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Atopic disorders, including atopic dermatitis, food and environmental allergies, and
asthma, are increasingly prevalent diseases. Atopic disorders are often associated with
eosinophilia, driven by T helper type 2 (Th2) immune responses, and triggered by
disrupted barrier function leading to abnormal immune priming in a susceptible host.
Immune deficiencies, in contrast, occur with a significantly lower incidence, but are
associated with greater morbidity and mortality. A subset of atopic disorders with
eosinophilia and elevated IgE are associated with monogenic inborn errors of immunity
(IEI). In this review, we discuss current knowledge of IEI that are associated with atopy and
the lessons these immunologic disorders provide regarding the fundamental mechanisms
that regulate type 2 immunity in humans. We also discuss further mechanistic insights
provided by animal models.
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INTRODUCTION

Atopic diseases are common and result from dysregulated type 2 immunity driven by T helper type
2 (Th2) cells. Th2 cells are protective to the host when coordinated in response to specific helminth
pathogens or toxins but can also induce tissue pathology when over-active or misdirected toward
innocuous stimuli. Th2 effector functions are mediated primarily through secretion of pro-
inflammatory cytokines including interleukin (IL)-4, IL-5, and IL-13 to activate and recruit
effector cells such as mast cells and eosinophils. A fraction of Th2 cells home to peripheral
tissues where they permanently reside as tissue-resident memory cells (Th2-Trm) (1–6). T follicular
helper (Tfh) cells formed in the context of type 2 immune responses reside primarily in secondary
lymphoid tissues and promote B-cell class switching to immunoglobulin E (IgE) production (7).

There is polygenic heritable risk for development of atopic diseases, and the increasing prevalence
of these disorders also points toward changing environmental factors significantly influencing
susceptibility. Living on a farm is a strong protective factor against the development of asthma (8),
and childhood microbial exposures measured by home endotoxin levels have demonstrated a similar
inverse relationship with asthma and environmental allergy prevalence (9). Specific gene–
environment interactions have been shown to affect atopic disease activity in humans. For example,
individuals homozygous for the Q576R risk allele in the IL-4 receptor alpha chain gene (IL4RA)
demonstrated increased asthma symptoms when exposed to higher school endotoxin levels, whereas
individuals that did not harbor this allelic variant showed protective benefit (10). However, complex
gene plus environment interactions that result in atopic dermatitis, allergies, asthma, and other
immune-mediated diseases in humans are difficult to study and recapitulate in animal models. This is
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in part due to the large sample sizes needed for controlled human
studies related to polygenic diseases and imperfect methods for
sampling and quantifying environmental variables (11).

Mouse models have been instrumental in elucidating immune
pathways of atopic disease given the advantage of controlled
genetics and allergic sensitization protocols. This work has
solidified the principle that dysregulated type 2 immune responses
can result from both immune cell-intrinsic and -extrinsic defects.
Initially described in wild-type BALB/cmice, epicutaneous exposure
to foreign protein antigens through tape-stripped skin elicits type 2
inflammation resembling atopic dermatitis (12). The phenotype in
mice becomes much more pronounced with gene-targeted
alterations that directly promote type 2 inflammation or repress
mechanisms critical for normal immune homeostasis. Thus, either
disrupted barrier function or immune dysregulation appear central
to atopic diatheses, and monogenic disorders in humans provide
additional insights that will be reviewed here.

Primary immunodeficiencies (PIDs) have significantly
contributed to our understanding of human immunity to
infection. More recently, monogenic variants associated with early
and severe autoinflammation, autoimmunity, and atopic disease
have been described. Inborn errors of immunity (IEI) now
encompass monogenic immune dysregulation disorders in
addi t ion to immune defic ienc ies . These comprise
autoinflammatory conditions affecting the innate immune system
and autoimmune and allergic disorders primarily affecting the
adaptive immune system. At the time of this review, IEI with
mutations in more than 400 genes have been reported (13), and this
number continues to rise as awareness of IEI grows and genetic
testing becomes more readily available. The shared and unique
clinical phenotypes and immune pathways involved in these inborn
errors offer opportunities to gain insight into the pathogenesis of
immune dysregulation disorders.

Monogenic IEI associated with atopy, or primary atopic disorders
(14, 15), have implicated interrelated pathways involving the actin
cytoskeleton and immunological synapse formation, aberrant T-cell
receptor (TCR) signaling, cytokine signaling pathways, T-cell
repertoire diversity, balance of regulatory T cells (Tregs) and
effector T cells, and innate immune cell effector mechanisms as
critical factors influencing type 2 inflammation and atopic disease in
humans. Contextualized with mechanistic paradigms developed
largely in experimental animal models, IEI may also provide
significant insight into common atopic disease mechanisms and
lead to improved prevention and treatment strategies.
DISORDERS OF BARRIER FUNCTION

Gene defects associated with skin barrier function have been
associated with early and severe atopic dermatitis and allergen
sensitization. While not immunodeficiencies per se as they
involve non-hematopoietic cells, these mutations may increase
risk of infections secondary to disrupted barrier to microbial
penetration and to the inhibitory effect of cutaneously expressed
Th2 cytokines on the production of antimicrobial peptides by
keratinocytes. Skin permeability also allows entry of allergens
Frontiers in Immunology | www.frontiersin.org 2
and other foreign antigens, toxins, and irritants. Subsequent
production of pro-inflammatory type 2 cytokines leads to a
feed-forward loop locally in the skin and also affects immune
cells residing in other peripheral tissues. Clinically, atopic
dermatitis has long been appreciated as the primary
manifestation in individuals with multiple atopic diseases. The
natural history of atopic dermatitis early in life transitioning to
later development of food allergies, asthma, and allergic rhinitis
is frequently described as the “atopic march” (16).

Ichthyosis vulgaris is an inherited disorder of skin
keratinization presenting in the first months of life with skin
scaling and palmar hyperlinearity, along with keratosis pilaris
and atopic dermatitis. Originally discovered as homozygous and
compound heterozygous individuals with ichthyosis vulgaris
(17), loss-of-function (LOF) mutations in the FLG gene
encoding filament aggregating protein (filaggrin) have been
associated with early and severe atopy. Heterozygous carriers
of FLG mutations are also at increased risk for atopic dermatitis,
allergic rhinitis, asthma, and food allergy (18–20). Expressed as
an inactive polymer by keratinocytes, profilaggrin is cleaved by
serine proteases to generate filaggrin monomers, which are cross-
linked to facilitate the impermeability of the stratum corneum,
prevent water loss, and maintain the skin barrier (21). Lympho-
epithelial Kazal-type-related inhibitor (LEKTI) is a serine
protease inhibitor also expressed by keratinocytes. LOF
mutations in SPINK5, the gene encoding LEKTI, lead to the
Netherton syndrome with congenital ichthyosis, abnormal hair
shafts, and severe atopy also extending beyond the skin (22–24).
Loss of LEKTI function leads to increased protease activity
affecting intercellular adhesions, which causes peeling of deeper
layers of the skin (25). Disruption of keratinocyte cell junctions
by mutations in genes encoding corneodesmosin (CDSN) (26,
27), desmoglein 1 (DSG1) (28), and desmoplakin (DSP) (29)
involved in corneodesmosomes also cause skin barrier defects
and severe atopy (Figure 1A).

Murine studies have alsoprovidedmechanistic explanations for
the relationship between allergic sensitization through the skin and
multiple atopic comorbidities affecting different tissues. Indeed,
mice sensitized to chicken ovalbumin (OVA) or peanut through
mechanically disrupted skin that are subsequently challenged to
the same antigen in the airways or gut result in phenotypes
resembling asthma, food allergen induced anaphylaxis, and
eosinophilic esophagitis (12, 30, 31). Damaged keratinocytes
express high levels of alarmins such as TSLP, IL-33, and IL-25
that promote type 2 inflammatory responses (32).Dendritic cells in
the skinbecomeactivated in response to alarmin signals,migrate to
skin draining lymph nodes, and present phagocytosed and
processed foreign antigens to naïve CD4+ T cells in the form of
peptides bound to MHCII (peptide:MHCII) to drive the Th2
differentiation program (33) and T-cell-dependent IgE
production. Th2 cells subsequently traffic back to the skin where
they reside as Th2-Trm and drive hallmark features of atopic
dermatitis—inflammatory cell recruitment and epidermal
hyperplasia. Recent studies also suggest that timing may be
important for skin sensitization, as early life skin inflammation
inmice enables a Th2-Trmnichewith stromal cells in the skin (34).
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In the model of food allergy, systemic IL-33 produced by damaged
keratinocytes synergizeswith IL-25producedby intestinal tuft cells
(35) to promote activation and expansion of ILC2s in the gut,
which in turnproduce IL-4 locally to activate andexpandmast cells
to cause anaphylaxis following oral rechallenge with allergen (30)
(Figures 1B–D).
CYTOSKELETAL ABNORMALITIES

Wiskott–Aldrich syndrome (WAS) is anX-linked recessive disease
characterized by atopic dermatitis, thrombocytopenia, and
combined immune deficiency (36). WAS results from mutations
in the WAS protein (WASp), which is critical for actin
polymerization affecting immunological synapse formation,
mechanotransduction, and tissue migration in multiple
hematopoietic cell lineages (37). WASp forms a complex with
WASp-interacting protein (WIP) and dedicator of cytokinesis 8
(DOCK8), a guaninenucleotide exchange factor that is essential for
WASp’s TCR-dependent function (38). In its GTP-bound form,
the small Rho GTPase cell division cycle 42 (CDC42) binds and
activates WASp (39). This causes a conformational change in the
WASp C-terminus that activates the actin-related protein 2/3
(ARP2/3) complex (40) and leads to actin polymerization
(Figure 2A). Less common bi-allelic LOF mutations in the genes
encodingWIP (41, 42) and ARP2/3 subunit 1B (43, 44) have been
described in individualswith similar clinical presentations toWAS,
including elevated IgE and eosinophilia.

Autosomal recessive DOCK8 deficiency leads to a combined
immunodeficiency with many shared features with WAS
Frontiers in Immunology | www.frontiersin.org 3
including atopic dermatitis, food allergies with increased
incidence of anaphylaxis, recurrent viral infections, and an
increased risk for autoimmunity and malignancies (45–48).
CD4+ T cells from DOCK8-deficient patients are biased toward
a Th2 cell fate (49). Studies in DOCK8-deficient mice have
recently identified a novel CD4+ T-cell subset, Tfh13, which
drives high-affinity IgE responses following allergen exposure
and promotes anaphylaxis (50). WAS and DOCK8 deficiencies
are of particular interest to understanding atopic diatheses given
their diverse functions in TCR-dependent actin assembly and the
formation of the immunological synapse (38), IL-2-dependent
STAT5 phosphorylation and T regulatory cell function (51), and
composition of the microbiome (52). Rare defects in serine/
threonine-protein kinase 4 (STK4), which is upstream of
DOCK8, have also demonstrated combined immunodeficiencies
with many of the expanded features of WAS and DOCK8
deficiency including poor viral control, malignancy,
autoimmunity, severe atopic dermatitis, eosinophilia, and
elevated IgE (53, 54). Whether similar mechanisms underlie
STK4’s pleiotropic effects require further investigation.
ABERRANT TCR SIGNALING

Human mutations affecting immunological synapse formation
and TCR signaling molecules, resulting in aberrant or impaired
TCR signal strength, have been associated with combined
immunodeficiencies with severe atopic phenotypes (Figure 2B).
The CARD11–BCL10–MALT1 (CBM) complex links T- and
FIGURE 1 | Disrupted barrier function and the atopic march. (A) Disrupted skin barrier through primary disorders of the skin or external factors enable allergen
entry; uptake by dendritic cells in the presence of alarmin signals such as TSLP and IL-33 promotes dendritic cell maturation and migration to the draining LN. Genes
noted in red indicate monogenic IEI affecting this pathway. (B) Dendritic cells present allergen-derived peptide:MHCII to naive CD4+ T cells to induce Th2 effector
cells and Tfh cells that drive IgE responses to allergen. (C) A portion of Th2 cells traffic back to skin and permanently reside as tissue-resident memory cells to drive
local inflammation through release of type 2 cytokines such as IL-4, -5, and -13 upon re-encountering allergen. (D) Systemic IL-33 from keratinocytes and IL-25 from
intestinal tuft cells synergize to activate ILC2s, which in turn produce IL-4 and activate mast cell degranulation (anaphylaxis) in response to oral allergen exposure.
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B-cell receptor engagement with the nuclear factor-kappa B
(NF-kB) (55) and mTOR (56) signaling pathways. IEI involving
the CBM complex can manifest in a broad range of clinical
phenotypes. Complete LOF in Caspase Recruitment Domain
Family Member 11 (CARD11, also called CARMA1) mutations
result in severe combined immunodeficiency, while dominant
negative mutations in CARD11 can cause combined
immunodeficiency and atopy (57–59). Autosomal dominant
gain-of-function (GOF) mutations have also been described in
individuals with “B cell expansion with NF-kB and T cell anergy”
(BENTA) disease and B-cell malignancies, highlighting
differences in regulation of antigen receptor signaling pathways
in T and B cells (60). Two different cases of complete LOF
mutations B cell CLL/lymphoma 10 (BCL10) (61, 62) have been
described with a combined immunodeficiency without atopic
features, though some patients with IEI involving mucosa-
associated lymphoid tissue lymphoma translocation protein 1
(MALT1) paracaspase have presented with severe atopic
dermatitis in infancy (63–65). Interestingly, in a genome-wide
Frontiers in Immunology | www.frontiersin.org 4
association study (GWAS) of the Learning Early About Peanut
allergy (LEAP) study participants, the top gene associated with
independent risk of developing peanut allergy in the peanut
avoidance group was MALT1 (66). While the extent to which
the atopic phenotypes observed in LOF mutations in the CBM
complex are explained by disrupting downstream NF-kB
signaling is not clear, a retrospective analysis of patients with
IEI registered in the USIDNET revealed that more than half of
patients with NF-kB Essential Modulator (NEMO, also known as
IKBKG) deficiency were noted to have atopic dermatitis (67). A
more recent analysis of eosinophilia and elevated IgE in the
USIDNET revealed that 3 out of 3 patients with NFKB2 defects
had at least one atopic manifestation and eosinophilia above the
upper limit of normal in the reference population and an
increased proportion of patients with IKBKG defects had both
eosinophilia and elevated IgE (68).

Capping protein regulator and myosin 1 linker 2 (CARMIL2,
also known as RLTPR) integrates TCR and CD28 co-stimulation
signaling at the immunological synapse. CARMIL2 deficiency
A

C

B

FIGURE 2 | IEI influencing CD4+ T-cell activation and differentiation. (A) Genes noted in red involved in the actin cytoskeleton and formation of the immunological
synapse. (B) T-cell receptor (TCR) signaling genes influence the generation of Th2 cells and type 2 inflammation. (C) IEI associated with the IL-6-STAT3 cytokine
signaling pathway.
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results in variable clinical presentations, including a combined
immunodeficiency with atopic dermatitis and eosinophilic
esophagitis (69–72). Diffuse warts resulting from uncontrolled
human papillomavirus infection is another feature reported in
many of these patients. Interestingly, CD28 deficiency has
recently been described in humans and revealed susceptibility
to human papillomavirus infection with severe warts or giant
cutaneous horns, though only 1 out of 3 patients were noted to
have atopic features of food allergy and asthma (73). Whether
this association is significant will require larger patient cohorts
and future investigation; however, autoantibodies against CD28
have been associated with atopic disease (74).

Deficiency in the zeta chainofT-cell receptor associatedprotein
kinase 70 (ZAP70) (75) resulting in impaired but not absent TCR
signaling can present with significant atopic manifestations before
an immunodeficiency is evident. Transgenic mice expressing a
homologous point mutation found in humans in Linker for
Activation of T cells (LAT) develop Th2 lymphoproliferation,
systemic inflammation, and autoimmunity (76, 77). Additional
studies in mice taking advantage of a variety of experimental
approaches including TCR transgenic systems and altered
peptide ligands to control for individual TCR affinities, varying
antigen loads, and peptide:MHCII tetramer selection to remove
high-affinity polyclonal CD4+ cells have further supported amodel
whereweakTCRstimulation favors a Th2 differentiation program,
whereas strong TCR stimulation can suppress GATA3
transcription and Th2 differentiation (78–81). Low TCR signal
strength appears to promote Th2 cell induction independent of
adjuvant effects (82). The intrinsic capacity of TCR signaling to
influence T-cell fate decisions was further demonstrated with
adoptive transfer of single naive T-cell clones, each expressing a
unique TCR, into normal murine hosts and immunizing under
identical conditions. Individual clones produced different patterns
of effector T-cell and Tfh subsets, predicted by the strength of TCR
signaling (83). Thus, numerous studies now support a dominant
role of TCR signal strength in shaping helper T-cell differentiation
and function in vivo (7).
DISRUPTED CYTOKINE SIGNALING
PATHWAYS

Cytokines produced by innate cells following activation through
pattern recognition receptors (PRRs) provide a third signal in
addition to TCR and co-stimulatory molecules involved in T-cell
activation and differentiation. LOF variants in cytokine and
cytokine-induced signaling pathways that result in IEI with
atopy reveal mechanisms that typically suppress Th2 in favor of
other innate sensing-dependent responses (Figure 2C). IL-6 is an
acute phase cytokine produced primarily by monocytes and
macrophages with pleiotropic effects on hematopoietic and non-
hematopoietic cell types. IL-6 binds its receptor (IL-6Ra) to form a
hexameric complex with the co-receptor GP130 and activate the
downstream JAK-STAT3 signaling pathway (84). In naïve T cells,
this canonical pathway promotes the generation of Th17 andTh22
cells, which are important for clearance of extracellular infections.
Frontiers in Immunology | www.frontiersin.org 5
Supporting a simultaneous role of this pathway as a negative
regulator of Th2 responses, two reports of different somatic LOF
mutations in IL-6Ra inhematopoietic cellswere recently identified
in patients with atopic dermatitis and elevated IgE in addition to
recurrent deep skin and lung infections (85, 86). IL-6R-deficient
patients exhibit decreased STAT3 phosphorylation and increased
frequencies of GATA3-expressing Th2 cells (85). LOF mutations
in IL6ST, the gene encoding GP130, result in atopic dermatitis,
elevated IgE, and thrombocytopenia, in addition to connective
tissue, pulmonary, neurologic, and renal features (87), owing to the
involvement of GP130 in multiple cytokine signaling pathways in
numerous cell types (84). Autosomal dominant forms have been
recently described with similar atopic features and increased Th2
cytokine production but less connective tissue defects, which may
delineate IL-6- and IL-11-dependent GP130 functions (88).

Job’s syndrome was first described in 1966 in individuals with
recurrent staphylococcal abscesses, pulmonary infections, and
atopic dermatitis (89). This was later found to also be associated
with elevated IgE and eosinophilia due to STAT3mutations with an
autosomal dominant (AD) inheritance pattern (90), subsequently
referred to as autosomal dominant hyper IgE syndrome (AD-
HIES). STAT3 phosphorylation leads to its homodimerization,
translocation to the nucleus, and transcription of downstream
genes, including cytokines promoting Th17 differentiation and
repression of Th2 cells. One such transcription factor, ZNF341, is
involved in basal and inducible STAT3 gene expression and patients
with ZNF341 mutations have been described with a similar
phenotype to AD-HIES (91, 92). STAT3 LOF also have reduced
anaphylaxis responses despite highly elevated IgE levels, owing to
effects of STAT3 influencing mast cell activation in response to IgE
(93) as well as endothelial cell responsiveness to histamine (94).

Descriptions of monogenic IEI are also supported by GWAS
studies that have identified IL-6R polymorphisms associated with
atopic dermatitis, elevated IgE, and asthma (95–97). Interestingly,
a patient with neutralizing anti-IL-6 autoantibodies was described
with Staphylococcal skin infections similar to those that affect
patients with atopic dermatitis, but otherwise lacked an atopic
phenotype (98). Similarly, the treatment of various inflammatory
diseases with anti-IL-6 monoclonal antibodies has not resulted in
reports of significantly increased atopic manifestations (99). This
reinforces that the timing of immune development is critical for
the pathogenesis of atopic disease, perhaps through interactions
with the microbiome or “early life imprinting” (100).
DECREASED T-CELL REPERTOIRE
DIVERSITY

Severe combined immunodeficiency (SCID) is defined by very low
or absent T-cell number and function. Prior to the addition of T-cell
receptor excision circles to the newborn screening program, patients
with SCID typically presented in the first year of life with failure to
thrive and life-threatening infections. Immune dysregulation and
atopy are not features of classical SCID, owing to the lack of T cells
necessary to cause immunopathology. However, it is now
appreciated that there is a spectrum of SCID and combined
April 2022 | Volume 13 | Article 860821
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immunodeficiency that includes at least 64 distinct genetic disorders
(101). Along this spectrum, whereas null mutations in many of these
genes result in SCID, numerous hypomorphic variants with partial
function have now been described and lead to “leaky SCID” and
Omenn syndrome. In addition to significantly increased risk of
infections including opportunistic infections, individuals with
Omenn syndrome develop a lymphoproliferative state with clonal
expansion of a limited number of T cell clones that lead to damaging
tissue infiltration of the skin and other organs (Figure 3A).
Oligoclonal T-cell expansion in Omenn syndrome is associated
with Th2 differentiation, secretion of type 2 cytokines, elevated
total serum IgE, and eosinophilia (102). Histologically, the
erythrodermic skin inflammation of Omenn syndrome very
closely resembles that of severe atopic dermatitis.

Omenn syndrome has been well described for a number of
genes including recombination activating gene 1 and 2 (RAG1/
RAG2) (103), ARTEMIS (DCLRE1C) (104), adenosine deaminase
(ADA) (105, 106), IL-7 receptor alpha (IL7RA) (107),DNA ligase 4
(LIG4) (108), ZAP70 (75), adenylate kinase 2 (AK2) (109), and
CARD11 (110). Thymic defects, inDiGeorge syndrome (22q11del)
(111), CHARGE syndrome (CHD7) (112), and forkhead box
protein N1 (FOXN1) (113), can also present with Omenn
syndrome. While it is not entirely clear how these heterogenous
disorders lead to the common atopic features associated with
Omenn syndrome, lymphopenia-induced homeostatic
proliferation, insufficient thymic deletion of autoreactive T-cell
clones, insufficient Treg generation, uncontrolled viral infections,
and stochastic variability in effector T-cell differentiation
are possibilities.

Murine studies have shed further light on the impact of T-cell
repertoire diversity. Milner and Paul et al. reconstituted lymphopenic
RAG-/-mice with different numbers of polyclonal naïve CD4+ T cells
from a C57BL/6 host with normal thymic development to
demonstrate that a limited repertoire results in preferential Th2
skewing, IgE production, and multiorgan eosinophilic inflammation
when compared to more complete immune repertoire reconstitution
(114). Importantly, tissue pathology could be prevented by altering
the balance of Tregs to conventional CD4+ T cells in this system, and
IEI associated with Treg dysfunction provide further evidence for
their role in limiting atopic disease.
ALTERED BALANCE OF CONVENTIONAL
T CELLS AND REGULATORY T CELLS

Inborn errors specifically associated with Treg dysfunction have
clarified their important role in autoimmunity, atopy, and tissue
homeostasis. Tregs are dependent on the expression of the master
transcription factor forkhead box protein P3 (FoxP3). Early
descriptions of FoxP3 deficiency in humans resulted in “X-linked
autoimmunity-allergic dysregulation syndrome” and
“Immunodysregulation polyendocrinopathy enteropathy X-
linked” (IPEX) syndrome (115–117). Features of IPEX include
multisystem autoimmunity and severe atopy including eczema,
food allergy, and eosinophilic inflammation. FoxP3 deficiency in
scurfy mice recapitulates many atopic and autoimmune features of
Frontiers in Immunology | www.frontiersin.org 6
IPEX in humans (118), and Treg-specific disruption of multiple
immune pathways leads to systemic type 2 inflammation (119–122).

IL2RA, the high-affinity IL-2 receptor, is most highly expressed
on Tregs and is critical for their survival and function through the
actions of the transcription factor STAT5B. IL2RA- and STAT5B-
deficient patients can also exhibit a combined immunodeficiency
with autoimmunity, atopic dermatitis, and elevated IgE (123, 124)
in addition to non-hematopoietic effects on growth found in
STAT5B deficiency. Further evidence supporting a central role
for Tregs as regulators of Th2 immunity and atopic disease is the
multiple reports of IEI described above also affecting Treg diversity
or function, including WAS (125–128), DOCK8 (45, 51), CBM
complex components (129–131), CARMIL2 (132), and RAG
(133) (Figure 3B).
A

B

FIGURE 3 | IEI influencing the T-cell repertoire can manifest as severe atopy.
(A) Left, resting polyclonal T cells in a normal (WT) immune repertoire. Right,
oligoclonal expansion of T cells in leaky SCID, often leading to Th2 skewing
and eosinophilia (Omenn syndrome). (B) Left, normal balance between
regulatory T cell (Treg) and effector T cell (Teff) functions. Right, mutations
affecting Treg number or function leading to autoimmune and atopic
phenotypes.
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INNATE CELL EFFECTOR MECHANISMS

Monogenic disorders primarily affecting innate immune cells and
manifesting with unique atopic features have also been described.
The PLCg2-associated antibody deficiency and immune
dysregulation (PLAID) results from temperature-sensitive
spontaneous enzyme activity of PLCg2 leading to mast cell
degranulation. Individuals with PLAID have cold or evaporative
cooling-induced urticaria (134–136). The cold-induced urticaria in
individuals with PLAID can trigger burning sensations in themouth
following consumption of cold foods, which mimics symptoms of
food allergy, but does not lead to anaphylaxis. Syncopal episodes
have been described following prolonged exposures to cold
swimming pools, however.
SUMMARY

Here, we discussed human monogenic disorders associated with
significant type 2 inflammation and atopic disease. This review is
not a comprehensive list of all IEI associated with increased risk of
atopic manifestations, but rather an attempt to illustrate key
Frontiers in Immunology | www.frontiersin.org 7
mechanistic pathways that drive unwanted type 2 immune
responses in humans and are supported by experimental mouse
models. Impaired barrier function or dysregulated Th2 responses
are central drivers of common atopic disease and IEI offer
considerable insight into disease pathogenesis (summarized in
Table 1). Further awareness of the features and mechanisms of IEI
will aid in improved diagnosis and inform development of more
targeted therapeutics for atopic disease.
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TABLE 1 | Monogenic IEI associated with atopic disease.

Gene Inheritance Immune Manifestations Atopic Manifestations

Disorders of barrier function
FLG AR Skin infections A.D., FA, A.R., As, eos, high IgE
SPINK5 AR Skin infections A.D., FA, A.R., As, eos, high IgE
CDSN AR Skin infections A.D., FA, eos, high IgE
DSG1 AR Skin infections A.D., FA, eos, high IgE
DSP AR Skin infections A.D., FA, eos, high IgE
Cytoskeletal abnormalities
WAS XL CID A.D., FA, eos, high IgE
WIP AR CID A.D., FA, eos, high IgE
DOCK8 AR CID A.D., FA, eos, high IgE
STK4 AR CID A.D., FA, eos, high IgE
Aberrant TCR signaling
CARD11 AR CID, SCID Eos, high IgE
BCL10 AR CID, SCID Eos, high IgE
MALT1 AR CID, SCID Eos, high IgE
CARMIL2 AR CID Eos, high IgE
ZAP70 AR CID, SCID Eos, high IgE
LAT AR CID, SCID Eos, high IgE
Cytokine pathways
IL6RA AR Skin, lung infections A.D., eos, high IgE
IL6ST AR, AD Skin, lung infections A.D., eos, high IgE
STAT3 AD Skin, lung infections A.D., eos, high IgE
ZNF341 AR Skin, lung infections A.D., eos, high IgE
Decreased T-cell repertoire
Multiple genes presenting as Omenn syndrome AR Leaky SCID Erythroderma, eos, high IgE
Regulatory T-cell defect
FOXP3 XL AI A.D., FA, As, eos, high IgE
IL2RA AR CID, AI A.D., FA, As, eos, high IgE
Innate cell effector mechanisms
PLCG2 AD CVID, AI, autoinflammatory Temperature-sensitive mast cell degranulation
A summary of causative genes, heritability, and major clinical features is presented. Table includes disorders of barrier function where infections and atopy overlap with IEI. Overlapping
mechanisms are discussed further in the main text. AD, autosomal dominant; AR, autosomal recessive; XL, x-linked; CID, combined immune deficiency; SCID, severe combined immune
deficiency; CVID, common variable immune deficiency; A.D., atopic dermatitis; eos, eosinophilia; AI, autoimmunity; A.R., allergic rhinitis; FA, food allergy; As, asthma.
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