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Hesperidin is a bioflavonoid, with high concentration in citrus fruits. In addition to its well-known benefits for cardiovascular
function, type II diabetes, and anti-inflammation, recent studies have demonstrated multiple benefits of hesperidin for cutaneous
functions, including wound healing, UV protection, anti-inflammation, antimicrobial, antiskin cancer, and skin lightening. In
addition, hesperidin enhances epidermal permeability barrier homeostasis in both normal young and aged skin. The mechanisms
by which hesperidin benefits cutaneous functions are attributable to its antioxidant properties, inhibition of MAPK-dependent
signaling pathways, and stimulation of epidermal proliferation, differentiation, and lipid production. Because of its low cost, wide
availability, and superior safety, hesperidin could prove useful for the management of a variety of cutaneous conditions.

1. Introduction

In humans, no organ has attracted as much attention as the
skin does, because of both cosmetic and medical concerns.
For cosmetic concerns, average daily costs of facial care
for an American woman can be as much as $8.00 [1]. In
2017, the sale value of skin care products exceeds $26 billion
per year in China alone [2]. Recent studies showed that
topical applications of certain skin care products exert a
variety of benefits for both chronic and photoaged skin,
antimicrobials, and anti-inflammation [3–7]. Because use of
skin care products has become increasingly popular, much
work has been focused on the identification of ingredients
with multiple benefits on the skin in the development of skin
care products.

Because skin suffers from as many diseases as any
other organ in the body, proper management of cutaneous
conditions is of substantial importance. Over a lifetime,
everyone will eventually suffer from some cutaneous prob-
lems, because the skin interfaces with the environment,
making it more vulnerable to external physical, chemical,
andmicrobial stress. In addition to their psychosocial impact
and the quality of life for affected patients and their families,
certain chronic cutaneous disorders can also contribute to
the development of other systemic diseases. For example,

both psoriasis and eczematous dermatitis increase circulating
levels of proinflammatory cytokines [8–10], which appear to
play a pathogenic role in the development of cardiovascular
diseases, obesity, type II diabetes, andAlzheimer’s disease [11–
14]. Because of its vast size, even subclinical inflammation
in the skin can dramatically increase serum cytokine levels,
which could be linked to some of these age-associated disor-
ders [12, 15]. Due to the complexity of cutaneous functions
and the potential risk of developing multiple disorders in the
skin, ingredients that exert multiple benefits to the skin are
much desirable. In search for these ingredients, hesperidin
would appear to be a potential candidate. Studies have
demonstrated that both topical and systemic administrations
of hesperidin can benefit a variety of cutaneous functions in
both normal and diseased skin. In this review, we compre-
hensively summarize the benefits of hesperidin for cutaneous
functions.

2. Sources and Chemical Properties
of Hesperidin

Hesperidin was first isolated from the inner portion of
orange peels in 1828. Hesperidin together with other similar
bioflavonoids was formerly called “vitamin P” (reviewed
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in [16]). Hesperidin is abundant in citrus fruits, including
lemon, orange, lime, and grapefruit. The content of hes-
peridin in citrus fruits varies greatly with species, part of
the fruit itself, geographic sites of cultivation, and processing
procedures (Table 1) [17–22]. For example, hesperidin content
in fresh Satsuma pulp is 73 mg per kilogram and 157 mg
per kilogram in fresh peel [20]. Generally, hesperidin content
is higher in citrus peel than in the other parts of the
citrus fruits. But lemon seeds contain more hesperidin than
peel by methanol extraction [23]. Hand-squeezed Florida
orange juice contains 335–351mg hesperidin per litter while
Israel Ortanique citrus juice contains 273–287 mg per litter
[24]. Juice from pigmented citrus contains more hesperidin
than that from nonpigmented citrus [25]. It is likely that
immature citrus may contain more hesperidin than ripen
citrus does [26]. Pasteurization with heat did not decrease
hesperidin content in citrus juice at least stored at 4∘C for
up to 12 days. Instead, hesperidin content increases following
pasteurization of citrus juice at 90∘C for 20 seconds [27].
Hesperidin content ranges from 555 to 761 mg per litter
in single-strength juice and from 470 to 614 mg per litter
in concentrated juice, suggesting that processing procedure
affects hesperidin content in citrus juice [28]. In addition
to citrus fruits, peppermint (Mentha x piperita L.) also
contains hesperidin, whose content increases following UVB
irradiation [29]. Methanol extract of Porphyra dentata, a red
edible seaweed, contains 5% hesperidin [30].

Hesperidin (3,5,7 trihydroxyflavanone 7-rhamnogluco-
side, C

28
H
34
O
15
) is also named hesperetin 7-rutinoside or

7-O-glycoside hesperitin, with a molecular weight of 610.57.
The melting and boiling points of hesperidin are 250-255∘C
and 576.16∘C, respectively. It is stable for at least for 2
years if stored at -20∘C. Although hesperidin alone barely
dissolves in aqueous solution, it dissolves well in both
propylene glycol and poly(ethylene glycol)-400 [71]. Reaction
of hesperidin with chitooligosaccharide yields hesperidin-
chitooligosaccharide complex, which renders it water sol-
uble and further exhibits superior antioxidant activity to
hesperidin alone [72]. Moreover, mix of hesperidin and
other flavonoids such as theaflavin-3 3-digallate can increase
the solubility of hesperidin in 10% dimethyl sulfoxide [73].
Additionally, alpha glucosyl hesperidin is also water soluble
and therefore commonly used in both topical and systemic
preparations. Pertinently, the area under the curve for serum
hesperidin in rats was over 3-fold higher following orally
administrations of glucosyl hesperidin than hesperidin itself
[74].

3. Safety

Hesperidin is generally safe for both topical and systemic
administrations. Topical applications of 2% hesperidin for
9 days caused no adverse cutaneous reactions in mice [32].
Similarly, intragastrically given Daflon-500 mg, containing
10% hesperidin, at daily dose of 100 mg did not show signs
or symptoms of side effects in rats [75]. Likewise, oral
administrations of diets, containing either methyl hesperidin

or hesperidin, did not show signs or symptoms of side
effects in mice and rats, either [76, 77]. Moreover, no adverse
events were observed in mice followed daily intraperitoneal
injections of phosphorylated hesperidin at dose of 20mg/kg
body weight for over 4 weeks [78]. Although one study
showed that orally given Daflon-500 mg twice-daily for 60
days caused minor, temporal side effects such as headache
and faintness [79], other studies showed that oral Daflon-500
mg is safe in humans [80, 81].

4. Benefits of Hesperidin for
Cutaneous Functions

Nowadays, the benefits of bioflavonoids, including hes-
peridin, on human health have been well appreciated. A
large number of studies have demonstrated that systemic
administrations of hesperidin exhibit benefits for a vari-
ety of diseases, including cardiovascular diseases, diabetes,
Alzheimer’s disease, and cancer [82–88]. Likewise, the ben-
efits of hesperidin on various cutaneous conditions have also
been well illustrated (Table 2).

4.1. Epidermal Permeability Barrier Function. Epidermal per-
meability barrier, residing in the stratum corneum, prevents
movement of agents andwater through the stratum corneum.
Importantly, recent studies demonstrate that epidermal per-
meability barrier plays crucial role in the pathogenesis of both
cutaneous and possibly systemic disorders [89–91]. Thus,
skin care product makers have been striving to develop
products that can potently improve epidermal permeability
barrier function. Because of the high incidence of adverse
cutaneous reactions to skin care products, identification of
safe and effective ingredients is becoming emergent [92, 93].
Our group has demonstrated that twice-daily applications of
2% hesperidin to young mouse skin for 6 days accelerated
permeability barrier recovery in a model of acute barrier
disruption although basal transepidermal water loss rates,
stratum corneum hydration, and skin surface pH remained
unchanged [31]. Aged skin displays delayed permeability
barrier recovery and elevated skin surface pH [94, 95], which
both possibly contribute to the development of certain aging-
associated disorders. Regimens that can improve epidermal
permeability barrier function, particularly at gene levels, are
limited. At least on study showed that topical applications of
2% hesperidin twice-daily for 9 days markedly accelerated
permeability barrier recovery, along with significant reduc-
tion in skin surface pH in aged mice [32]. In addition to nor-
mal skin, topical hesperidin can also prevent abnormalities
of epidermal permeability barrier induced by topical gluco-
corticoid in mice. For example, repeated topical applications
of glucocorticoids delayed barrier recovery. But if hesperidin
was topically given following each glucocorticoid application
to mice, abnormalities in both permeability barrier recovery
and skin surface pH were normalized [33]. No adverse
reactions were observed following topical applications of
hesperidin. Taken together, these studies demonstrate that
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topical hesperidin improves epidermal permeability bar-
rier function in both normal and glucocorticoid-disrupted
skin.

4.2. UV-Induced Cutaneous Damage. Because the skin is the
outermost layer of the body, it is more vulnerable to ultravio-
let (UV) irradiation, leading to the development of photoag-
ing and other cutaneous disorders such as actinic keratosis
and skin cancers [96, 97]. Thus, protection against UV
irradiation can prevent and/or mitigate UV-induced cuta-
neous damage. Study showed that treatment of keratinocytes
with 50 𝜇M hesperidin could cause over 70% reduction in
apoptotic index induced by UVB irradiation in comparison
to vehicle-treated keratinocytes [34]. In addition to UVB,
hesperidin can also protect keratinocytes fromUVA-induced
damage. Li et al. [35] reported that treatment of keratinocytes
with hesperidin for 24 hr induced a dose-dependent increase
in viability of UVA-irradiated keratinocytes. Pretreatment
of keratinocytes with hesperidin at a dose of 220 𝜇g/ml
also significantly reduced UVA-induced oxidative stress and
expression levels of proinflammatory cytokines. These data
indicate that hesperidin protects keratinocytes from both
UVA- and UVB-induced damage.

The wavelength of UVA is 320-400 nm, which can
penetrate into the dermis, leading to premature skin aging
(photoaging) upon repeated exposure. It appears that hes-
peridin can also attenuate UVA-induced damage to fibrob-
lasts. Because hesperidin is hydrolyzed to hesperetin by
the gut microbiota and absorbed by passive transport
in the large intestine [36], some studies use hesperetin
instead of hesperidin. Bae et al. [37] reported that treat-
ment of UVA-irradiated human fibroblasts with 0.1% Citrus
unshiu peel extract, containing hesperetin (metabolite of
hesperidin), decreased expression levels of 𝛽-galactosidase,
matrix metalloproteinase-1, and the number of senescent
cells. Moreover, pretreatment of human fibroblasts with
hesperetin glucuronides induced a 25% protection against
UV-A-induced necrotic cell death [38].

Hesperidin not only protects cells against UV-induced
damage in vitro, but also protects the skin from UV-
induced damage in vivo. Pretreatment of mouse skin with
topical hesperidin could prevent UVB-induced elevations
in cutaneous cytokine expression and lipid peroxidation,
while increasing expression levels of antioxidant enzymes
such as glutathione peroxidase-1, glutathione reductase, and
heme oxygenase-1 in mouse skin, following either single
or multiple UVB irradiation [39, 40]. In addition, topical
applications of hesperidin also markedly prevented UVB
irradiation-induced erythema, edema, and epidermal pro-
liferation [39]. Moreover, intraperitoneal administrations of
hesperidin methyl chalcone can prevent UVB irradiation-
induced reductions in antioxidant capacity and elevations
in both cutaneous cytokine expression and myeloperoxidase
activity [41]. Lee et al. [42] reported that daily drinking
water containing hesperidin attenuated a number cutaneous
abnormalities induced by repeated UVB irradiation, includ-
ing compromised epidermal permeability barrier, promoted
wrinkle formation, increased cytokine expression, and both

expression levels and activity of matrix metalloproteinase-9.
Furthermore, pretreatment of mice with topical hesperidin
could enhance repair of DNA damage induced by UVB
irradiation [43]. Finally, topical hesperetin lowered transepi-
dermal water loss by ≈50% in guinea pigs subjected to
repeated UVB irradiation [44]. Collectively, either topical
or oral administrations of hesperidin can protect skin from
damage induced by both UVA and UVB irradiation.

4.3. Melanogenesis. For beauty concern, skin whitening is
very popular, particularly in Asia. Hesperidin has long been
used as a skin whitening agent although the results of its
effects on melanogenesis are controversy. Study showed that
treatment of murine B16-F10 melanoma cells with 20 𝜇g/mL
citrus extract (containing 362.3 ± 16.7 𝜇g/mL hesperetin)
induced onefold increase in melanin content, while hes-
peridin alone also increased melanin content by over 20%
[45]. Likewise, 50𝜇M hesperetin increased melanin content
by over 80% in murine B16-F10 melanoma cells [46]. In
contrast, other studies demonstrated that hesperidin did not
affect melanin production in B16F10 murine melanoma cells
[47–49]. However, most of other studies showed that both
citrus extract and hesperidin inhibitedmelanogenesis in both
murine B16-F10melanoma cells and humanmelanocytes [36,
44, 50–53]. For example, treatments with 50𝜇M hesperidin
for 48-72 hr induced 60% reduction in melanin content
in murine B16-F10 melanoma cells and ≈30% reduction
in human melanocytes [50]. Topical applications of 0.2%
hesperidin to reconstructed human epidermis for 14 days
reduced pigment by ≈25% [49]. In addition, topical appli-
cations of hesperetin, a metabolite of hesperidin, lightened
skin in UVB-induced hyperpigmentation [44]. Thus, topical
applications of hesperidin and its metabolite can reduce
epidermal pigmentation in both normal andUVB challenged
skin.

4.4. Cutaneous Wound Healing. Cutaneous wounds are very
common while management of cutaneous wounds is still a
challenge, particularly in certain conditions such as diabetic
and venous wounds. A number of studies have demonstrated
that hesperidin accelerated wound healing both in vitro and
in vivo. Wessels et al. [54] reported that addition of a culture
medium containing 0.05 % hesperidin for 24 hr accelerated
wound closure by 39% in comparison to vehicle control
in in vitro scratch models. In diabetic rats, wound almost
completely healed (97%) following orally given hesperidin
(100 mg/kg body weight) for 21 days while the wound
did not close at all in the vehicle-treated controls [55].
In diabetic rats, the benefits of oral hesperidin on wound
healing and other biomarkers, including serum glucose and
glycated hemoglobin, were comparable to insulin treatments
[56]. Besides diabetic wound, treatment of wound in venous
insufficient subjects is also troublesome. Although wound
healing times were similar in patients treated with oral
diosmin/hesperidin (450/50 mg) and with pycnogenol [57],
more patientswere completely healed in diosmin/hesperidin-
treated group than in placebo controls (32% versus 13%)
after 2-month treatment [58]. Moreover, either topical or
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oral administrations of hesperidin shortened wound heal-
ing time ≈3 days in 𝛾 ray-irradiated mice [59, 60]. These
data demonstrate that either topically or orally given hes-
peridin can accelerate cutaneous healing under various con-
ditions.

4.5. Inflammation. Benefits of flavonoids on both systemic
and local inflammation have been demonstrated [98, 99].
Because nitric oxide is an inflammatory mediator, it is often
used as a biomarker to evaluate inflammatory response. In
vitro study demonstrated that treatment ofmouse RAW264.7
cells with lipopolysaccharide (LPS) for 24 hr induced over
9-fold increase in nitrite levels. But addition of hesperidin
(250 𝜇g/ml) to culture medium lowered nitrite levels by
≈75% in LPS-treated cells [30]. Yang et al. [61] performed
a similar study using hesperetin and its metabolites. The
results showed that stimulation of RAW 264.7 cells with
LPS markedly increased in both nitric oxide and inducible
nitric oxide synthase mRNA levels, which both significantly
decreased by coincubation of RAW 264.7 cells with LPS and
10 𝜇Mhesperetin metabolite. Interestingly, hesperetin only at
lower dose (1𝜇M) lowered nitric oxide and inducible nitric
oxide synthase mRNA levels, but hesperetin at dose of 10 𝜇M
had no effect.

The skin serves as the first line of defense against to exter-
nal stimuli. Keratinocytes can produce and release proin-
flammatory cytokines upon stimulation [90]. Hesperidin
can lower cytokine production in keratinocyte cultures. For
instance, prior to challenge with H

2
O
2
(100 𝜇M), treat-

ment of keratinocytes with hesperidin (20 𝜇g/ml) for 2
hr could inhibit IL-8 and TNF𝛼 production by 96% and
78%, respectively [62]. Expression levels of cyclooxygenase-
2 (COX-2) protein and mRNA also significantly decreased
in keratinocytes cotreated with hesperidin versus treated
with alone H

2
O
2
. Evidence indicates that hesperidin can

inhibit bacterial pathogen-induced cytokine production, too.
Incubation of keratinocytes with both Propionibacterium
acnes and 5-5 𝜇g/mL of hesperidin for 24 hr inhibited
IL-8 and TNF𝛼 production by 49% and 71%, respectively,
which were comparable to the levels inhibited by dexametha-
sone treatment [63]. Moreover, pretreatment of hesperidin
methyl chalcone (0.2 mg/ml) also dramatically decreased
the proportion of dilated vessels (48% inhibition), total
vessel area (72% inhibition), and IL-8 production (79%
inhibition) in human skin explants following stimulation
with substance P [64]. Thirty minutes prior to subcuta-
neous injection of carrageenan (1%), subcutaneous injection
of hesperidin at doses of 50 and 100 mg/kg reduced the
paw edema by 47 and 63%, respectively, within 5 hr [65].
Hesperidin at dose of 100 mg/kg also decreased dextran-
induced edema by 33%. The efficacy of hesperidin on edema
was comparable to that produced by oral indomethacin (10
mg/kg). However, hesperidin did not prevent histamine-
induced paw edema. Pelzer et al. [66] reported that intraperi-
toneal injection of hesperidin could also inhibit carrageenan-
induced paw edema by 36 to 40% within 7 hr. One hour
prior to edema induction with carrageenan on the paw,

oral administration of hesperidin (40 mg/kg/ body weight)
could decrease the edema by 50%, 51%, 63% and 77 %,
respectively, while indomethacin (10mg/kg) decreased the
edema by 65%, 71%, 72% and 74%, respectively, after 1, 2, 3,
and 4 hours [67]. These results indicate that hesperidin can
prevent and treat cutaneous inflammation induced by various
agents.

4.6. Cutaneous Cancers. In addition to the preventive and
therapeutic benefits for other cancers [100, 101], studies
showed that hesperidin and its metabolite also benefit cuta-
neous cancers. Smina et al. [68] showed that treatment of
A431 cells with hesperetin at as low as 10 𝜇M induced
DNA fragmentation along with significant increase in Bax,
an apoptotic protein, expression while reducing expression
levels of cyclin B1, D1, D3, and E1 proteins by over 1-fold.
A similar study also demonstrated that incubation of A431
cells with 10 𝜇M hesperidin induced over 10-fold increase in
apoptosis and DNA damage [69]. In vivo study demonstrated
that hesperidin can prevent the development of skin tumor.
For example, daily subcutaneous injection of 125 𝜇l of 1%
hesperidin 1 week prior to induction of skin tumor by
topical 12-O-Tetradecanoylphorbol-13-acetate (TPA) resulted
in reductions in tumor incidence by 50% and the number
of papillomas per mouse by 48% after 20 weeks of TPA
applications [70]. Thus, hesperidin could be an alternative
regimen for preventing and treating cutaneous cancers.

4.7. Other Cutaneous Functions. Evidence also indicates ben-
efits of hesperidin on other cutaneous functions. Orally given
hesperidin 30 min prior to irradiation with 𝛾 ray upregulated
expression levels of mRNA for vascular endothelial growth
factor by over 25 folds [102]. Hesperidin exhibited antimi-
crobial activity, including the common pathogens in the
cutaneous infections such as Staphylococcus aureus, Candida
albicans, Candida tropicalis, and Streptococcus pyogenes, with
the minimum inhibitory concentration of 8.25% for both
Candida albicans and Staphylococcus aureus [103–106]. A
clinical trial on humans showed that orally given hesperidin
(500mg/daily) for 28 daysmarkedly reduced facial roughness
and 33% reduction in beta-galactosidase, a biomarker of
aging, by 6 months [107].

5. Mechanisms

Although a line of evidence shows that hesperidin benefits a
number of cutaneous functions, the underlying mechanisms
by which hesperidin acts are unclear yet. It appears that
hesperidin and its metabolite act via a variety of mechanisms
depending on which function regulated by hesperidin.

5.1. Improvements in Epidermal Permeability Barrier Function.
Formation of epidermal permeability barrier is highly reg-
ulated by multiple keratinocyte functions, including prolif-
eration, differentiation, lipid production, acidification, and
antimicrobial peptide expression [108]. In young mice,
topical hesperidin mainly upregulated expression levels of
filaggrin and stimulated keratinocyte proliferation [31] while
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in aged mice, topical hesperidin upregulated expression
levels of a whole panel of mRNA associated with epi-
dermal permeability barrier, including sodium/hydrogen
exchanger (NHE1), secretory phospholipase A2 (sPLA2),
differentiation-related proteins (filaggrin, involucrin, and
loricrin), lipid synthetic enzymes (fatty acid synthase; 3-
hydroxy-3-methyl-glutaryl-coenzymeA reductase), and lipid
transport protein (ATP-binding cassette subfamily A mem-
ber 12) [32]. However, in glucocorticoid-treated mouse epi-
dermis, topical hesperidin dramatically increased filaggrin
protein and glutathione reductase mRNA expression, 𝛽-
glucocerebrosidase activity, and epidermal proliferation [33].
Thus, the underlying mechanisms by which topical hes-
peridin improves epidermal permeability barrier function
could be attributable to upregulation of these functions,
depending on the skin conditions.

5.2. Protection against UV Irradiation. UV irradiation causes
skin damage mainly in three aspects, i.e., oxidative stress,
DNA fragmentation, and inflammation. Nuclear factor ery-
throid 2-related factor 2 (Nrf2) is a mast regulator of
antioxidant system in the cells [109, 110]. Nrf2 deficiency
accelerated UV irradiation-induced photoaging and inflam-
mation [111, 112] while activation Nrf2 can protect UV
irradiation-induced apoptosis and inflammation [113, 114].
In addition to upregulation of Nrf2 expression in the senes-
cent rat heart [115], methylhesperidin, methylated derivative
of hesperidin, enhanced translocation of Nrf2 from cyto-
plasm to nuclear, resulting in upregulation of antioxidant-
related gene expression and reduction in reactive oxygen
species, consequently leading to protection of epidermal
keratinocytes against UVB-induced damage in keratinocyte
cultures [116]. Hesperidin-induced reductions in DNA dam-
age and cytokine expression appear to be due to decreased
oxidative stress in UV-irradiated keratinocytes [34, 35].
Moreover, hesperidin inhibited UVB irradiation-induced
increase in expression levels of phosphorylation of mitogen-
activated protein kinase (MAPK) and extracellular signal-
regulated kinases (ERK) in mice [42]. Hence, UV protection
of hesperidin can be primarily due to upregulation of antiox-
idant and downregulation of MAPK/ERK signaling pathway.

5.3. Melanogenesis. Skin pigmentation is determined by
both melanogenesis and melanosome transport. Proteins
involved in melanogenesis include tyrosinase, tyrosinase-
related proteins (TRP) and microphthalmia-associated tran-
scription factor (MITF). Upregulation of expression levels
of tyrosinase, TRPs, and MITF can increase melanin pro-
duction [117, 118]. A number of studies demonstrated that
hesperidin decreased expression levels and activity of tyrosi-
nase, TRPs, and MITF in both B16 mouse melanoma cells
and human melanocytes [36, 50–52]. Moreover, hesperidin
could activate 𝛼 adrenergic receptor, leading to induction
of aggregation of melanophores in B. melanostictus, sug-
gesting that hesperidin-induced skin lightening is mediated
by adrenergic receptor [119]. Another mechanism whereby
hesperidin lightens skin could be attributable to inhibition of
melanosome transport in melanocytes, instead of inhibition

ofmelanogenesis [49].Therefore, hesperidin lightens skin via
inhibition of bothmelanogenesis andmelanosome transport.

5.4. Acceleration of Cutaneous Wound Healing. Wound heal-
ing is involved in cell proliferation and migration and vascu-
lar formation. Activation of tumor growth factor beta (TGF-
𝛽) signaling and vascular endothelial growth factor (VEGF)
expression are crucial for wound healing and restoration
of epidermal permeability barrier function [120–123]. Study
showed that oral administration of hesperidin (50 mg/kg
body weight) increased TGF-𝛽 and VEGF-c mRNA expres-
sion by over 2-fold in a diabetic model of Sprague Dawley
rats [55]. Additionally, expression levels of mRNA for VEGF
receptors also increased following oral administrations of
hesperidin at a dose of 50 mg/kg body weight [56]. Oxidative
stress can impede wound healing in both diabetic and
normal conditions while antioxidants can improve wound
healing [124–126]. In diabetic rats, orally given hesperidin
significantly increased cutaneous SOD and GSH content
while reducingMDAcontent, alongwith acceleration of cuta-
neous wound healing, indicating the antioxidant property
of hesperidin contributes to its acceleration of cutaneous
healing [55, 56].

Inflammatory response is required for wound healing in
early phase. Topical applications of cytokines such as recom-
binant human granulocyte-macrophage colony-stimulating
factor accelerated cutaneous wound healing [127–129]. How-
ever, excessive inflammation can delay wound healing and
potentially cause scar formation [130]. Accordingly, anti-
inflammation could accelerate cutaneous wound healing [131,
132]. Hesperidin decreased cytokine expression, including
TNF𝛼, IL-6, and IL-8, in both rat skin and human ker-
atinocyte cultures [56, 62, 63]. Taken together, hesperidin-
induced acceleration of cutaneous wound healing can be
attributable to upregulating expression of VEGF, antioxidant
enzymes, and anti-inflammation.

5.5. Attenuation of Inflammation. Development of inflamma-
tion is a complex process involving interactions of a number
of molecules in various signaling pathways, including p38
mitogen-activated protein kinase (MAPK) pathway [133].
Inhibition of p38 MAPK signaling pathway can markedly
lower expression of IL-1𝛽 and IL-6, IL-8, IL-18, and TNF𝛼, in
both macrophage culture and mice [134, 135]. Study showed
that, prior to H

2
O
2
stimulation, treatment of keratinocytes

with hesperidin for 2 hr induced over 50% reduction in
NF-𝜅B and phosphorylated p38 MAPK in comparison with
those without pretreatment with hesperidin [62]. Likewise,
treatment ofmouse RAW264.7 cells with hesperetinmetabo-
lite almost completely reversed lipopolysaccharide-induced
increase in NF-𝜅B expression in addition to reductions in
phosphorylated p38 MAPK and c-Jun N-terminal kinase
1/2 [61]. Thus, hesperidin-induced inhibition of p38 MAPK
signaling pathway could contribute its attenuation of inflam-
mation.

5.6. Treatment of Cutaneous Cancers. Although studies have
demonstrated that hesperidin and its metabolite exerted
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anticancer property both in vitro an in vivo [68–70], the
underlying mechanisms are inconclusive. Zhao et al. [69]
showed that treatment of A431 human skin carcinoma cells
with hesperidin (25𝜇M) for 72 hr induced over 1-fold increase
in reactive oxygen species, 40% reduction in intercellular
ATP content and 80% reduction in SOD content. Using other
cell lines, it has been demonstrated hesperidin can induce
endoplasmic reticulum stress and activate caspase-9, caspase-
8, and caspase-3 activities [136–138]. Moreover, TGF𝛽-Smad
signaling pathway, particularly Smad3, plays a key role in
the development of certain cancers [139, 140]. Previous study
revealed that oral administrations of hesperidin (100 mg/kg
body weight) for 18 weeks inhibited TGF𝛽-Smad3 signaling
and prevented development of hepatic cancer [141]. Further-
more, several studies have demonstrated that reduction in
the formation of micronucleus could contribute to the anti-
cancer properties of hesperidin, at least, in models of some
chemically induced cancers. Hesperidin-induced protection
in 𝛾 ray-induced DNA damage could also be attributable
to the reduction in the formation of micronucleus. Addi-
tionally, hesperidin can increase apoptosis of cancer cells via
upregulation of peroxisome proliferator-activated receptor 𝛾
expression.

Signaling pathways involved in the action of anti-
cancers induced by hesperidin include (a) inhibition of
Janus kinase/signal transducer and activator of transcription
(JAK/STAT) pathway, activation of which can enhance pro-
liferation, invasion, and metastasis of cancer cells; (b) inhi-
bition of phosphatidylinositol-3-kinase (PI3K)/Akt and the
mammalian target of rapamycin (mTOR) pathways, which
also play crucial role in proliferation, survivability, invasion
and metastasis of cancer cells upon activation; (c) activation
of Notch pathway, in which activation of Notch receptors
leads to translocation of Notch into nucleus and binding to
target genes, resulting in increased apoptosis [142]. Of course,
other signaling pathways such as MAPK-ERK,Wingless, and
INT-1,NF-𝜅B, and cyclooxygenase-2 pathways have also been
proposed to be involved in hesperidin-induced prevention
and inhibition of cancers [142]. Therefore, anticancer benefit
of hesperidin is likely via multiple mechanisms, including
inhibition of TGF𝛽-Smad3, PI3K/Akt, and JAK/STAT signal-
ing pathways, activation of Notch pathway, reduction in ATP
content, and induction of apoptosis.

5.7. Antioxidation. Oxidative stress has been linked to the
development of a variety of disorders [143, 144]. As men-
tioned above, Nrf2 is a key regulator of antioxidant system
[109, 110]. In normal condition, Nrf2 is present as Nrf2/Keap1
complex in the cytoplasm and degraded in proteasome. Upon
oxidative stress, Nrf2 is separated from Keap1 and enters into
nucleus, whereNrf2 can bind to antioxidant response element
(ARE) within gene promoter region, leading activation of
gene transcription, including reactive oxygen scavenging
enzymes such as superoxide dismutase, glutathione perox-
idase, glutathione reductase, catalase, and heme oxygenase
1 [109, 145], which all play crucial role in protecting cells
from oxidative stress. Previous studies have shown that
hesperidin and its metabolite, hesperitin, can increased Nrf2
expression while stimulating degradation of Keap1, resulting

in an increase in nuclear translocation ofNrf2 andproduction
of antioxidant enzymes along with reduction in oxidation
[109, 146–148]. Thus, antioxidant property of hesperidin also
largely accounts for its benefits in the skin.

In conclusions, either topical or systemic administrations
of hesperidin appear to benefit multiple cutaneous functions
via divergent mechanisms. Taking citrus juice or other
hesperidin-containing products likely could benefit cuta-
neous functions. However, proper clinical trials are required
to validate the benefits of hesperidin for various cutaneous
conditions.
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[125] M. Schäfer and S. Werner, “Oxidative stress in normal and
impaired wound repair,” Pharmacological Research, vol. 58, no.
2, pp. 165–171, 2008.

[126] R. M. El-Ferjani, M. Ahmad, S. M. Dhiyaaldeen et al., “In vivo
assessment of antioxidant and wound healing improvement of
a new schiff base derived Co (ii) complex in rats,” Scientific
Reports, vol. 6, Article ID 38748, 2016.

[127] L. Bianchi, A. Ginebri, J. H. Hagman, F. Francesconi, I. Car-
boni, and S. Chimenti, “Local treatment of chronic cutaneous
leg ulcers with recombinant human granulocyte-macrophage
colony-stimulating factor,” Journal of the European Academy of
Dermatology and Venereology, vol. 16, no. 6, pp. 595–598, 2002.
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