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Two-dimensional anion-rich NaCl2 crystal
under ambient conditions

Ruobing Yi1,2,3,8, Jie Jiang 1,8 , Yizhou Yang 4,8, Yueyu Zhang 5 ,
Siyan Gao4, Yimin Zhao2, Jiahao Hu1, Xuchang Su2, Xinming Xia 1,
Bingquan Peng5, Fangfang Dai5, Pei Li 1, Zhao Guan6, Haijun Yang7,
Fangyuan Zhu7, Jiefeng Cao7, ZheWang 2, Haiping Fang 4,5, Lei Zhang 2 &
Liang Chen 1

The two-dimensional (2D) “sandwich” structure composed of a cation plane
located between two anion planes, such as anion-rich CrI3, VS2, VSe2, and
MnSe2, possesses exotic magnetic and electronic structural properties and is
expected to be a typical base for next-generation microelectronic, magnetic,
and spintronic devices. However, only a few 2D anion-rich “sandwich” mate-
rials have been experimentally discovered and fabricated, as they are vastly
limited by their conventional stoichiometric ratios and structural stability
under ambient conditions. Here, we report a 2D anion-rich NaCl2 crystal with
sandwiched structure confined within graphene oxide membranes with posi-
tive surface potential. This 2D crystal has an unconventional stoichiometry,
with Na:Cl ratio of approximately 1:2, resulting in a molybdenite-2H-like
structure with cations positioned in the middle and anions in the outer layer.
The 2D NaCl2 crystals exhibit room-temperature ferromagnetism with clear
hysteresis loops and transition temperature above 320K. Theoretical calcu-
lations and X-ray magnetic circular dichroism (XMCD) spectra reveal the fer-
romagnetism originating from the spin polarization of electrons in the Cl
elements of these crystals. Our research presents a simple and general
approach to fabricating advanced 2D unconventional stoichiometricmaterials
that exhibit half-metal and ferromagnetism for applications in electronics,
magnetism, and spintronics.

Since the discovery of intrinsic ferromagnetism in two-dimensional
(2D) materials1,2, crystals with these properties have attracted con-
siderable attention and have been studied with theory and experi-
mental synthesis3–5, showingpotential for a variety of applications such

as sensing and data storage. A common structural feature of all these
2D crystals is typically an anion-rich ‘sandwich’ conformation, which
canbe regarded as a single sandwiched anion-cation-anion layer6, such
as VSe2

3, VS2
7, MnSe2

4, VI3
5, and chromium tellurides8–10. In such an
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anion-rich ‘sandwich’ structure, interlayer interactions between two
neighboring ion layers are weakened by repulsive Coulomb forces
between negatively charged ions that face each other in adjacent lay-
ers, allowing them to be stabilized as a single or two layers11. Taking the
case of two-dimensional chromium tellurides, they have exhibited
immense promise in the realm of compact spintronic device applica-
tions, primarily due to their natural ferromagnetic properties main-
tained at room temperature8–10.

Recently, some anomalous structures of metal halide salt crystals
have been experimentally discovered, exhibiting properties including
piezoelectricity12, piezoresistance13, metallicity and room-temperature
ferromagnetism14. These findings present possibilities for developing
materials with unique properties. However, investigations regarding
alkali metal chlorides in the context of the 2D anion-rich “sandwich”
conformation have not been reported. This absenceof research canbe
attributed to the significant challenges posed by achieving the
appropriate stoichiometric ratios and maintaining structural stability
under ambient conditions15.

In this work, we experimentally prepared stable 2D anion-rich
NaCl2 crystals with a Na:Cl average ratio of ~1:2 under ambient condi-
tions in graphene oxide membranes with controlled positive surface
potential (p-GO). Such NaCl2 crystals, which we refer to as “sodium
dichloridene”, were directly observed by high-resolution transmission
electron microscopy (HR-TEM). The 2D NaCl2 crystals showed a hex-
agonal layer with a molybdenite-2H-like structure, which can be
interpreted as a layer of positively charged sodiumcations sandwiched
by two layers of negatively charged chloride anions. The extended
X-ray absorption fine structure (EXAFS) and X-ray absorption near
edge structure (XANES) results revealed that this Na-Cl crystal has
distinctive bond lengths and local environments, which differ from
those of regular NaCl crystals. Importantly, the ferromagnetism of the
NaCl2 crystals at room temperature was detected experimentally.
Moreover, compared with pristine p-GO and NaCl, the NaCl2 crystals
showed enhanced electrical conductivity. Density Functional Theory
(DFT) and X-ray magnetic circular dichroism (XMCD) spectra reveal
the ferromagnetismoriginating from the spinpolarizationof electrons
in the Cl elements of these crystals. This property arises from the full
occupancy of one spin channel near the Fermi level due to the p
electrons of the chloride anions, while the other channel remains
empty, which distinguishes it from the properties usually observed in
most transition metal chalcogenides. These findings are critical for
understanding and synthesizing various 2D anion-rich “sandwich”
crystals with unique properties that could be universally applied in the
fields of microelectronics, magnetism14,16, and spintronics15.

Results
p-GO suspension was prepared by functionalizing GO flakes with
polyethyleneimine (PEI). This modulated the zeta (ζ) potential to
approximately +36mV from the original negatively charged surface in
a neutral environment (see Methods and Supplementary Information
section PS1). Freestanding p-GO membranes were prepared from the
p-GO suspension by the drop-castingmethod13,14. According to the C1s
and N1s XPS results of p-GO (Fig. S2), the positively charged -NH3

+

group was successfully introduced to the surface of GO flakes17–21. The
obtained p-GO membranes were then immersed in 3mol L−1 (M) NaCl
solution overnight under ambient conditions (25 °C and 1 atm), fol-
lowed by centrifugation to remove the free solution and drying at
70 °C under vacuum conditions for 12 h.

The Na–Cl crystals inside p-GO (Na–Cl@p-GO) membranes were
analysed by transmission electron microscopy (TEM). The samples
were prepared by manually exfoliating the Na–Cl@p-GO membranes
to ultrathin slices14. Due to the sensitivity of the Na–Cl crystals to
electron beam irradiation and electron beam damage, TEM imaging
was performed in the low-dosemodewith short exposure timeswithin
0.2 s. As a result, the clear and randomdistribution ofNa–Cl crystalline

regions with submicron size in an ultrathin p-GO membrane was
observed using the high-angle annular dark field scanning TEM
(HADDF-STEM) mode (Fig. 1b). The high-resolution TEM (HR-TEM)
image in Fig. 1c(i) and S3d-e show that the Na–Cl crystals exhibit a
honeycomb lattice with an average lattice constant of 3.20 ±0.23 Å,
different from the lattice of graphene. Two fast Fourier transform
(FFT) patterns were obtained from the magnified image in Fig. 1c(ii),
corresponding to the first-order reflections of NaCl2 and p-GOcrystals,
respectively. The FFT analyses of the Na–Cl lattice yielded a hexagonal
lattice with first-order maximal points at (1 ± 0.03)/7.22 nm−1, which is
different from the lattice of graphene. In most cases, such Na–Cl
crystals usually present single-crystal structures (Fig. S4 and S5a),
together with relatively fewer double-oriented crystals that have the
samehexagonal latticewith a twisted angleof about 30°between them
(Fig. S6).

The atomic ratios of the Na and Cl of these Na–Cl crystals were
measured by TEM energy-dispersive X-ray spectroscopy (EDS) analy-
sis. The analysis shows that more than half of the regions have sig-
nificantly more Cl ions than Na ions, resulting in statistical ratios
mainly concentrated around ~1:1 and ~1:2 for Na:Cl (Fig. 1d and Sup-
plementary Information section PS4). The ratio of Na to Cl elements
was further confirmed by X-ray photoelectron spectroscopy (XPS)
(Fig. S17). The result shows that the ratios of Na to Cl are mainly dis-
tributed between 0.5 and 1, indicating that anion-rich NaCl2 and reg-
ular NaCl crystals were simultaneously present, consistent with the
TEM results. In addition, the regulation of the NaCl solution con-
centration utilized in immersing p-GOwill influence the ratio ofNa and
Cl (Fig. S10–S13). With increasing NaCl concentration from 0.03M to
3M, the regions where the ratio of Na to Cl ions is 1:2 gradually
increase, indicating a corresponding increase of NaCl2 in p-GO mem-
branes. When the concentration of NaCl was increased to 3M, it
showed that there were still more than half of the regions had sig-
nificantly more Cl ions than Na ions, resulting in statistical ratios
mainly concentrated around ~1:1 and ~1:2 for Na:Cl. Such a distribution
indicates that both the Na−Cl and regular NaCl crystals are present
simultaneously, which is verified by the synchrotron Na and Cl K-edge
XANES spectra (details in Supplementary Information section PS6).
Importantly, considering all exotic crystals with unconventional stoi-
chiometries, this study provided the first confirmed existence of 2D
anion-rich NaCl2 crystals under ambient conditions.

It is an anion-rich ‘sandwich’ structurewithNa atoms in themiddle
and Cl atoms in the outer layer. Global optimization searches22 toge-
ther with DFT calculations were applied to study the crystal structure
of NaCl2. Many different (NaCl2)n (n ≤ 4) cells were enumerated in the
structural searching, and the final stable structures were selected by
comparing their total energies (see Supplementary Information sec-
tion PS8). The top and side views of Fig. 2a show the structure of NaCl2
obtained from our research, and this structure is both energetically
favorable and close to the experimental result. The optimized lattice
parameters are a = b = 3.29 Å with these two lattice vectors oriented
120o to each other, well consistent with the TEM results (Fig. 1c). The
Na–Cl bond length in NaCl2 Crystals is ~2.71 Å (The atomic coordina-
tion file is presented in Supplementary Information section PS8),
which is shorter than the ~2.81 Å in regular NaCl crystals (Fig. S5b), as
confirmed by synchrotron EXAFS analysis (See Supplementary Infor-
mation section PS7). It is a molybdenite-2H-like structure with a hex-
agonal P�6m2 (187) space group, in the form of a hexagonal plane of Cl
atoms on two sides of a hexagonal plane of Na atoms. Electron loca-
lization function23 computation (Fig. 2a) shows a “bell”-shaped locali-
zation over the Cl atom, indicating the polarization by the ionic bond
between Na and Cl. The results confirm the existence of 2D NaCl2
crystals with an anion-rich ‘sandwich’ structure.

This unconventional structure of NaCl2 crystals induces ferro-
magnetism at room-temperature. We measured the magnetization
curves (M −H) as a function of the applied magnetic field for the
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Na–Cl@p-GO system at T = 300K using Magnetic Property Measure-
ment System (MPMS-3, Quantum Design) (Fig. 3a). A strongly
enhanced ferromagnetism was observed in Na–Cl@p-GO with a
saturation magnetic moment (Ms) of 0.63 emu/g, which is about three
times the Ms of p-GO (0.20 emu/g). The magnetic hysteresis loops of
Na–Cl@p-GO were further measured at various temperatures ranging
from 260 to 340K (Fig. 3b). As the temperature increases over 320K,
the coercivity gradually shrinks and almost disappears. The results
confirm that the room-temperature ferromagnetism in NaCl2 crystals
is validated as the transition temperature is above 320K. We note that
the possible contamination of Fe, Co, and Ni in Na–Cl@p-GO was
negligibly small as low cation concentrations below the detection
limits, according to the XPS and synchrotron X-ray absorption spec-
troscopy (XAS) results (see Supplementary Information section PS5).
We performed additional measurements of the concentrations of Fe,
Co, and Ni in our samples using inductively coupled plasma mass
spectrometry (ICP-MS), with a precision of up to ppb. The con-
centrations of Fe, Co, and Ni in our samples were 48.8, 1.5, and
15.0μg g−1, respectively. Therefore, the magnetic signals produced by
the contaminations were negligibly small. In addition, the resistivities
of Na–Cl@p-GOhave a smaller resistance, which is decreased by about
two orders of magnitude than that of p-GO (Fig. 3c), indicating a

unique electronic property of NaCl2, consistent with our DFT results
(details see Supplementary Information section PS10). Taking into
account the aromatic surface induction24, this metallic properties of
NaCl2 can be extended onto the p-GO substrate to improve the
conductivity.

Discussion
It was surprising that the NaCl2 crystals exhibited room-temperature
ferromagnetism, because they were composed of only Na and Cl ele-
ments, which are believed to be nonmagnetic conventionally. Using a
spin-polarized DFT calculation25–27, we revealed that the magnetic
ground state of the NaCl2 is ferromagnetic (Fig. 2b and Table S4). All
the spinmomentums are localized on Cl atoms, with 0.5 μB on each of
the Cl atoms. This is consistent with the spin charge density plot in
Fig. 2c, showing that both spin channels have contributions from the
electrons on the Cl atom. From the spin-polarized band and density of
state calculation, the Fermi level of the spin-down channel was fully
occupied while that of the spin-up channel was unoccupied, indicating
that NaCl2 is metallic only on one spin channel and insulating on the
other one. This half occupation that was contributed by the p-orbitals
in Cl (Fig. 2d) is very different from that of conventional ferromagnetic
materials, such as Fe, Co, andNi, where themagnetismoriginates from
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the d-orbitals. The spin-resolved DFT calculation revealed that the
NaCl2 crystal is a half-metal, which is expected for spintronic devices28.

The magnetic force microscope (MFM) measurements observed
the magnetic signals of the crystal domains inside the Na–Cl@p-GO
membranes. The atomic force microscopy (AFM) image in Fig. 4a

shows a topography of the Na–Cl@p-GO membrane surface. The
corresponding MFM image was obtained in the same region (Fig. 4b),
with a lift scan height of 20 nm from the topographic scanning of AFM,
where the van-der-Waals force do not interfere the magnetic force29,30.
The MFM tip was magnetized in the direction that pointed into the
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membrane surface. As shown in Fig. 4b, several magnetic domains
marked by the green dashed line appear. It exhibited no relationship
with the AFM image and is decoupled from the topographic signal,
demonstrating the presence of magnetic domains in the Na–Cl@p-GO
membrane.

Then, the MFM tip was magnetized in an opposite direction
pointing out of themembrane surface, and moremagnetic domains
were obtained in the same region (Fig. 4d). Due to the reversed
magnetization direction of the MFM tip, the distribution changes in
the magnetic domains indicate a sensitive magnetic property of the
Na–Cl@p-GO membrane. We note that these magnetic domains do
not align with the magnetic characteristics arising from graphene
defects31, which are primarily striped and distributed along the
edges and exhibit a dark phase contrast upon the reversal of the
magnetization direction of the MFM tip. The results reveal that the
distribution of magnetic domains is in parts of the Na–Cl crystal
regions, indicating the coexistence of the Na–Cl and regular NaCl
crystals. In addition, the regions of p-GO membrane stacking and
ripples (which exhibit a height difference in the topographic scan-
ning) will facilitate the adsorption and accommodation of Na–Cl
crystals within them32. This will lead to a certain correlation between
the topography in AFM and the distribution of magnetic signals in
MFM images. Therefore, the MFM results indicate the presence of
magnetic domains resulting from the Na–Cl crystals located within
the p-GO membranes.

The magnetic moments originating from Cl elements in Na–Cl
crystals, were further verified through XMCD measurements. XAS of
L2,3 edges of Cl (199–227 eV), were measured using left-circularly (μ+)
and right-circularly (μ−) polarized light at a 0.6 Tmagnet and 25 °C, on
beam line BL07U at Shanghai Synchrotron Radiation Facility. The
XMCD signal was obtained by subtracting XAS of the μ+ and μ− polar-
ized light. Measurements used total-electron-yield (TEY) detection,
where the drain current was taken from the sample to the ground.

Figure 5 shows the XAS and XMCD spectra at Cl L2,3 edges for
Na–Cl@p-GO membrane. The peaks at 202.1 eV and 204.3 eV corre-
spond to the L3 and L2 edges ofCl33. TheX-rayabsorption spectra at the
Cl L2,3 edge taken with different photon helicities showed an obvious
difference, and the XMCD spectrum presented the negative and
positive peaks at the location of L2 and L3 (Fig. 5). This result suggests
the spin polarization of electrons of Cl elements in the Na–Cl@p-GO
membrane, revealing the ferromagnetic properties of NaCl2 crystals,
which is consistent with our theoretical predictions.

Note that, relative to the anion-rich NaCl2 with an exotic intrinsic
half-metallicity and ferromagnetism, the cation-rich Na2Cl crystals
discussed in our previous reports may have unusual electronic and
magnetic properties, while the rock salt NaCl, the simplest compound,
is insulating. These recentlydiscovered crystals are anion richor cation
rich, and their formation mechanism can be mainly attributed to both
the ion-π interaction32,34,35 and the confined space16,36. For those π-
conjugated systems with negative surface potential32,35, cations are
more likely to be absorbed on them than anions and vice versa. In
addition, similar anion-rich crystals were also observed when we
incubated the p-GO membranes with KCl solutions (Supplementary
Information section PS11 and PS12), demonstrating a simple but uni-
versal approach to fabricating 2D unconventional stoichiometric
materials with alkali metal halides.

In summary, we experimentally fabricated stable 2D anion-rich
NaCl2 crystals with room-temperature ferromagnetism under ambient
conditions using p-GOmembranes with positive surface potential as a
substrate. Theoretical calculations and XMCDmeasurements revealed
that the unique ferromagnetism is originating from the spin

Fig. 4 | Topographic and magnetic force microscope (MFM) measurements of
Na–Cl@p-GOmembrane at room temperature. Atomic force microscopy (AFM)
images (a, c) andMFM images (b,d) in the sameareaofNa–Cl@p-GOmembraneon
the silicon wafer. The MFM tip was magnetized into the Na–Cl@p-GO surface (b)
and out of the Na–Cl@p-GO surface (d), respectively.
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polarization of electrons in the Cl elements of these crystals. Stoi-
chiometric control of the alkali metal halide crystals using π-
conjugated systems, with a modulated surface potential to induce
specific functions, opens a new field for material design. The
exploration of these exotic crystals deepens the understanding of
crystallization under ambient conditions, and their unique properties
due to the allosteric effect may have great potential application in the
fields of microelectronics, magnetism, and spintronics.

Methods
Fabrication of freestanding positive graphene oxide (p-GO)
membranes
The GO suspension was prepared from graphite powders according to
Hummer’s method, as mentioned in previous reports32. At room tem-
perature, 500μL of 1-(3-Dimethylaminopropyl)−3-ethylcarbodiimide
(EDC)was added to 60mLGO solution (2mgL−1), and the reaction was
carried out under continuous stirring for 1 h37,38. Next, 0.2 g of poly-
ethylene imine (PEI) was added to the obtained solution, and the
reaction was continued for another 3 h with stirring. Then, the
reaction-mixed solution was dialyzed for one week to remove residual
reactants. Finally, the obtained suspension was diluted to 1mgmL−1 by
deionized water. Freestanding p-GO membranes were fabricated by
drop-casting the p-GO suspension (1mgmL−1, 1ml) droplets onto a
smooth paper substrate after drying at 70 °C for 12 h34.

Characterization
The high-resolution TEMmicrographs and SAED imageswere acquired
at room temperature by FEI F200C TEM operating at 200-kV; High-
angle annular dark field scanning TEM (HADDF-STEM) and energy-
dispersive X-ray spectroscopy (EDS) were performed by a Talos F200X
(S)TEM operating at 200-kV; The XPS of Na–Cl@p-GO membrane was
characterized by a Thermo Fisher ESCALAB Xi+ system; XRD patterns
of GO and p-GOmembranes were obtained by an X-ray diffractometer
system (Bruker D8 Advance). The magnetic properties of the
Na–Cl@p-GO membranes and pure p-GO membranes with respect to
temperature and field were measured using a quantum design MPMS-
3. The AFM and MFM images were obtained with a commercial AFM
system (Asylum Research Cypher of Oxford). For MFM detection,
ultrathin and small Na-Cl@p-GO membrane flakes with a thickness of
less than 50nm were prepared from the p-GO suspension by vacuum
filtration, and then transferred to a cleaned siliconwafer substrate; The
XMCD, EXAFS and XANES measurements were collected on beam line
BL07U, BL14W1, and BL16U1 of the Shanghai Synchrotron Radiation
Facility. Before testing, the samples need to be reduced at 120 °C for
2 h to ensure good electrical conductivity; Theprecision analysis of the
elemental composition of our samples was characterized using a
inductively coupled plasma mass spectrometry (ICP-MS) (Nex-
lON 300X).

Density functional theory (DFT) calculation
In this work, our studies were based on the DFT method for structural
relaxation and electronic structure calculation. The ion-electron
interaction was treated by the projector augmented-wave
technique39, as implemented in the Vienna ab initio simulation
package40. The exchange-correlation potential was treated using the
Perdew-Burke-Ernzerhof41 functional. The basis set cut off was 800 eV.
The K-mesh was generated by the Monkhorst-Pack scheme42, and the
density of K-points was approximately 0.04 Å−1. The Tkatchenko and
Scheffler (TS) method43 was applied to describe the van der Waals
interaction.

Differential evolution (DE)-based global optimization method
for 2D material design
For details, see Supplementary Information section PS8.

Data availability
The authors declare that all the data supporting the findings of this
study are available within the article (and its Supplementary Informa-
tion file), or available from the corresponding author on
request. Source data are provided with this paper.
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