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Abstract

The purpose of this study was to characterize the motion features of surgical devices associ-

ated with laparoscopic surgical competency and build an automatic skill-credential system

in porcine cadaver organ simulation training. Participants performed tissue dissection

around the aorta, dividing vascular pedicles after applying Hem-o-lok (tissue dissection

task) and parenchymal closure of the kidney (suturing task). Movements of surgical devices

were tracked by a motion capture (Mocap) system, and Mocap-metrics were compared

according to the level of surgical experience (experts:�50 laparoscopic surgeries, interme-

diates: 10–49, novices: 0–9), using the Kruskal-Wallis test and principal component analysis

(PCA). Three machine-learning algorithms: support vector machine (SVM), PCA-SVM, and

gradient boosting decision tree (GBDT), were utilized for discrimination of the surgical expe-

rience level. The accuracy of each model was evaluated by nested and repeated k-fold

cross-validation. A total of 32 experts, 18 intermediates, and 20 novices participated in the

present study. PCA revealed that efficiency-related metrics (e.g., path length) significantly

contributed to PC 1 in both tasks. Regarding PC 2, speed-related metrics (e.g., velocity,

acceleration, jerk) of right-hand devices largely contributed to the tissue dissection task,

while those of left-hand devices did in the suturing task. Regarding the three-group discrimi-

nation, in the tissue dissection task, the GBDT method was superior to the other methods

(median accuracy: 68.6%). In the suturing task, SVM and PCA-SVM methods were superior

to the GBDT method (57.4 and 58.4%, respectively). Regarding the two-group discrimina-

tion (experts vs. intermediates/novices), the GBDT method resulted in a median accuracy of

72.9% in the tissue dissection task, and, in the suturing task, the PCA-SVM method resulted

in a median accuracy of 69.2%. Overall, the mocap-based credential system using

machine-learning classifiers provides a correct judgment rate of around 70% (two-group
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discrimination). Together with motion analysis and wet-lab training, simulation training could

be a practical method for objectively assessing the surgical competence of trainees.

Introduction

The traditional apprenticeship model of surgical education: “see one, do one, teach one”, has

now become less acceptable. Along with 1: the widespread dissemination of laparoscopic and

robotic surgeries that necessitate specific surgical skills, 2: regulation of working hours, and 3:

social demand for safer surgery, laboratory-based skill training has been utilized in a wide

range of surgical disciplines. In the authors’ previous study, a low-cost wet-lab model using

cadaveric swine organs, including tissue dissection around the aorta and renal parenchymal

closure, was developed, and training drills showed good construct validity [1]. Furthermore, a

novel motion capture (Mocap) based measurement system that consists of 6 infrared cameras

was developed. This system simultaneously tracked the movements of multiple surgical instru-

ments, and identified the motion characteristics according to the level of laparoscopic surgical

experiences in wet-lab training [2]. For example, in a tissue dissection task, a shorter path

length and faster velocity/acceleration/jerk were observed for scissors and a Hem-o-lok applier

in experts (�50 laparoscopic surgeries), and in experts with�100 cases, scissors moved more

frequently in the close zone (0� to<2 cm from aorta) than those with 50–99 cases [3].

To ensure that trainees are ready to perform surgery, skills assessments are becoming more

important, and they are traditionally performed manually by observing training tasks on site

or video footage according to global skill assessment tools, such as “Objective Structured

Assessment of Technical Skills (OSTAS)” or “Global Operative Assessment of Laparoscopic

Skills (GOALS)”, that usually markedly increase workloads of mentors [4,5]. Regarding auto-

mated assessment, several studies reported promising results. For example, Allen B et al.

reported that in 30 participants (4 experts and 26 novices) performing the three drills of peg

transfer, pass rope, and cap needle, instrument movements were captured by two electromag-

netic sensors, and the support vector machines (SVMs) yielded >90% competency-prediction

based on the motion metrics [6]. However, prior studies utilized very simple training drills

such as “peg transfer”, “pattern cutting”, or “suturing” that involved artificial materials. Ideally,

more complex drills should be included in credential processes before trainees perform actual

surgery.

In the present study, in order to gain further insight into movement features of experts,

data collection was expanded to include laparoscopic surgeons other than urologic surgeons.

Using motion metrics of surgical instruments and several machine-learning techniques, we

aimed to automatically assess surgical competence in porcine cadaver organ simulation

training.

Materials and methods

This study was approved by the Ethical Review Board for Life Science and Medical Research,

Hokkaido University Hospital (No. 018–0257). The initial results based on the current Mocap

based measurement system among urologic surgeons, a junior trainee, and medical students

(1st data collection: n = 45, between December 2018 and February 2019) have been published

[3]. In order to gain further insights into Mocap characteristics of experts and develop an effi-

cient training model, the measurement experiments including general and gynecologic sur-

geons (2nd data collection: between the end of May 2019 and September 2019) were extended.
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In the 2nd data collection, participants performed tissue dissection around a porcine aorta

(Task 1) and renal parenchymal closure (Task 3), while needle driving in renal parenchyma

(Task 2) was not performed because of the similar outcomes of Mocap metrics between Tasks

2 and 3 divided by the level of surgical experiences in the authors’ previous study [3]. Overall,

a total of 70 participants voluntarily took part in 89 training sessions of Tasks 1 and 3 during

the total study period (19 participants overlapped between the 1st and 2nd data collections).

Written informed consent was obtained regarding the use of their data for research.

The details of the present training tasks were previously reported [3]. In brief, porcine

cadaveric organs were placed in a training box (Endowork ProII1, Kyoto Kagaku, Japan).

During the training, one of the 4 authors (TA, MH, JF, and NI) assumed the role of a scopist,

using an endoscopic camera system (VISERA Pro Video System Center OTV-S7Pro, Olym-

pus, Japan). In Task 1, participants were asked to complete tissue dissection around the aorta,

dividing encountered mesenteric vessels after applying Hem-o-lok. In Task 3, using a 15-cm

2–0 CT-1 VICRYL1 thread, participants were asked to make three square single-throw knots

at 2 different sites on a kidney. All training was video-recorded for later analyses. Demo-

graphic data and prior experience of laparoscopic surgeries were also collected after the

training.

Motion capture analysis

The details of the present Mocap based measurement system were previously published [2]. In

brief, the measurement system simultaneously tracked multiple surgical instruments by 6

infrared cameras (OptiTrack Prime 41, NaturalPoint Inc., USA). Infrared reflective marker

sets with a different pattern were connected to handles of each instrument so that they could

be traced individually regardless of exchanges of instruments. The tip trajectory was calculated

based on the position of the tip and handle. In order to reduce the noise, the track of the tip of

instruments (xi, yi, and zi) was smoothed with a Savitzky-Golay filter [7], and its derivatives

(
djxi
dtj ;

djyi
dtj ; and

djzi
dtj j ¼ 1 to 3ð Þ) were also calculated by the filter. In the 2nd data collection, in

order to measure the grasping force and position of grasping forceps, grasping forceps with

strain gauges were utilized in Task 1, although it was not a focus of the current study. Fig 1

shows the present Mocap-based measurement system, and endoscopic views of training tasks.

Analysis and statistics

In order to characterize the motion features of surgical devices associated with laparoscopic

surgical competency, motion metrics that represent kinematic features of the surgical instru-

ment were calculated. S1 Table summarizes the definition of Mocap metrics. In addition to the

metrics already reported in the authors’ previous study [3], 10 metrics were newly calculated,

based on hypotheses generated during the authors’ video review process and previous papers:

bimanual dexterity (BD), ratio of frequency of opening/closing both forceps (ROB), ratio of

path length for both hands (RPLB), average distance between both forceps when opening/clos-

ing (ADBO), average distance between both forceps (ADB), depth path length (DPL), depth

velocity (DV), average gripper rotation angle (AGRA), average attitude angle (Roll, Pitch,

Yaw), angular length (AL, Roll or Pitch/Yaw), and working area (WA). For example, regarding

ADB, the authors hypothesized that it would become closer in experts in the suturing/knotting

task because of their efficient movements. Because of good depth perception, it was hypothe-

sized that DPL would be shorter, and DV would become faster in experts was built in both

tasks. Regarding WA, it was also hypothesized that WA of experts would become smaller than

that of novices because experts manipulate surgical devices in the area close to the objectives in

both tasks. Regarding AL-Roll, the hypothesis was that the sum of changes in the attitude angle
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of an instrument around the sheath axis would become smaller in experts due to better visual

spatial ability.

The following is an outline of the present analyses:

1. Mocap-metrics were compared according to previous laparoscopic surgical cases (experts:

�50 surgeries, intermediates: 10–49, novices: 0–9). The Kruskal-Wallis test was utilized to

evaluate differences among the three groups. The Mann-Whitney U test was also utilized

for paired comparison, if differences among the three groups were significant.

2. Using the Mocap-metrics with significant differences among the 3 abovementioned groups,

principal component analysis (PCA) was performed, a data reduction technique, in order

to identify the motion characteristics associated with surgical competency intuitively.

3. Finally, three machine-learning algorithms: Support Vector Machine (SVM), Principal

component analysis-SVM (PCA-SVM), and Gradient Boosting Decision Tree (GBDT),

were utilized for discrimination of the surgical experience level based on Mocap-metrics.

The details of these algorithms are described in S2 Table.

Before inputting all Mocap indices to these algorithms, robust Z-score normalization was

conducted for scaling the data while reducing the effects of outliers. The robust Z score, zi, for

data, xi, can be calculated as follows:

zi ¼
xi � xm
NIQR

: ð1Þ

Here, xm is the median for data x, and NIQR is the normalized interquartile range, calculated

as NIQR = 0.7414�IQR (IQR = Interquartile range).

Fig 1. Photographs of the simulation training. (a): The Mocap-based measurement system, which consisted of 6 infrared cameras (OptiTrack Prime 41,

NaturalPoint Inc., USA), simultaneously tracked infrared reflective markers attached to multiple surgical instruments during each training task. (b): Task 1, a

view of tissue dissection. (c): Task 3, a view of needle driving.

https://doi.org/10.1371/journal.pone.0277105.g001
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The model was validated using nested and repeated k-fold cross-validation, which is a com-

bined method of nested k-fold cross-validation and repeated cross-validation. This method

enables robust verification that is not affected by randomness. S1 Fig shows that the data flow

of the validation process. All procedures related to machine learning were done using Scikit-

learn, a machine-learning library for python [8]. The machine-learning library “LightGBM”

was also used to build a model of GBDT [9]. The accuracies of machine-learning models were

compared by Friedman’s test. The Wilcoxon signed rank sum test was also utilized to assess

the differences in paired comparison. Friedman’s test and the Wilcoxon signed rank sum test

were performed using JMP 14 (SAS, Japan), and PCA was performed using R (Ver. 3.6.0).

Results

Table 1 shows a summary of participants’ backgrounds. Urologic surgeons were dominant

(n = 45), followed by gastroenterological surgeons (n = 9), medical students (n = 9), junior res-

idents (n = 4), and gynecologic surgeons (n = 3). The experiences of laparoscopic surgery

were: 0–9: n = 20, 10–49: n = 18, 50–99: n = 7, 100–499: n = 18, and�500: n = 7. As described

above, 19 joined the training multiple times, which resulted in a total of 89 training sessions.

S3 Table summarizes Mocap metrics according to previous surgical experiences. Overall,

there were significant differences in speed-related metrics including velocity, acceleration, and

jerk in scissors, Hem-o-lok clip applier, and bilateral needle holders, and significant differences

in efficiency-related metrics including the operative time and path length in all devices among

the three groups. These observations were in line with our previous study. Regarding the new

metrics, for example, BD (in both tasks), DPL in grasping forceps, scissors, Hem-o-lok, and

right/left needle holders, and AL-Pitch/Yaw in grasping forceps, scissors, clip applier, and

right/left needle holders showed significant differences among the 3 groups.

Fig 2 shows a PCA loading plot of both tasks (a: Task 1, b: Task 3). In Task 1 (Fig 2A), for

example, ROB (loading coefficient = 1.25), G_DPL (loading coefficient = 1.00), G_AL-Roll

(loading coefficient = 1.3), and S_DPL (loading coefficient = 1.0) largely contributed to PC1.

In other words, efficiency-related metrics significantly contributed to PC1. Regarding PC2, S �v
(loading coefficient = 0.68), C �v (loading coefficient = 0.58), S �a (loading coefficient = 0.66),

C �a (loading coefficient = 0.63), S�j (loading coefficient = 0.60), C �j (loading coefficient = 0.61),

and S_DV (loading coefficient = 0.82) largely contributed, which showed the significant con-

tribution of speed-related parameters in surgical devices manipulated by the right hand. In

Table 1. Participants’ backgrounds.

n = 70

Background Urologic surgeon, n = 45

Gastroenterological surgeon, n = 9

Gynecologic surgeon, n = 3

Junior resident, n = 4

Medical student, n = 9

Age, years Median 35 (range, 23–57)

Sex Male/Female = 61/9

Experience of laparoscopic surgery 0–9, n = 20

10–49, n = 18

50–99, n = 7

100–499, n = 18

�500, n = 7

Dominant hand Right/left = 67/3

https://doi.org/10.1371/journal.pone.0277105.t001
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Fig 2. PCA loading plot. (a): In task 1, efficiency-related metrics (e.g., ROB, G_DPL, G_AL-Roll, and S_DPL)

significantly contributed to PC1, and speed-related parameters in surgical devices manipulated by the right hand (e.g.,

S �v�, C �v�, S �a�, C �a�, S �j�, C �j�, and S_DV) significantly contributed to PC2. Regarding PC3, PC4, and PC5, ROB, BD, and

S_Working area largely contributed to each PC, respectively. (b): In task 3, efficiency-related parameters in both needle

holders (e.g., operative time, R_PL, L_PL, R_DPL, and L_DPL) largely contributed to PC1, and speed-related

parameters, especially of a left needle holder (e.g., L �j�, L �a�, L_High, L �v�, and R �j�), significantly contributed to PC2.

https://doi.org/10.1371/journal.pone.0277105.g002
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PC3, PC4, and PC5, ROB (loading coefficient = 1.99), BD (loading coefficient = 2.08), and

S_Working area (loading coefficient = -0.92) largely contributed to each PC, respectively. In

Task 3 (Fig 2B), the operative time (loading value = 1.57), R_PL (loading coefficient = 1.32),

L_PL (loading coefficient = 1.49), R_DPL (loading coefficient = 1.39), and L_DPL (loading

coefficient = 1.58) largely contributed to PC1, which showed a significant contribution of effi-

ciency-related parameters in both needle holders. Regarding PC2, L�j (loading coeffi-

cient = 0.93), L �a (loading coefficient = 0.84), L_High (loading coefficient = 0.81), L �v (loading

coefficient = 0.78), and R �j (loading coefficient = 0.72) largely contributed, which showed the

significant contribution of speed-related parameters, especially of a left needle holder.

Figs 3 and 4 and Table 2 show the performance results of each classifier under repeated and

nested cross-validation, and comparative results for the three methods. Regarding the three-

group discrimination (experts vs. intermediates vs. novices), in Task 1, the GBDT method was

superior to the other methods. GBDT methods resulted in a median accuracy of 68.6% (Fig 3A

and Table 2A). In Task 3, SVM and PCA-SVM methods were superior to the GBDT method

(median accuracy of 57.4 and 58.4%, respectively, Fig 3B and Table 2A). There was no signifi-

cant difference between SVM and PCA-SVM. Regarding the two-group discrimination

(experts vs. intermediates/novices), GBDT methods resulted in a median accuracy of 72.9% in

Task 1 (Fig 4A and Table 2B), and the PCA-SVM method resulted in a median accuracy of

69.2% in Task 3 (Fig 4B and Table 2B).

Discussion

In order to gain further insight into movement features of expert surgeons and automated skill

assessment, the data collection, including urologic, gastroenterological, and gynecological sur-

geons who regularly performed laparoscopic surgery, was continued. As previously reported,

the strength of this Mocap-based measurement system compared with previous studies is that

all surgical devices can be tracked because of the arrangement of infrared reflective markers,

and, therefore, the proposed model can be utilized in complex training tasks that require a

range of surgical skills. In the present study, additional motion metrics not included in the pre-

vious study were newly calculated. According to past reports [10,11], BD was newly calculated,

and it showed significant differences among the three groups in either task. DPL (grasping for-

ceps, scissors, right/left needle holders) and DV (scissors, Hem-o-lok, right/left needle drivers)

also showed significant differences, being in line with the hypothesis that good depth percep-

tion of experts results in shorter DPL and faster DV. In terms of AL-Roll and Al-Pitch/Yaw,

which means the sum of changes in the attitude angle represented as Euler angles of an instru-

ment, AL-Roll showed significant differences in grasping forceps and scissors, and Al-Pitch/

Yaw in grasping forceps, scissors, Hem-o-lok, and right/left needle holders. Because Al-Pitch/

Yaw means the sum of the angle change in the vertical plane of surgical devices, it is considered

that large AL-Pitch/Yaw would mean both frequent angle adjustments and inefficient move-

ments by less-experienced surgeons. Regarding smaller Al-Roll (sum of angle change along

surgical device axis) in experts, it is considered that experts have good spatial ability that results

in fewer angle adjustments (rotating a surgical device itself), and/or they use their index fingers

efficiently to rotate the shaft of a surgical device, which was not reflected in the outcome of Al-

Roll. Because this measurement system records detailed location records (30 Hz) of multiple

surgical devices simultaneously, it enables subsequent analyses based on “surgical expertise”.

In terms of PCA analyses, in a more generalized cohort including laparoscopic surgeons (urol-

ogy, general surgery, and gynecology) and medical students, it is noted that efficiency-related

metrics (e.g., ROB, G_DPL, G_AL-Roll, and S_DPL in Task 1, and operative time, R_PL,

L_PL, R_DPL, and L_DPL in Task 3) significantly contributed to PC1, and speed-related
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Fig 3. Accuracy of each classifier (3 grouping). (a): The GBDT method was superior to the other methods (median

accuracy of 68.6%). (b): SVM and PCA-SVM methods were superior to the GBDT method (median accuracy of 57.4

and 58.4%, respectively). There was no significant difference between SVM and PCA-SVM.

https://doi.org/10.1371/journal.pone.0277105.g003
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Fig 4. Accuracy of each classifier (2 grouping). (a): The GBDT method was superior to the other methods (median

accuracy of 72.9%). (b): The PCA-SVM method was superior to the other methods (median accuracy of 69.2%).

https://doi.org/10.1371/journal.pone.0277105.g004
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metrics (e.g., S �v, C �v; S �a, C �a, S�j; C�j, S_DV in Task 1, and L �j, L �a, L_High, L �v, and R �j in

Task 3) to PC2, being in line with a previous study.

Surgical skill evaluation facilitates surgical training and credentialing of competent sur-

geons. In this study, for automatic skill assessment, three classification methods: SVM,

PCA-SVM, and GBDT, were evaluated. SVM has been frequently used for computer-based

discrimination of surgeons’ expertise [6,12,13]. Because of the many feature values utilized in

the present SVM model, which might lead to a risk of overfitting to the original data, the

PCA-SVM method was also utilized in this study. In this method, classification of SVM is con-

ducted after reducing the data dimension by PCA, and it is expected to prevent overfitting.

Regarding GBDT that uses an ensemble of decision trees for target label prediction, it has also

been frequently utilized in machine-learning research [14–16]. As summarized in Table 2,

GBDT showed the best accuracy in Task 1(3-group discrimination: median accuracy of 68.6%,

2-group discrimination: 72.99%), and PCA-SVM in Task 3 (3-group discrimination: 58.4%,

2-group discrimination: 69.2%). In addition to PCA-SVM, SVM also revealed the best accu-

racy in 3-group discrimination of Task 3, although PCA-SVM should be a suitable method

because PCA-SVM revealed the best accuracy in both discriminations.

It is considered that Task 1 includes a range of required skills (tissue traction/dissection,

Hem-o-lok use, and division of vascular pedicle) compared with Task 3 (suturing/knotting),

which should have resulted in better discrimination results in Task 1. Regarding the outcomes

of two-group discrimination (experts vs. intermediates/novices), accuracy of around 0.7 in

both tasks was similar to that in the study by Oropesa et al., wherein 42 participants performed

3 box trainer tasks (peg grasping task, task that requires placing three elastic bands through

their corresponding posts, and coordinated peg transfer task), kinematic data were captured

by the TrEndo tracking system, and linear discriminant analysis (LDA), SVM, and an adaptive

neuro-fuzzy inference system (AN-FIS) were utilized to classify 42 participants according to

prior surgical experience (>10 laparoscopic surgeries performed vs. <10) by leave-one-out

Table 2. Summary of comparative results of the three machine-learning models.

(a) Three-group discrimination (experts vs. intermediates vs. novices)

Median of accuracy (Interquartile range) p-Value

PCA-SVM SVM GBDT Friedman’s

test

PCA-SVM vs.

SVM

PCASVM vs.

GBDT

SVM vs.

GBDT

Task

1

0.6514

(0.6306–

0.6639)

0.6243

(0.6052–

0.6417)

0.6861

(0.6625–

0.7087)

<0.0001 <0.0001 <0.0001 <0.0001

Task

3

0.5840

(0.5722–

0.5958)

0.5743

(0.5608–

0.5958)

0.4944

(0.4722–

0.5167)

<0.0001 0.0741 <0.0001 <0.0001

(b) Two-group discrimination (experts vs. intermediates/novices)

Median of accuracy (Interquartile range) p-Value

PCA-SVM SVM GBDT Friedman’s

test

PCA-SVM vs.

SVM

PCASVM vs.

GBDT

SVM vs.

GBDT

Task

1

0.7215

(0.7069–

0.7403)

0.7208

(0.6972–

0.7403)

0.7299

(0.7076–

0.7625)

0.0066 0.7496 0.0162 0.0017

Task

3

0.6924

(0.6736–

0.6986)

0.6743

(0.6514–

0.6958)

0.6306

(0.5972–

0.6542)

<0.0001 <0.0001 <0.0001 <0.0001

SVM: Support Vector Machine, PCA-SVM: Principal Component Analysis-SVM, GBDT: Gradient Boosting

Decision Tree.

https://doi.org/10.1371/journal.pone.0277105.t002
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cross-validation. The mean accuracy observed was 71% with LDA, 78.2% with SVM, and

71.7% with AN-FIS. Regarding the misclassification in the current study, it may reflect the lim-

ited correlation between the previous caseload and actual performance. For example, active

medical students would perform dry box training of suturing/knotting regularly, which would

result in better kinematic outcomes, especially in Task 3. As inherent limitations of each

machine-learning algorithm, the configuration, training, and validation process might influ-

ence the misclassification. An external cohort is also necessary to validate this model, and

larger training data and refinement of the algorithm is necessary in order to improve com-

puter-based skill credentialing. Nevertheless, this study showed promising results in terms of

automated skill credentialing based on kinematic tracking data of surgical devices in wet-lab

training. As another direction, in order to provide more user-friendly feedback, we developed

a machine-learning-based GOALS scoring system based on Mocap metrics, using the current

dataset and recorded movies [17]. GOALS is an already validated and widely-used assessment

tool for grading laparoscopic surgical skills, and consists of five items: depth perception,

bimanual dexterity, efficiency, tissue handling, and autonomy [18]. It was reported that this

system could evaluate surgeons’ skill with high accuracy (an error of approximately 1–2 points

for a total score of 5–25 points). Taken together with the skill credential usage described in this

paper, the authors believe that the motion data of instruments has promising value for surgical

evaluation, which could provide valuable feedback to trainees, and mitigate the educators’

workload.

Limitations of this study include the small sample size, lack of an external validation cohort,

and limited correlation between previous case volumes and surgical skills, as abovementioned.

Furthermore, in order to assess the educational benefit of Mocap analyses and computer-

based objective skill assessment in simulation training, developing a computer program for

onsite feedback to trainees is needed.

Conclusions

A Mocap-based credential system using machine-learning classifiers provides a correct judg-

ment rate of around 70% (two-group discrimination). Together with motion analysis and wet-

lab training, simulation training could be a practical method for objectively assessing the surgi-

cal competence of trainees. The next challenge is to give objective feedback based on mocap

metrics to trainees immediately on-site, which could become an educational means together

with mentors’ feedback.

Supporting information

S1 Fig. Overview of the dataflow in the model validation process of SVM/PCA-SVM/

GBDT methods. NIQR = Normalized Interquartile Range, SVM = Support Vector Machine,

PCA-SVM = Principal Component Analysis-SVM, GBDT = Gradient Boosting Decision Tree.

Nested k-fold cross-validation consists of two validation processes: Outer Cross-validation

(Outer CV) and Inner Cross-validation (Inner CV). Each cross-validation was conducted

using 10-fold cross-validation. In each validation, the dataset were divided into 10 groups; 9

groups were used to train the model, and 1 group was for testing. The accuracy of the model

was evaluated by repeating this process 10 times so that all groups were evaluated. Note that

Inner CV was conducted using training data of Outer CV, although Outer CV was conducted

using the entire dataset. The grid search for hyperparameter tuning was done in Inner CV.

The best parameter that showed the highest accuracy among all candidate parameters was

used to build the model for the outer CV. In this study, nested k-fold cross-validation was
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repeated 100 times with different dataset divisions.

(EPS)

S1 Table. The definitions of measurement outcomes.

(DOCX)

S2 Table. Details of the 3 algorithms and candidate parameters for the grid search.

(DOCX)

S3 Table. Summary of statistical analysis of Mocap metrics.

(DOCX)
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