Then, the PSD is divided by the full form of

equation 2, for all values of f 15–195Hz in 0.25Hz increments,

and the residual is fit on a log-log plot; the value of f for which the

slope of the fit is closest to zero is chosen as the new f0. These two

steps were iterated until both xL and f0 converged to stable values.

Spectral changes in active cortex
A finger movement task was used first as a tool to first remove

synchronous rhythms from the PSD and then examine changes in

the PSD during increases in brain activity. A method developed in

a recent manuscript characterized how differing covariance

between frequencies during different tasks allows underlying

motifs to be isolated from the PSD [38]; we removed the motifs

corresponding to the low frequency a/b rhythms during a finger

movement task. Because this was shown to remove most, but not

all of those rhythms, we avoided the center frequency of the beta

rhythm, and performed fits to the data above 25Hz; without this

method, we would not be able to address shifts in the power law

process below *60Hz, where the beta rhythm causes an

intersection between the movement and rest spectra [26]. The

residual movement PSD PM (f )ð Þ was then divided by the rest

PSD PR(f )ð Þ at each frequency. A least-squares linear fit was then

performed on the plot of log (f ) vs. log PM (f )=PR(f )ð Þ. The slope

of this fit for each channel pair reveals whether there was a shift in

the exponent, x, of the power-law shape spectrum P(f )*A
1

f x

� �
in ‘‘active’’ cortex. Because the shift in slope was found to be zero,

then the frequency-averaged ratio PM (f )=PR(f ) reveals the

relative overall shift in the coefficient, A. The significance of this

shift in A was estimated with a t-test of the distribution of

log PM (f )=PR(f )
� �

vs. zero (across electrode pair channels).

Simulation
While there are many potential models that are mathematically

consistent with the form of the spectrum that we found

experimentally, we performed a simplified simulation of only

one such model. We model one pyramidal neuron with 6000

synapses, and only 3 simple processes to produce time depen-

dence: Poisson-distribution arrival times of pre-synaptic action

potentials (AP, timeseries denoted ek below); stereotyped,

transient, exponentially decaying post-synaptic current, with

t~(2pf0){1^2:3ms (consistent with experiment [40], g below),

and each synapse has random peak current on the interval from

21 to 1 (arbitrary units, sk below). These are summated, and

integrated over time (representing accumulated charge [66]). The

leakage current of this charge through the dendritic membrane,

produced by a transmembrane potential, is what we simulate as

the time-dependence of the dendritic dipole (with time constant

a{1~100ms [67]).

LI tð Þ
Lt

~{aI tð ÞzQ tð Þ ð3Þ
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Q tð Þ~
X

k

skconv g tð Þek tð Þð Þ ð4Þ

Where we denote a series of delta functions reflecting the spike

arrival times at synapse k as ek tð Þ, the shape of the post-synaptic

response as g tð Þ (total length T ), a random number on the interval

from 21 to 1, as sk, the decay timescale for dendritic current

efflux as a, and the convolution operation conv(a tð Þb tð Þ~Ð T
2

{T
2

dt a tð Þb tztð Þ (and b is zero padded at the edges). I tð Þ is

the simulated time dependence of our surface potential measure-

ments, from which we calculate our simulated spectrum.

As noted by Sigeti and Horsthemke [52], ‘‘2+2’’ spectra, such as

the one we have observed from cortical surface spectra, can result

from linear systems described by:

LX tð Þ
Lt

~{cX tð ÞzsZ tð Þ ð5Þ

LZ tð Þ
Lt

~{bZ tð Þzbj tð Þ ð6Þ

Where j tð Þ is a Gaussian white noise variable, and the resulting

power spectrum of X tð Þ, SX fð Þ, has characteristic corner

frequencies at f0~
b

2p
and fL~

c

2p
. Note that equation 6 is the

same as equation 4, but that we explicitly construct Z tð Þ with a

convolution that allows us to connect the expression to known

physiology in an intuitive way (but Q tð Þ and Z tð Þ ultimately do have

the same properties, where the decay timescale of our g tð Þ is b).

Our representation is intended to make the connection between

the simulation and simple small-scale physiology more intuitive.

The timing of this ohmic transmembrane current produced by

accumulated charge gradient across the dendritic membrane is

modeled as the time dependence producing the macroscale PSD.

6000 synaptic inputs, with input firing rates of 15, 30, and 60
AP

synapse�s
were simulated for 2 minutes of 10kHz data [39].

Recent in-vivo simultaneous transmembrane and local field

potential recordings have demonstrated a strong correlation

between these two [68], suggesting that models like this, based

upon a relationship between post-synaptic potentials and field

potential, may provide useful insight.

Supporting Information

Text S1 Supplemental Detailed Methodology

Found at: doi:10.1371/journal.pcbi.1000609.s001 (9.64 MB PDF)
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