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Abstract

The application of deep learning to spatial transcriptomics (ST) can reveal relationships between gene expression and tissue
architecture. Prior work has demonstrated that inferring gene expression from tissue histomorphology can discern these spatial
molecular markers to enable population scale studies, reducing the fiscal barriers associated with large-scale spatial profiling. However,
while most improvements in algorithmic performance have focused on improving model architectures, little is known about how the
quality of tissue preparation and imaging can affect deep learning model training for spatial inference from morphology and its potential
for widespread clinical adoption. Prior studies for ST inference from histology typically utilize manually stained frozen sections with
imaging on non-clinical grade scanners. Training such models on ST cohorts is also costly. We hypothesize that adopting tissue
processing and imaging practices that mirror standards for clinical implementation (permanent sections, automated tissue staining,
and clinical grade scanning) can significantly improve model performance. An enhanced specimen processing and imaging protocol
was developed for deep learning-based ST inference from morphology. This protocol featured the Visium CytAssist assay to permit
automated hematoxylin and eosin staining (e.g. Leica Bond), 40x-resolution imaging, and joining of multiple patients’ tissue sections
per capture area prior to ST profiling. Using a cohort of 13 pathologic T Stage-III stage colorectal cancer patients, we compared the
performance of models trained on slide prepared using enhanced versus traditional (i.e. manual staining and low-resolution imaging)
protocols. Leveraging Inceptionv3 neural networks, we predicted gene expression across serial, histologically-matched tissue sections
using whole slide images (WSI) from both protocols. The data Shapley was used to quantify and compare marginal performance
gains on a patient-by-patient basis attributed to using the enhanced protocol versus the actual costs of spatial profiling. Findings
indicate that training and validating on WSI acquired through the enhanced protocol as opposed to the traditional method resulted in
improved performance at lower fiscal cost. In the realm of ST, the enhancement of deep learning architectures frequently captures the
spotlight; however, the significance of specimen processing and imaging is often understated. This research, informed through a game-
theoretic lens, underscores the substantial impact that specimen preparation/imaging can have on spatial transcriptomic inference
from morphology. It is essential to integrate such optimized processing protocols to facilitate the identification of prognostic markers
at a larger scale.
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Introduction

. . . technologies has broadened our understanding of tumorigene-
Emergence of spatial transcriptomics

sis, highlighting the value of examining expression patterns to

technologies and computational methods

For centuries, histological examination of tissue has been funda-
mental in disease prognostication [1]. Although such examina-
tion remains a cornerstone in pathology, the advent of genomic

gain comprehensive insights into tumor behavior and therapeutic
response [2-4]. Typically, histopathological analysis is supple-
mented by immunohistochemical staining [5]. These evaluations
provide spatial insights into molecular signatures that underscore
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cellular heterogeneity within a tissue sample. However, most
immunohistochemical and fluorescence assays are limited in
the number of markers they can analyze simultaneously. This
limitation has been addressed with the emergence of spatial
transcriptomics (ST) technologies, such as the Visium platform
from 10x Genomics, which offers high multiplexing capability at
remarkable spatial resolution, transforming our capacity to study
expression patterns within intricate, nuanced tissue architectures
[6, 7].

Recent methodological advancements in ST have concentrated
on clustering spatial patterns of gene expression, detecting spa-
tial variation, and mapping single-cell ribonucleic acid (RNA)
sequencing data to specific tissue locations to identify cell sub-
lineages and quantify cell types, thereby elucidating tissue archi-
tecture and cellular communication. Techniques integrating his-
tology with ST have been developed to significantly enhance
data resolution, effectively bridging morphological and molecular
data to enrich our understanding of tissue biology and disease
pathology from both molecular and morphological perspectives
(6, 8-20].

Impact of deep learning architectures and data
quality on inference of spatial transcriptomics
from histology

Our prior research has diverged from the aforementioned meth-
ods by inferring ST data from histological images through com-
putational analysis. This strategy tackles the challenges of high
costs and reproducibility issues associated with current ST assays
by establishing a link between tissue morphology and molecu-
lar profiles, opening the door to scalable, low-cost multiplexing
capabilities, where the morphology allows. Leveraging inferred
expression patterns allows for downstream analyses comparable
to traditional ST methods, circumventing the economic and tech-
nical limitations that typically constrain the widespread use of
ST [6]. Current methods for inference of spatial transcriptomic
patterns are inspired by virtual staining techniques [21-23], which
use computational methods to predict molecular traits from rou-
tinely collected histological images. This obviates the need for fur-
ther tissue staining/assaying. Preliminary studies have supported
the potential of these techniques to expand highly-multiplexed
spatial molecular evaluations to more extensive cohorts in a cost-
effective manner. Initial studies on ST inference from histology
have primarily emphasized enhancing deep learning architec-
tures to boost performance. However, these efforts often overlook
the importance of specimen processing and high-quality imag-
ing, which are essential for clinical adoption. Effective predictive
models hinge on the availability of high-resolution images with
uniform staining, highlighting the critical need for standard-
ized, automated staining protocols, and sophisticated imaging
technologies. However, acquiring such quality images remains a
challenge in many existing ST inference studies. As indicated in
Supplementary Table 1, nearly all previous ST inference stud-
les have utilized frozen tissue sections, stained manually, with
imaging scanners which are not considered to be clinical grade
or capable of scanning at 40x resolution [24-33]. For instance,
frozen tissue sections are often used for rapid diagnosis or treat-
ment of lesions intraoperatively. Frozen tissue sectioning often
results in significant tissue artifacts (e.g. tears, bubbles, and folds)
compared to formalin fixed paraffin embedded (FFPE; permanent)
tissue slides and often the tissue morphology is challenging to
distinguish as compared to permanent tissue sections with more
pronounced tissue morphology. As frozen sections are not used in
routine clinical diagnostic workflows, which may require spatial

molecular analysis, algorithms developed using these slides may
not generalized to permanent fixation and thus may have limited
translational potential [34-37].

Aside from specimen fixation, leveraging whole slide image
(WSI) scanners like Aperio GT450s to enhance whole slide image
quality and ensuring uniform staining through automated pro-
cesses is crucial for acquiring consistent and reliable input data
[38]. This strategy, vital for precise alignment of imaging with
omics data, offers the potential for more nuanced assessments of
tissue histology, addressing the constraints imposed by manual
staining and lower-resolution imaging techniques. By mitigat-
ing these limitations, it opens the possibility of identifying an
expanded array of biomarkers directly from histological analy-
sis. Moreover, increasing the sample size for training virtual ST
inference algorithms is essential for encompassing a diverse array
of patient and tumor characteristics without incurring additional
costs, thus enabling more comprehensive analyses applicable to
larger cohorts.

The recent introduction of the CytAssist device potentially
addresses these concerns [39, 40]. In contrast to the traditional
Visium FFPE assay, which mandates manual staining and specific
Visium slide imaging conditions (loosely adhered coverslips and
short imaging window), the CytAssist allows for the stable cov-
erslipping of slides and extended time frame between staining,
imaging, and analyte retrieval. In addition, the CytAssist pro-
tocol relies on tissue sections placed onto standard histology
slides rather than costly Visium barcoded slides, simplifying tis-
sue placement and allowing the selection of specific regions of
interest for analysis. Together, this design allows multiple tissue
sections to be more easily amalgamated onto a single slide before
Visium profiling and facilitates the utilization of automated stain-
ing technologies and cutting-edge imaging using clinical-grade
pathology infrastructure. These improvements not only augment
whole slide image quality for intricate, deep learning analyses but
might also considerably diminish associated costs.

Study aim: data valuation to quantify the impact
of enhanced specimen processing on
performance of deep learning spatial
transcriptomics inference models, compared to
costs

In this research, we investigate the algorithmic performance ben-
efits of utilizing the CytAssist device with enhanced protocols to
improve data quality, aiming to discern if these improvements jus-
tify the associated costs. We employ a game theoretic approach,
specifically the data Shapley method, to quantify the value and
impact of tissue samples processed with these enhanced proto-
cols on algorithmic performance compared to traditional meth-
ods. Quantifying the algorithmic benefits of data quality in this
way allows us to directly assess the value of improved data quality
against the costs of specimen processing to inform best practices.
The data Shapley has been previously applied in machine learning
and biomedical imaging to identify factors affecting predictive
performance, often related to data quality. However, its applica-
tion in this context offers a unique perspective on equitable data
valuation for quantifying factors related to improved ST-inference
beyond advances in deep learning architecture.

Our comparison centers around a cohort of colorectal cancer
(CRC) patients. Colon cancer, increasingly affecting younger age
groups, is a major global health issue due to its high prevalence
and mortality. Crucial for determining prognosis and guiding
treatment, colon cancer staging primarily relies on the Tumour,
Node, and Metastasis (TNM) classification, which evaluates
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Table 1. Description of patient cohort. Tissue sections from 13 patients (14 sections) are divided among 10 capture areas, with up to 2
tissue sections per capture area joined together (left/right side). xIndicates held-out capture areas 5 and 6 from serial sections from the
same patient and location for testing. All other tissue sections come from different patients. MSS— Microsatellite Stability.

Section placed on left side/center of

capture area

Section placed on right side of
capture area

Protocol Capture CytAssist Dimension Age Sex Tumor site MSI METS Age Sex Tumor MSI METS
area (mm*2) status site status

Traditional: manual 1 no 6.5x6.5 40-45 F Transverse  MSS yes - - - - -

stain + low colon

resolution imaging 2 no 6.5x6.5 60-65 M  Rightcolon MSS no - - - - -
3 no 6.5x6.5 80-85 M  Rightcolon MSS yes - - - - -
4 no 6.5x6.5 45-47  F Right colon MSS no - - - - -
Sx yes 6.5x6.5 80-83 M  Left colon MSI yes - - - - -

Enhanced: 6% yes 6.5%6.5 80-85 M  Leftcolon  MSI yes - - - - -

automated staining 7 yes 11x11 90-95 F Hepatic MSI yes 80-85 M Left MSI no

+ high resolution flexure colon

imaging 8 yes 11x11 85-90 F Splenic MSS yes 75-80 F Hepatic MSS no

flexure flexure

9 yes 11x11 80-85 F Cecum MSI yes 70-75 M Cecum MSI no
10 yes 11x11 55-60 F Left colon ~ MSS yes 65-70 M Sigmoid MSS no

tumor invasion, lymph node involvement, and metastasis [41-
44]. Notably, metastasis critically affects patient outcomes,
marking increased tumor aggressiveness. While the TNM system
is pivotal, it might not encompass the entire complexity of tumor
biology, prompting research into additional molecular markers to
enhance prognostic accuracy and predict metastasis/recurrence
risks [45]. Studying the spatial distribution of specific genes
within the tumor and its immune microenvironment can provide
insights into antitumoral reactions, potentially enhancing colon
cancer staging by identifying novel prognostic markers [46-48].
Our focus in this study is on assessing how specimen processing
and imaging influence the accuracy of ST inference from
histological images, rather than an exhaustive exploration of new
markers. Future research will build upon our findings to conduct
a comprehensive analysis with large-scale ST inference aimed at
uncovering novel markers for tumor metastasis and recurrence.

Methods
Data collection

Specimen overview: Our dataset comprises specimens processed
through two distinct protocols: the traditional protocol (four
patients, four capture areas) and the new enhanced protocol
(eight patients, four capture areas). In addition, two paired
serial sections were profiled for comparative analysis, the first
emulating the traditional protocol and the second mirroring the
enhanced protocol.

Patient and capture area selection: This dataset represented
thirteen patients diagnosed with pathologic T Stage-III (pT3) CRC.
These patients were selected through a retrospective review of
pathology reports from 2016 to 2019. Four patients were featured
in a previous study where we restricted these patient characteris-
tics based on microsatellite stable tumors and tumor site (right/-
transverse colon) [24]. For the remaining cohort of nine patients,
to ensure a balanced representation of patient characteristics, the
patients were matched based on various criteria, including age,
sex, tumor grade, tissue size, and mismatch repair/microsatellite
instability (MMR/MSI) status [49]. MSI status was determined
by assessing the loss of expression of mutL homolog 1 (MLH1)
and postmeiotic segregation increased 2 (PMS2) proteins through

immunohistochemistry. Tissue blocks were sectioned into
5-10-micron thick layers, and specific regions of interest such
as epithelium, tumor-invasive front, intratumoral areas, and
lymphatics. Capture areas were annotated by a pathologist from
WSI taken at serial tissue sections. Representative regions were
carefully dissected from the tissue, placed into capture areas,
and subjected to hematoxylin and eosin (H&E) staining, imaging,
and Visium profiling in the Pathology Shared Resource at the
Dartmouth Cancer Center and Single Cell Genomics Core in the
Center for Quantitative Biology.

Traditional protocol: The first four capture areas (capture areas
1-4; Table 1, Figs 1a and 2) were profiled using the traditional 10x
Visium FFPE protocol—after macrodissection, placement onto the
Visium barcoded slide, and manual H&E staining, the Visium
protocol: (i) images the tissue at 10-20x resolution using stan-
dard image scanning (EVOS m7000 scanner, Thermo Fisher); (ii)
the tissue is permeabilized for hybridization of whole transcrip-
tome messenger RNA (mRNA) probes; followed by, (iii) probe
ligation and release for capture on the Visium slide through
poly(A) tail binding; next, (iv) captured probes are extended and
amplified to incorporate spatial barcodes; and (v) the probes
and spatial barcodes are sequenced on an Illumina NovaSeq
instrument [S0] targeting 50 000 reads/spot. The 10x Genomics
SpaceRanger software is used to convert raw sequencing data into
spatially-resolved gene expression matrices. This comprehensive
process enables whole transcriptome (mRNA) profiling of up to
5000 55um spots with a 100um center-to-center distance within
a 6.5 mm? capture area or 14 000 spots within an 11 mm? cap-
ture area. After post-filtering uninformative reads, we obtained
~17 943 genes at ~5000 locations for each slide (total Visium
spots: 4950, 4922, 4887, and 4169 per slide).

Enhanced protocol: We trialed an improved specimen processing
protocol designed specifically for profiling specimens with the
Visium CytAssist assay. This protocol integrates the CytAssist
technology with improved specimen processing within a pathol-
ogy department to ensure consistent staining and optimal image
quality by leveraging the capabilities of automated slide stainer
via the Sakura Tissue-Tek Prisma Stainer (Sakura Finetek USA,
Inc. 1750 West 214th Street, Torrance, CA 90501) [51] and the
Aperio GT450s imaging system. The imaging was conducted at
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Figure 1. Comparative overview of the two protocols. (a) Traditional protocol: after placing tissue on Visium barcoded slide, sections are manually stained
with H&E and imaged using the EVOS m7000. (B) Enhanced protocol: automated application of chemical reagents with 40x resolution imaging via Aperio

GT450, followed by transfer to Visium device facilitated by 10x CytAssist.

a high resolution of 40x (equivalent to 0.25 um per pixel) before
proceeding with Visium profiling. Four tissue slides were collected
representing eight patients, resulting from macrodissection of
tissue sections from FFPE blocks. Patient selection criteria were
well-matched to the set used for the traditional protocol save for
MSI status and age, which featured additional variation in this
expanded set of patients. These sections were precisely marked
by pathologists in serial WSIs to target specific tissue architec-
tures. To maximize resource efficiency, tissue segments from two
patients were merged onto a single slide, creating an 11 x 11 mm
capture region. This strategy ensured each capture area con-
tained an equal representation of metastasis and MSI status from
anatomically similar sites. Using our improved protocol, we first
(i) placed FFPE tissue sections onto standard histology slides, fol-
lowed by coverslipping in a glycerol + xylene mounting medium,
(ii) performed deparaffinization, rehydration, and H&E staining
on a Leica Bond instrument, (iii) collected WSI at 40x resolution
on Aperio GT450 scanners, and (iv) decoverslipped in xylene for
1-3 days (until coverslips were detached). The remaining steps
of destaining, probe hybridization, probe ligation, eosin staining,
transfer to the Visium slide using CytAssist, and library prepa-
ration were performed according to the manufacturer’s protocol
(CG000485). Libraries were sequenced on an Illumina NovaSeq
targeting 50 000 reads/spot. This detailed method permits unbi-
ased gridded profiling of spots within slides area. The subsequent
imaging of the same tissue slide (after staining with eosin) facili-
tated precise co-registration of the 40x high-resolution pathology
slide with the Visium ST. After the manual selection of fiducials,
the Spaceranger software was employed to align CytAssist sec-
tions with their corresponding 40x H&E stains, which ensures
accurate co-registration, and conduct quality control and convert
the Visium ST data into an easily interpretable format (Table 1,
Figs 1B and 2). We obtained expression profiles at around 7000
locations for each patient (total Visium spots: 7696, 6640, 6956,
7380, 6881, 6421, 7261, 6159, and 4778 per patient). It should be
noted that this enhanced protocol does not yet apply to fresh
frozen sections (see Supplementary Table 1).

Comparison slides: To mitigate the influence of inherent tis-
sue variability and rigorously assess the CytAssist technology,
we restricted validation of the deep learning models two serial
sections from the same patient as comparison points to evalu-
ate our machine learning models. Serial sections were spatially
matched/scored to represent identical capture areas with nearly
identical histological and molecular features. Capture Areas 5 and

6 were earmarked for our comparative analysis of the CytAssist
technology (Table 1, Figs 2 and 3). Each slide from these areas
underwent distinct preparation methods to mirror both the tra-
ditional and our enhanced protocol. From these slides, the set
of nearly 18,000 genes was reduced to the 1000 most spatially
variable genes using the SpatialDE package for direct comparison
of model performance based on training data acquired with these
protocols [52].

Machine learning modeling and evaluation

For WSI acquired using the enhanced protocol, co-registered
40x WSI corresponding to each Visium slide were cropped
into 512 x 512 pixel sub-images centered on each Visium spot
within the capture areas, selected based on a previous study
that had conducted a sensitivity analysis over various patch
sizes [24]. For WSI acquired using the traditional protocol, each
Visium spot encompasses a circular capture zone with a 130-
pixel diameter at a 20x magnification. Several deep learning
models—utilizing an Inceptionv3 convolutional neural network
architecture as described in previous work—were trained to
predict Visium ST at each spot for both binary (i.e. low/high
expression, dichotomized by median expression) and continuous
(e.g. log-transformed of pseudo counts with an offset of 1 read)
prediction tasks for 1000 spatially-variable genes. Models were
trained using the mean squared error on the log-transformed
counts for continuous data. As aforementioned, performance
for dichotomous tasks was calculated through dichotomization
via median expression [53, 54]. Model parameters were selected
based on optimal performance statistics across an internal
validation set across the training epochs. Hyperparameters
were set based on a coarse hyperparameter search for each
method.

Experimental comparisons

We used a comprehensive comparative analysis to discern the
benefits of collecting data using the enhanced protocol against
the traditional protocol. The experimental comparisons probed
the protocols under various training and validation regimes,
thereby providing insights into their relative strengths and
potential synergies (Table 2). We evaluated our models using
paired serial sections from both protocols, ensuring minimal
tissue variability to highlight the impact of staining and imaging
methods. The performance comparisons were based on the
training sets described in Table 2.
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Figure 2. Detailed configuration of the 10 capture areas and their speci-
men processing and imaging protocol. The figure presents the progression
of all 10 capture areas, from their inception to visualization. The sequence
is as follows: (i) H&E-stained slide, (ii) selected capture area dedicated to
one or two patients, (iii) visualization of capture area, and (iv) integration
with ST clusters. Training involved the use of either traditional, enhanced,
or a combination of both slide types. Notably, capture areas 5 and 6 were
set aside as held-out serial sections for subsequent analyses.

Performance evaluation

Evaluative assessments on comparison slides: Spot level expression
was compared on the held-out comparison slides, retaining their
native imaging resolutions. Direct evaluation focused on recapit-
ulating the expression at each individual Visium spot across the
entirety of the held-out slides. This granular assessment ensured
an in-depth understanding of how well the trained models can
predict expression profiles at localized regions throughout the
slides. Confidence in model performance is reported through 95%
confidence intervals derived from 1000-sample non-parametric
bootstrapping of Visium spot observations.

Performance metrics: Performance metrics include the following:
(i) quantitative metrics, area under the receiver operating charac-
teristic curve (AUC) for dichotomous tasks and Spearman corre-
lation for continuous tasks, macro-averaged across all genes. (ii)
Qualitative evaluation, beyond quantitative scores, we examined

the capability of each approach to mirror true expression pat-
terns. This involved comparing the clustering of true expression
patterns on those predicted from the tissue histology, utilizing
the AlignedUMAP dimensionality reduction technique to generate
visually comparable low-dimensional embeddings [55, 56]. Amore
effective method should ideally maintain the uniqueness and
structure of the original clusters. To quantitatively assess our
approach, we developed a k-nearest neighbors (k-NN) classifier
trained on the embeddings of ground truth Visium ST spots to
determine their cluster memberships. This classifier was then
applied to the aligned embeddings of the inferred expression
data for the same Visium ST spots, with the goal of replicating
the original cluster memberships based on their proximity to
the k-nearest ground truth expression spots. We conducted this
analysis using both k=3 and k=5.

Differential expression: As another comparison between the
traditional and enhanced protocol, we aimed to determine how
well models trained on data from each protocol could localize
biological markers to each tissue architecture, as compared
to localization via the true expression patterns. Specifically,
each Visium spot was annotated according to its location—
either within the tumor, at its periphery, or distal to the tumor.
We hypothesized that the enhanced slides would yield gene
expression profiles more reflective of these distinct tissue regions,
approximating the precision of the ground truth expression more
closely than the traditionally processed slides would. To test this,
we employed the Mann-Whitney U-test to analyze differential
gene expression (treating expression as a continuous count-based
measure) between the tumor-interface zones and those regions
either within or away from the tumor [57]. This analysis focused
on the top 200 genes as ranked by the Spearman correlation
statistics between the true and predicted expression. We then
compared the U-statistics obtained from the actual expression
data to those generated from predicted expression, summarizing
the results as the median percentage change in U-statistics across
the examined genes, with 95% confidence intervals reported using
1000-sample non-parametric bootstrapping.

Superresolution: Several prior works for ST inference from his-
tology have demonstrated the capabilities to infer ST at sub-spot
resolution without the aid of any ST data. We have accomplished
superresolution on held out tissue slides through inference on
overlapping 512-pixel (~128 micron) tissue patches. Inferences
were made in 128-pixel increments (~32 micron) [6, 8-20].

Quantifying the impact of enhanced protocols on
algorithmic performance versus assay cost
through equitable data valuation
In this ST deep learning study, we aimed to quantify the algorith-
mic performance gains attributed to each slide. The data Shapley
represents the individual contribution of inclusion of specific data
point on the overall predictive accuracy of our models, as reflected
by the AUC. Prior data valuation research has demonstrated that
the quality of input data significantly affects assigned data Shap-
ley values, reinforcing the relevance of our approach. The data
Shapley was calculated by adopting a Monte Carlo method, which
assigned a distinct data Shapley value to each slide in our dataset
[58-60].

The formula used for the data Shapley value, based on the work
of Ghorbani et al. (2019), is:

o= V(s v ti) -V ()]

" mell
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Figure 3. Experimental design for data valuation/cost comparison: data Shapley values were calculated for individual patients in the cohort to represent
marginal algorithmic performance gains. The data Shapley value for each slide was compared to the costs associated with specimen assaying.

Table 2. Comparative analysis of model training approaches across distinct protocols. This table delineates the methodologies used for
generating training data from both the traditional and enhanced protocols. Emphasis is placed on evaluating the implications of
different staining and imaging methods. By employing reserved comparison samples, models trained on each dataset undergo
assessment using paired serial sections from both protocols, aiming to reduce tissue-related variability

Training data Purpose

Predictive analysis

To establish a foundational performance
baseline

Traditional protocol
slides

To spotlight the enhanced capability and
superiority of the improved protocol

Enhanced protocol slides

To harness the collective merits of both
protocols, forging a holistic understanding of
tissue histology across various specimen
processing and imaging methods

Slides from both
protocols

This comparison gaged the ability of models trained on the traditional
method to predict spot-level expression across both techniques using
the paired serial sections (encompassing both traditional and improved
protocols).

Evaluating predictions on the paired serial sections from both protocols
showcases how models, when trained sections assayed through the
improved protocol, interpret results from both techniques. Ideally, its
performance should meet or surpass the traditional protocol’s metrics
on the shared paired slides.

Training on tissue acquired from both protocols promises to impart a
broader representation of the data to the models. Evaluations on the
comparison slides reflect the model’s adaptability, informed by both
protocols.

Here, V(S)denotes the AUC score for a set of slides S, S.
is the set of slides preceding slide i in permutation x, and
[T represents the uniform distribution over all permutations.
This equation evaluates the marginal test AUC increase when
a training slide is included, thus gauging its importance. All
training slides, regardless of protocol, were used for in the
Monte Carlo method. This equitable data valuation enabled a
direct comparison between the algorithmic benefits and the
fiscal costs associated with different slide processing/imaging
protocols. In calculating the costs, we rigorously reviewed all
financial transactions tied to specimen profiling, including
reagent, sequencing, and labor costs, disregarding any potential
discounts to present a realistic expense scenario. Similar to the
data Shapley estimates, these fiscal costs were calculated on a
slide-by-slide basis, varied with the number of detectable spots
on each slide, also depending on whether they were processed
using traditional or enhanced protocols (Fig. 3). Mann-Whitney U-
testing was used to compare enhanced and traditional protocols
for training slides for: (i) specimen assaying costs, (i) data
Shapley when evaluating on a validation slide prepared with
the enhanced protocol, (iii) data Shapley when evaluating on a
validation slide prepared with the traditional protocol, and (iv)
data Shapley-to-cost ratios for the aforementioned comparisons.
Rank biserial correlations and Mann-Whitney P-values were used
to communicate the effect sizes and statistical significance of
associations [61].

Results

Enhanced staining and imaging protocol results
in substantial boost in predictive performance

When assessing the predicted expression against the true expres-
sion for the top 1000 spatially variable genes in the held-out
slides, the models demonstrated remarkable accuracy, reported
using AUC, root-mean squared error and Spearman statistics
(Table 3, Fig. 4, Supplementary Fig. 1, Supplementary Table 2).
Overall, models trained using on data acquired with the tra-
ditional protocol predicted expression on both traditional and
enhanced slides with ~0.66 AUC and a 0.28 correlation. Use of
the traditional protocol for acquiring training data was related
to diminished performance. In contrast, exclusively leveraging
the enhanced protocol led to a major increase in predictive per-
formance. Specifically, while training and testing on traditional
slides yielded an AUC of 0.641 and a 0.243 correlation, the same
process on enhanced 40x-resolution WSI (enhanced protocol)
catapulted the results to an AUC of 0.833 and a 0.625 correlation—
this translates to a surge of nearly 45% in AUC and a stagger-
ing 157% in Spearman correlation. Through a pathway analysis
(enrichR, Reactome database), the top 25 genes that could be
predicted with high accuracy for models trained/evaluated with
each protocol corresponded to a range of biological pathways
previously implicated in colon cancer (Supplementary Data 1)
[62]. Our exploration into whether a hybrid training approach,
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Table 3. Performance metrics for held-out capture areas across
top 1000 genes. This table presents the median AUC and
spearman correlation coefficients and their respective 95%
confidence intervals derived from a 1000-sample
non-parametric bootstrap. Metrics are shown for each
combination of training slide type (traditional, enhanced, or
both) and evaluation slide type (traditional or enhanced)

Trained on Evaluated on AUC+SE Spearman + SE
Traditional Enhanced 0.678 + 0.002 0.323 +0.003
Traditional Traditional 0.641 4+ 0.002 0.243 4+ 0.003
Both Enhanced 0.822 £ 0.003 0.605 £ 0.005
Both Traditional 0.708 £+ 0.002 0.389 £+ 0.004
Enhanced Enhanced 0.833 + 0.003 0.625 + 0.006
Enhanced Traditional 0.72 4 0.002 0.406 4+ 0.004

0.94 Evaluated On
B Enhanced
| Traditional

AUC

¢

Enhanced

Traditional Both
Trained On

Figure 4. Boxenplot of AUC performance across top 1000 genes. This plot
showcases the comparative performance of held-out capture areas based
on training slide type (traditional, enhanced, or both) and evaluation slide
type (traditional or enhanced), using the area under the receiver operating
characteristic curve as the performance metric.

incorporating both traditional and enhanced slides, would aug-
ment performance turned out to be inconclusive, as it did not
notably elevate predictive power for either slide type and instead
lead to modest reductions in performance from training solely
on WSI acquired through the improved protocol. As depicted in
Fig. 5, visually, the expression patterns across a slide appear more
clearly distinct and align more closely with the ground truth
when training is conducted using enhanced slides, irrespective
of whether the comparison slide utilized enhanced or traditional
techniques. To address the potential impact of image resolution
on our algorithmic findings, we downsampled all WSI to 10x
resolution and separately compared model performance based
on training data from the two protocols. Findings continued to
support performance improvements relating to automated tissue
staining (Supplementary Table 3).

Comparing clustering fidelity, tissue architecture
specificity for inferred spatial transcriptomics
expression, and demonstration of
superresolution

Similar to previous works [24, 53], we sought to understand
whether slides processed using the enhanced protocol yielded
predicted expression patterns that were clustered similarly
as the ground truth expression, demonstrating capacity to
replicate underlying biological variation and spatial expression
heterogeneity (Supplementary Fig. 2, Supplementary Table 4).
Using the k-NN classifier, we assessed the clustering fidelity

Training Slides
H&E True pr Enhanced Both Traditional

Training Slides
Enhanced Both

Comparison Slides

Traditional ) (_Enhanced ) ( Traditional )(_Enhanced

Figure 5. Heatmap visualization of gene expression predictions for four
randomly selected genes. This figure juxtaposes the ground truth gene
expression heatmaps against the predictions made by neural networks
trained on either enhanced slides, both preparation approaches or tra-
ditional slides. Each prediction is showcased for both comparison slide
types (traditional and enhanced). Specific markers from the held-out
slides (both enhanced and traditional) are highlighted to emphasize the
nuanced differences across training techniques and their evaluation.

of predicted expression patterns by examining if the inferred
Visium spots preserved the same relative positioning in the
embedding plot as the ground truth data, comparing models
trained on both enhanced and traditional slides. The analysis
showed that on two held-out serial section WSIs, models trained
with the enhanced protocol more accurately matched cluster
assignments for the corresponding enhanced—protocol validation
slide (recovery proportion of 0.911+0.115). Conversely, models
trained on traditional protocols showed a decline in clustering
accuracy on the enhanced-protocol test slide (recovery proportion
of 0.878+0.151). In contrast, for the validation slide processed
using the traditional protocol, cluster assignments were most
effectively replicated by models trained with traditional protocols
(recovery proportion of 0.913+0.113). Additional findings can be
found in Supplementary Table 4.

We also evaluated each method’s capability to predict expres-
sion patterns characteristic of the tumor invasive margin in con-
trast to regions inside and distant from the tumor. Given the
potential variability in predicted expression scales, we employed
the Mann-Whitney U test to contrast expression across these
tissue structures, documenting the percentage shift in U-statistics
between actual and predicted expression. These findings are con-
sistent with our predictive performance observations, suggesting
that the ability to accurately predict expression is synonymous
with more refined delineations of tissue architecture. This pre-
dictive performance and precision in the subsequent differen-
tial expression analyses are notably enhanced by the CytAssist
leveraging the enhanced protocol (Supplementary Table 5). For
example, models either trained on both enhanced and traditional
slides or exclusively on enhanced slides were most successful
in recapitulating the U-statistics derived from actual expression
data when assessed on enhanced slides. However, there was a
marked drop in accuracy when these metrics were applied to the
reserved traditional slide.

Algorithms trained on slides using any paired histological and
ST data are also capable of inferring spatial gene expression
patterns at a greater resolution than the original data, without
the aid of Visium ST data. We refer the reader to several examples
where we applied the Inceptionv3 model trained on data acquired
using the enhanced protocol on two held-out, intact tissue slides
(Supplementary Figs 3 and 4). Tissue staining was automated and
WSI were captured at 40x resolution, mirroring the enhanced
protocol. The quality of these WSIs are comparable to a real-
world clinical setting. Superresolution was achieved by inferring
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Figure 6. Boxplots illustrating data valuation and slide cost depending on whether training slide was prepared using the enhanced or traditional protocol:
(a) slide costs were higher for slides prepared using the traditional protocol, and (b) data Shapley values were higher for slides prepared using the

enhanced protocol.

expression patterns on overlapping patches, taken at 128-pixel
increments, rather than 220-pixels (55-micron at 40x) or 512 pix-
els (original stride length for large image analysis). The resolution
can be increased through further reduction in stride length during
inference, among other resolution-enhancing methods.

Evaluating the trade-offs between specimen
processing enhancements and costs via
algorithmic performance metrics through data
valuation

In assessing cost-effectiveness, we considered the data Shapley
values in conjunction with the assay costs, noting that some
slides produced negative values, indicative of a reduced model
performance. Upon analysis of the performance on the valida-
tion slide processed with the enhanced protocol, we found that
training slides processed with the enhanced protocol generally
demonstrated positive data Shapley values, suggesting benefi-
cial contributions to the model (Fig. 6; Supplementary Figs 5
and 6; Supplementary Tables 6 and 7), whereas traditional pro-
tocol training slides more frequently incurred negative values
(P=.028). Our analysis also revealed that when evaluating our
models on a validation slide processed with the enhanced proto-
col, training slides processed using the enhanced protocol exhibit
a higher average data Shapley-to-cost ratio compared to those
processed with the traditional protocol (P=.008). The opposite
held-true for data valuation based on the validation slide pro-
cessed with the traditional protocol—training slides processed
with the same protocol were valued more highly for enhancing
predictive performance (P =.004, .004; Fig. 6; Supplementary Figs 5
and 6; Supplementary Tables 6 and 7).

Discussion

Our study aimed to evaluate the influence of specimen processing
in the realm of ST inference from histology. Here, we compared
data collected using traditional and enhanced protocols for the
task akin to virtual staining—a technique that can infer spatial
expression patterns directly from whole slide image histomor-
phology [21, 63]. This method offers the potential to democratize
ST insights to more extensive cohorts for genes exhibiting high
predictability, subsequently broadening the spectrum of mark-
ers under consideration. Prior studies featuring spatial inference
algorithms mostly leveraged frozen tissue sections that were

manually stained and imaged with lower resolution scanners,
presenting potential challenges in applying algorithms trained on
this data for clinical-grade digital pathology workflows, which
typically rely on permanent sections, consistent staining and
high-resolution scanning. The central thrust of this study was
to better understand and quantify the impact of data quality
on algorithmic performance for clinical-grade virtual inference
workflows. Enhancements in specimen preparation, specifically
in three key areas including: (i) tissue multiplexing to reduce costs
based on their positioning in the mounting medium, (ii) optimiz-
ing staining procedures, and (iii) refining imaging processes could
facilitate more accurate image-based RNA inference and other
integrative analysis, thereby boosting statistical precision. The
incorporation of CytAssist was pivotal, offering insights into how
upstream enhancements in specimen processing can yield vastly
improved in silico outcomes. Data valuation helped quantify and
compare the algorithmic benefits and fiscal costs of adopting the
enhanced protocol versus the traditional protocol.

Principal findings in the context of improved tissue staining:
This study underscores the discernible performance variations
between slides processed through enhanced and traditional
protocols, reflecting differences in tissue staining and imaging
in the context of deep learning applications for ST [64]. Tissue
staining, a technique to enhance the contrast between various
tissue components, is of paramount importance. Dyes such as
hematoxylin and eosin, with their distinct optical absorption
properties, offer a range of color variations. When oxidized,
hematoxylin interacts with various metals, forming complexes
that produce unique colors, enhancing the dye's staining
capabilities [64-72]. Even minor deviations in staining procedures
and timing can result in fluctuating staining intensity. Human
variations in the timing of staining and the use of reagents nearing
their expiration or when overused/over-oxidized/deteriorated
can further compromise quality. Factors such as contaminants
also introduce inconsistencies, affecting the uniformity of tissue
staining. Automated staining solutions offer a promising alterna-
tive to manual methods, eliminating human-induced sources
of variation. By standardizing the application of H&E stains
according to a set protocol, both the quality and consistency of
specimens can be enhanced. Removing these variations allows
algorithms to shift their focus from capturing variability to
representing the underlying structures with greater fidelity [66].
Past research validates that digital image analysis is frequently
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compromised by inconsistent staining. However, automating
this process has been shown to not only improves staining
consistency but also bolsters the contrast in tissue structures,
thereby increasing diagnostic reliability [64-72]. For algorithms
to effectively discern gene-related histologies, consistently
capturing intricate details, better represented by minimizing
these sources of variability, is vital.

Thus, it is unsurprising that tissues stained through auto-
mated processes exhibited superior performance. The models
trained on tissue sections processed using the enhanced pro-
tocol demonstrated remarkably stronger predictive accuracy, as
evidenced by higher AUC, Spearman correlation values and data
Shapley values. Evaluation of these models on enhanced slides
also presented a performance advantage, even when only training
on traditionally processed slides. Moreover, we showcased that
heightened predictive accuracy can lead to a bolstered statistical
power in evaluating tissue architecture with enhanced slides
relative to their traditional counterparts. Analysis of the aligned
UMAP embeddings demonstrated that enhanced slides tended to
yield expression patterns that clustered similarly to the ground
truth and quantitative data valuation demonstrated that the
algorithmic benefits conferred by collecting high quality input
data far outweighed the costs.

Interpretation of findings and the need for broader validation: Our
research affirms that by prioritizing specimen preparation and
imaging, especially with the aid of CytAssist, one can amplify the
statistical acuity of subsequent analyses and more authentically
capture the intricate relationships among Visium spots from his-
tological observations [30, 73]. This heightened precision, made
possible by the enhanced staining and imaging protocol, has the
potential to illuminate the molecular intricacies and spatial con-
figurations of unique tissue structures. Such insights pave the way
for a more profound comprehension of CRC metastasis, especially
when these state-of-the-art techniques are applied to broader
cohorts. By quantifying the importance of tissue processing and
imaging through data valuation, we can potentially identify tissue
of sufficient quality for developing clinical grade workflows for ST
inference from histology at scale.

Challenges and future directions: This study focused on compar-
ing enhanced and traditional protocols within a specific set of
capture areas. The derived insights offer a foundational frame-
work for both validating and scaling these techniques to expan-
sive cohorts. However, there are a few considerations that war-
rant further attention. Firstly, the comparison between traditional
and enhanced protocols was limited to a specific set of capture
areas, necessitating further exploration to broaden the applica-
tion, scope, and impact of our findings. However, the set of capture
areas selected is not outside of what has been done for prior
studies in this domain and the number of Visium spots used
to train and validate the models far exceeds prior ST inference
works. While we sought to reduce potential batch effects for
various representative histologies featured in the study through
standardizing staining/imaging, we acknowledge the potential
for batch effects in ST data that can impact model training.
Generalizing our findings to other tissue types, molecular path-
ways, and experimental setups should be further explored. For
instance, we assessed performance on the top 1000 spatially
variable genes—while this is a commonly adopted method for ST
inference works, the selection of these genes may have influenced
predictive performance. However, selection of varied gene sets
and pathways for comparisons was outside of the scope of this
work and will be explored in a future work. In addition, the
enhanced protocol does not yet apply to fresh frozen sections,
which will be the subject of future work. We did not compare the

performance of various deep learning architectures as this task
has been done in many prior works (see Supplementary Table 1)
and is outside of the scope of the current study though is a consid-
eration for future works expanding data valuation comparisons
in the context of ST inference. To affirm the universality and
adaptability of the models, varied staining methodologies, slide
preparations, and tissue specimens should be considered, requir-
ing additional forms of validation (e.g. immunostaining, alterna-
tive spatial transcriptomic assays) [74-76]. Such disparities can
introduce unpredicted variability, with potential ramifications on
model efficiency. Although there are algorithmic solutions for
standardizing staining agents, a holistic approach may require a
collaborative multicenter framework, strategies to alleviate batch
inconsistencies, and close coordination among key stakeholders
within various shared resource infrastructures across each insti-
tution [77]. Enhancing the scope of validation for deep learning
paradigms, as well as identifying areas for improvement out-
side of algorithmic development (e.g. specimen processing), can
catalyze the more widespread integration of these nascent ST
technologies. The relevance of these findings hinges on external
validation through independent cohorts. Moreover, the implica-
tions of our study should be expanded to encompass other dis-
eases that warrant spatial molecular assessments [/8-80]. Future
applications of data valuation can identify tissue features likely
to improve/reduce performance of ST inference approaches. For
instance, tissue can become distorted after whole slide imaging
prior to ST profiling. This can introduce tissue artifact that could
significantly degrade algorithmic performance if unaccounted
for—slides with these artifacts or unwanted histological features
(e.g. mucinous tumors) can be identified with a data valuation
approach. Future work will apply such methods at scale to further
improve the quality of spatial inferences and will also examine
application of valuation methods in the context of other compu-
tational approaches for ST.

Conclusion

The validation of ST information inferred from WSI provides a
unique opportunity to assess spatial molecular factors pertaining
to CRC metastasis, recurrence and survival with greater statistical
precision. Deep learning spatial inference methods frequently
rely on large volumes of specimens to yield significant results,
which can prove costly for spatial transcriptomic assays. Yet, the
spatial molecular data inferred through our enhanced protocols,
enhanced through sophisticated specimen processing, potentially
diminish the necessity for such expansive and expensive datasets.
Data valuation techniques can enhance spatial inference work-
flows by precisely quantifying the instances where tissue quality
and imaging features align with or diverge from the standards
required for clinical-grade analysis. Accurate extrapolations of
gene expression landscapes within tissue samples can enable a
more refined exploration of CRC metastasis, further emphasizing
our imperative to further validate these approaches in larger
cohorts.

Key Points
¢ This study showcases an enhanced protocol for prepar-
ing/imaging tissue for deep learning-based ST inference
from histology, using the flexibility of the Visium CytAs-
sist assay to facilitate improvements in tissue processing
and imaging (enhanced protocol). Previous work typi-
cally performed ST inference on frozen tissue sections,
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manually stained, and imaged using non-clinical grade
pathology image scanners.

¢ Leveraging Inceptionv3 neural networks on slides from
13 pT3 stage CRC patients, the enhanced protocol sig-
nificantly outperformed traditional protocols in prepar-
ing tissue for accurate prediction of gene expres-
sion patterns. Inferring on slides processed using
the enhanced protocol yielded gene expression pro-
files, which clustered similar to the actual data and
identified relevant tissue architectures and biological
pathways.

¢ By applying these models on external slides lacking ST
data, ST profiles could be identified at higher resolu-
tion than the original Visium assay. The use of models
trained on high-quality data on large, external cohorts
prepared with clinical-grade digital pathology practices
has the potential to enhance the statistical precision in
pinpointing biomarkers associated with metastasis and
recurrence.

e Data valuation techniques demonstrated that the algo-
rithmic benefits of enhancing tissue/image quality far
outweighed the fiscal costs. Data valuation has the
potential to identify high quality, relevant WSI for ST
inference tasks.

e Effective specimen processing is paramount for high-
fidelity results in ST-driven cancer research. Working
together, histotechnicians, pathologists, and genomics
specialists play a critical role in advancing tissue prepa-
ration and imaging techniques, deepening our insight
into tumor biology for further prognostic biomarker
development.

Supplementary data

Supplementary data Supplementary data is available at Briefings
in Bioinformatics online.
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