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Introduction

The plant immune system can be triggered by the recogni-
tion of two broad classes of microbial molecules. PRR-triggered 
immunity (PTI) is activated following the recognition of con-
served microbe-associated molecular patterns (MAMPs) by cell 
surface plant pattern recognition receptors (PRRs), while effector-
triggered immunity (ETI) is activated by recognition of pathogen 
effector proteins by intracellular nucleotide binding, leucine-rich 
repeat (NB-LRR) proteins. Both PTI and ETI result in similar 
immune responses, although the amplitude of the ETI-induced 
response is often substantially higher and frequently associated 
with a localized programmed cell death (PCD) response around 
the site of infection called the hypersensitive response (HR). The 
recognition of effectors by NB-LRR proteins can be direct where 
the NB-LRR protein directly binds the effector to trigger ETI, 
or indirect where the NB-LRRs interact with the host target of 
pathogen effectors and monitor them for perturbations.1,2 An 
exception to the effector/NB-LRR paradigm for ETI activation 

is the recognition of transcription activator-like (TAL) effectors 
which can transcriptionally activate expression of non NB-LRR 
genes to activate ETI, but proteomic analyses have yet to be con-
ducted on these TAL ETI “executors.”3

Genetic approaches have been successful at identifying 
numerous genes required for ETI and have largely built our 
current understanding of the ETI network. More recently, pro-
teomic analyses of ETI have emerged as a powerful complement 
to genetic methods by expanding the repertoire of proteins and 
PTMs responsible for ETI signaling, identifying protein com-
plexes that contain novel ETI signaling components, and pro-
viding an overview of the molecular events responsible for 
manifesting the cellular responses associated with ETI (Table 1 
and 2). Additionally, proteomic approaches have provided impor-
tant insights into the physiology of the ETI response, such as 
alterations in photosynthesis, lipid metabolism and redox poten-
tial. The co-regulation of antagonistic aspects of these physiolog-
ical responses reveals that they are tightly regulated during ETI.

The technical progress made in analyzing plant proteomes,4 
general proteomic strategies, theory and instrumentation 
have been reviewed elsewhere and we will focus on proteomic 
approaches used to study ETI induced by type III secreted effec-
tors (T3SEs) of Pseudomonas syringae.5,6 We use the term “global” 
to refer to studies aiming to identify and quantify proteins from 
a total cellular extract, whereas “targeted” approaches identify 
the components of specific protein complexes. This review high-
lights the contributions that both approaches have made to our 
understanding of the plant ETI response (Table 1 and Table 2).

Proteomics of ETI

Despite significant technical advances, plant proteomics 
remains challenging. Plant cells generally have low cytoplasmic 
volume relative to cell wall mass, with high protease and phos-
phatase content.7 As a result, careful consideration must be paid 
to the isolation of proteins from plant tissues to preserve both 
their integrity and PTMs. Further, the predominance of ribu-
lose-1,5-bisphosphate carboxylase/oxygenase (rubisco), which 
catalyzes the first major step of carbon fixation and is gener-
ally considered the most abundant protein on earth, makes it 
difficult to concentrate plant protein extracts, and necessitates 
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effector-triggered immunity (eTi) was originally termed 
gene-for-gene resistance and dates back to fundamen-
tal observations of flax resistance to rust fungi by Harold 
Henry Flor in the 1940s. Since then, genetic and biochemical 
approaches have defined our current understanding of how 
plant “resistance” proteins recognize microbial effectors. More 
recently, proteomic approaches have expanded our view of 
the protein landscape during eTi and contributed significant 
advances to our mechanistic understanding of eTi signaling. 
Here we provide an overview of proteomic techniques that 
have been used to study plant eTi including both global and 
targeted approaches. we discuss the challenges associated 
with eTi proteomics and highlight specific examples from the 
literature, which demonstrate how proteomics is advancing 
the eTi research field.
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a large dynamic range for protein separation, detection and 
identification.4

An additional challenge in the proteomic study of ETI sim-
ply involves the induction of the ETI response. Many signal-
ing events in plants occur downstream of perception of small 
molecules or peptides (i.e., elicitors) by their cognate receptors. 
These systems can generally be readily induced under experimen-
tal conditions by the application of elicitors such as the bacterial 
flagellin peptide flg22, which is a potent activator of PTI,8-11 or 
the elicitation of phytohormone signaling by the application of 
exogenous hormones.12,13 In contrast, receptors mediating ETI 
are intracellular and generally detect the activity of proteinaceous 
effectors translocated from pathogens into the host cytoplasm.14 
Therefore, ETI is difficult to induce experimentally, and requires 
either the delivery of effectors by pathogens or their transgenic 
expression.

While pathogen delivery of effectors represents the most 
biologically and physiologically relevant stimulus, these interac-
tions involve a broad range of host response, not all of which 
are directly associated with ETI. For example, P. syringae strains 
can inject dozens of T3SE,15,16 which can alter host physiology 
and inhibit immune responses, including ETI. Consequently, it 
can be difficult to deconvolute ETI signaling from other T3SE 
functions. Consequently, three experimental treatments are 
typically compared when identifying proteins regulated by ETI 
signaling,17-19 including plants inoculated with: (1) P. syringae 
(with its endogenous complement of T3SEs); (2) P. syringae + 
an exogenous T3SE that triggers ETI; and (3) P. syringae lacking 
a functional type III secretion system that is unable to secrete 
any T3SEs. Further, since ETI often culminates in PCD, its pro-
teomic study requires careful coordination of inoculation and 
tissue collection to ensure a consistent stage of ETI in all tissues 
and limited protein loss from PCD. Despite these complications, 
bacterial delivery of T3SE is usually easily implemented in crop 
species20 and cell culture,19 and therefore represents a viable strat-
egy for translational work in non-model plant systems.

ETI can also be induced by transgenic expression of T3SE 
in planta. Since ETI culminates in PCD, T3SE expression is 
typically controlled by an inducible promoter. A popular system 
for transgenic delivery of effectors is the dexamethasone (Dex) 
inducible GAL4 / VP16 / glucocorticoid receptor domain (GVG) 
system,21 which provides a transcription factor that drives expres-
sion of the transgene in a corticosteroid sensitive manner. While 
the GVG system produces substantially higher levels of the trans-
genic T3SE than would be expected under natural conditions, 
ETI induced by these constructs generally recapitulates pheno-
types seen with bacterial T3SE delivery22,23 and has been success-
fully used to identify genes required for ETI.24 The GVG system 
allows simple and synchronized ETI induction by small mol-
ecule (Dex) application. Furthermore, because only one T3SE 
is induced, as opposed to the entire complement carried by a P. 
syringae strain, it simplifies experimental design and downstream 
analysis.

Global Analysis of Protein Abundance and PTMs 
during ETI

Pathogen Delivery of Effectors
In Arabidopsis thaliana (hereafter Arabidopsis), the membrane 

associated NB-LRR protein RPM1 mediates ETI triggered by 
the P. syringae T3SE AvrRpm1 (Fig. 1a).25,26 Jones et al.17,18 pro-
vided the first insight into proteins differentially regulated dur-
ing RPM1-mediated ETI. Ultimately, 19 proteins were identified 
as upregulated in response to P. syringae pv tomato DC3000 
(PtoDC3000) expressing AvrRpm1 (PtoDC3000(avrRpm1)), 
but not PtoDC3000 or PtoDC3000 lacking a functional TTSS 
(PtoDC3000(hrpA)), and therefore uniquely regulated by 
RPM1-mediated ETI signaling. In particular, proteins involved 
in redox regulation, lipid metabolism and photosynthesis were 
identified.

The glutathione-s-transferases (GST) GSTF8 and GSTF9 
were AvrRpm1-upregulated while the NADPH quinone reduc-
tase (NQR) and 2 cysteine peroxiredoxin PRxB were down-
regulated. The concomitant up and downregulation of radical 
detoxifying enzymes suggests a tight regulation of redox status 
during ETI. The downregulation of NO turnover proteins such 
as peroxiredoxin is likely associated with the rapid build-up of 
NO preceding HR.27 The accumulation of ROS during ETI can 
directly oxidize fatty acids leading to lipid peroxidation, which 
may be detoxified by NQRs.25,28 The downregulation of NQRs 
suggests that the accumulation of peroxidated lipids may play a 
role in ETI signaling.

Proteins involved in photosynthesis also respond to 
PtoDC3000(avrRpm1) providing a link between ETI and altered 
photosynthetic function. Two members of the oxygen evolving 
complex (OEC) of Photosystem II (PSII), OEC33 K protein and 
OEC23 K protein, accumulated in response to AvrRpm1 trig-
gered ETI. Additionally, AvrRpm1 also induces the cytosolic 
accumulation of ferredoxin reductase which normally catalyzes 
the terminal photosynthetic electron transfer to NADP(+).18 
Together, these suggest ETI might alter photosynthetic elec-
tron transport around PSII. Consistent with altered regulation 
of photosynthesis during ETI, PtoDC3000(avrRpm1) causes a 
reduction in carbon fixation,29 altered photosynthetic electron 
transport,30,31 and over-activation of chlorophyll associated with 
ROS production and lipid peroxidation.31

In another study, Kaffarnik et al.19 characterized the secre-
tome of Arabidopsis suspension cells in response to incubation 
with PtoDC3000, PtoDC3000(AvrRpm1), PtoDC3000(hrpA),  
identifying 13 proteins specifically upregulated by RPM1 medi-
ated ETI. Surprisingly, only three ETI induced secreted proteins 
have predicted signal peptides. Non-canonical secretion during 
ETI could result from loss of cell integrity, autophagy and/or 
membrane trafficking processes that contribute to ETI.32-34

In tomato, the P. syringae T3SEs AvrPto and HopAB2 (for-
merly AvrPtoB) carried by PtoDC3000 induce ETI mediated by 
the NB-LRR protein Prf and the host kinase Pto (Fig. 1C).35-37 
The tomato cultivar Rio Grande (RG) consists of two homogenic 
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genotypes: RG-PtoR, which expresses Pto and recognizes 
PtoDC3000, and RG-prf3, which lacks Prf and is susceptible to 
PtoDC3000. Parker et al.20 performed a proteomic analysis of Prf 
mediated ETI by inoculating the tomato cultivars RG-PtoR and 
RG-prf3 with PtoDC3000. Ultimately, 550 proteins were identi-
fied as uniquely regulated by Prf mediated ETI signaling. Many 
proteins regulated by Prf were consistent with similar experi-
ments in Arabidopsis challenged with PtoDC3000(AvrRpm1), 
including proteins involved in photosynthesis, redox regulation 
and lipid metabolism.18,20 Similarities in the proteomes induced 
by AvrRpm1/RPM1 in Arabidopsis and AvrPto/HopAB/Prf in 
tomato strongly imply conserved early signaling events and pro-
teomic changes during the ETI response.

This study also identified three 14–3-3 proteins that were 
upregulated by Prf mediated ETI.20 14–3-3 proteins mediate pro-
tein-protein interactions in a phosphorylation dependent manner, 
strongly implying that early ETI signaling events are regulated 
by phosphorylation and protein-protein interactions mediated by 
14–3-3 proteins. Further, 14–3-3 proteins are known to medi-
ate Prf signaling.38 Interestingly, 14–3-3 proteins are emerging 

as targets of T3SE that inhibit both PTI39,40 and ETI suggesting 
a central role for 14–3-3 proteins in mediating plant immune 
signaling.41

Both studies in Arabidopsis18 and tomato20 were designed to 
complement previous transcriptome studies.42,43 Interestingly, 
both studies revealed that there was little correlation between 
protein and transcript abundance in early ETI signaling (4 h post 
inoculation). However, correlations were observed at later time 
points (24 h post inoculation) with increases in transcript and pro-
tein abundance for Pathogenesis-Related protein 1 (PR1), peroxi-
dases and lipoxygenases.20 It is perhaps not surprising that early 
ETI signaling events are likely mediated by proteome changes 
including PTMs such as phosphorylation or S-nitrosylation, 
protein-protein interactions or by signaling events such as lipid 
peroxidation, redox, and ROS/reactive nitrogen species genera-
tion that precede transcriptional re-programming.

Transgenic Expression of Effectors
Proteins regulated by RPM1-mediated ETI were also investi-

gated using the GVG system to express AvrRpm1.44,45 Total pro-
tein and proteins from microsomal preparations were used for 

Table 1. Summary of Global Proteomic Analyses of eTi-Regulated Proteins

T3SE
NB-LRR-
protein

Cellular
Fraction/PTM 
enrichment

Proteomics Approach Protein IDsa Ref.

AvrRpm1 RPM1
Chloroplast,Mitocho

ndria,Cytosol
2D-PAGe

GSTF8 (At2g47730)
GST79 (At2g30860)
OeC33 (At5g66570)
OeC23 (At1g06680)

17,18

AvrRpm1 RPM1 Secreted Proteins
SDS-PAGe

iTRAQ
LC-MS/MS

Ubiquitin
GAPDH(At1g13440/At3g04120)

Phosphoglucomutase (At1g23190)
enolase (At2g36530)

19

AvrPto/HopAB2 Prf All soluble proteins
iTRAQ

2D-LC-MS/MS

14–3-3 protein (TC217464_3, TC217870_1, TC233482_2)
Acyl-binding carrier protein (TC238115_2)

Acyl-carrier protein transacylase (TC219533_3)
20

GVG:AvrRpm1 RPM1 Microsome, Cytosol
2D-PAGe

MALDi-TOF

AtRem1.2 (At3g61260)
PP2C PiA1 (At2g20630)

C2-domain containing protein (At4g34150)
44,45

GVG:AvrRpt2 RPS2 Plasma Membrane
SDS-PAGe
LC-MS/MS

Label free quantitation

SOBiR1 (AT2G31880)
RiPK (AT2G05940)
PiA1 (At2g20630)

SYP122 (AT3G52400)
SOBeR1(At4g22300)
PLDγ1 (AT4G11850)
DGK5 (AT2G20900)

PePR1 (AT1G73080)
wAK1 (AT1G21250)
BiK1 (AT2G39660)

SNAP33 (AT5G61210)
PeN1/SYP121 
(AT3G11820)

PLDα1 (AT3G15730)

49

AvrRpm1 RPM1
Phosphorylated 

Proteins
iTRAQ

LC-MS/MS
Rubsico large subunit (AtCg00490) 60

AvrB RPM1
S-nitrosylated 

cysteine
Biotin-Switch SDS-PAGe 

MALDi-TOF/TOF

Rubsico large subunit (AtCg00490)
GAPDH (At3g26650)

Triosephosphate isomerase (At3g55440)
PsbQ (At4g21280)

65

AvrB RPM1 Tyrosine nitration

immunoaffinity 
enrichment

2D-PAGe
LC-MS/MS

Rubsico large subunit (AtCg00490)
PsbO2 (At3g50820)
PsbO1 (At5g66570)

Fructose-bisphosphate aldolase 1 (At2g39730)
Fructose-bisphosphate aldolase 2 (At4g38970)

66

Note: aTomato gene indices as annotated by DFCi – LeGi
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proteomic analysis. Despite limited protein identification, the 
accumulation of OEC complex members, GSTs and PRXs, were 
observed, demonstrating that proteomic changes resulting from 
transgenic T3SE expression resemble those produced by bac-
terially delivered T3SE.17,18 Similar to previous studies, protein 
discovery was confounded by high concentrations of rubisco.18,44 
In order to improve protein discovery, varying concentrations 
of polyethylene glycol (PEG) were used to selectively precipitate 
Rubisco from total protein and microsomal preparations. This 
approach yielded a greater proportion of putative signaling pro-
teins including the remorin AtREM1.2, a C2 domain contain-
ing protein and the protein phosphatase 2C (PP2C) induced by 
AvrRpm1 (PIA1).

Follow-up studies of PIA1 have demonstrated that pia1 
plants show increased resistance to PtoDC3000(avrRpm1).44 
The RPM1 interacting protein 4 (RIN4) is phosphorylated in 
response to AvrRpm1 and is required for AvrRpm1 recogni-
tion by RPM1 (Fig. 1A).46 However, pia1 plants do not display 
altered RIN4 phosphorylation during RPM1 mediated ETI 
implying that the phosphorylation status of an unknown pro-
tein participates in regulating RPM1 mediated ETI. The TTSE 
AvrB also triggers ETI requiring RPM1 and RIN4.24 While 
PtoDC3000(avrRpm1) induces the accumulation of PIA1, 
PtoDC3000 expressing AvrB does not.45 Disrupting PIA1 also 
has no effect on PtoDC3000(avrB) growth in planta, indicating 
that multiple signaling pathways exist for RPM1-mediated ETI.

The NB-LRR protein RPS2 also interacts with RIN4 and mon-
itors RIN4 for cleavage by the T3SE AvrRpt2 (Fig. 1B).47 Both 
RPS2 and RIN4 are peripheral membrane proteins (Fig. 1).46,48 
Recently, Elmore et al. characterized the proteomic responses of 
the plasma membrane during ETI mediated by RPS2 using the 
GVG system to express AvrRpt2 in Arabidopsis.49 Ultimately, 235 
proteins increasing in abundance and 188 decreasing in abun-
dance were identified during RPS2 mediated ETI. This was 
the first proteomic study of sufficient depth in Arabidopsis to 
identify the finer details of ETI signaling. For example, protein 
kinases and phosphatases were overrepresented among proteins 
upregulated by RPS2 ETI. Kinases promoting ETI (e.g., RPM-1 

induced protein kinase,50 and suppressor of BIR1) were upregu-
lated alongside PP2Cs, including PIA1, hinting at shared regu-
lation of ETI signaling by RPM1 and RPS2. Interestingly, the 
pattern recognition receptors PEPR151 and WAK152 were upregu-
lated during ETI, as was the PTI co-receptor BIK1,53 highlight-
ing the potential crosstalk between ETI and PTI.

Proteins upregulated by RPS2 during ETI strongly support 
the role of membrane dynamics during ETI. Proteins involved in 
membrane trafficking were upregulated in response to RPS2 sig-
naling, including multiple SNARE complex members involved 
in vesicle fusion.32,54 The increased association of normally cyto-
solic glycolytic enzymes (pyruvate kinase, PEP carboxylase,55 
GAPDH56) with purified plasma membranes would be consis-
tent with autophagy and membrane trafficking turning over 
cytosolic enzymes during ETI. Phospholipases (PL) upregulated 
by RPS2 mediated ETI are likely involved in membrane turnover 
and signaling. Both PLCs and PLDs associated with the release 
of phosphatidic acid (PA) during ETI were upregulated,57 while 
a PLA

2
 known to decrease PA levels and inhibit ETI triggered by 

the Xanthomonas campestris T3SE AvrBsT58 was also upregulated. 
Therefore, antagonistic branches of phospholipase signaling are 
concomitantly upregulated by ETI. This is similar to upregu-
lation of antagonistic enzymes in protein phosphorylation and 
ROS signaling pathways and highlights the tight regulation of 
molecular events during ETI.59

ETI Induced Post-Translation Modifications
Given the evidence of altered phosphorylation in response to 

ETI mediated by RPM1, Jones et al.60 examined the quantitative 
changes in the phosphoproteome of Arabidopsis infiltrated with 
PtoDC3000, PtoDC3000(avrRpm1), or PtoDC3000(hrpA) by 
phosphopeptide enrichment. Five proteins were identified as dif-
ferentially regulated by PTI and one protein by ETI. The large 
subunit of rubisco showed increased phosphorylation in response 
to RPM1 mediated ETI, which may contribute to altered photo-
synthetic activity during ETI.29

A rapid buildup of NO, such as that observed during ETI, 
can modify cysteine and tyrosine residues by S-nitrosylation or 
nitration, respectively. Enzyme classes known to mediate ETI 

Table 2. Summary of Targeted Proteomic Analyses of eTi Protein Complexes

Target Tag System Purification Strategya Proteins Identified Ref.

HopN1 (T3Se) 6xHiS N. benthamiana
in vitro pulldown, 

Ni2+-iMAC
PsbQ 72

RPS2 (NB-LRR-protein)
HA-PreScission-

Biotin (HBP)
A. thaliana Biotin/Streptavidin AP

RiN4 (At3g25070)
AtHiR1 (At1g69840)
AtHiR2 (At3g01290)

BSK1 (At4g35230)
BSK8 (At5g41260)

73

Prf (NB-LRR-protein) SBP-FLAG Tomato
TAP, Streptavidin AP/

FLAG iAP
Pto
Fen

Pth2
Pth3

80

Pto (Monitored by Prf ) FLAG Tomato FLAG iAP
Prf
Fen

Pth3
Pth 5

RiN4 (Monitored by RPM1/
RPS2)

A. thaliana Native iAP RiPK (AT2G05940) 50

MOS4 (mediates NB-LRR 
protein signaling)

HA A. thaliana HA iAP
AtCDC5 (At1g09770)

PRL1 (At4g15900)
MAC3A (At1g04510)
MAC3B (At2G33340)

86

Note: aAP: affinity purification, iAP: immunoaffinity purification
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signaling can be regulated by these redox sensitive PTMs, includ-
ing peroxidoxins61 and metacaspases.62 Further, turnover of 
S-nitrosylated glutathione compromises ETI63 and is essential for 
modulation of plant immune responses by salicylic acid.64 Given 
the potential role of differential S-nitrosylation or tyr-nitration 
during ETI signaling, Romera-Puertas et al.65 and Cecconi et 
al.66 investigated the NO redox modified subproteome during 
AvrB triggered ETI. Most proteins differentially modified by NO 
redox reactions belong to primary metabolism including compo-
nents of the PSII OEC, the large subunit of rubisco and three 
glycolytic enzymes: triose-phosphate isomerase, phosphoglycer-
ate kinase and GAPDH. The carboxylase activity of rubisco and 
turnover are modulated by S-nitrosylation67,68 and S-nitrosylation 
of GAPDH’s catalytic cysteine is known to inhibit enzyme activ-
ity, reducing glycolytic flux.69 Therefore, accumulation of NO 
and other ROS might act as a regulator of plant metabolism dur-
ing ETI.

Targeted Proteomics of ETI Complexes

Proteomics of ETI protein complexes has also been an invalu-
able tool for the in planta study of ETI signaling (Table 2). One 
common strategy has been the fusion of affinity tags to T3SEs or 
genetically characterized components of ETI. Affinity chroma-
tography is then used for purification of protein complexes asso-
ciated with the tagged “bait,” followed by protein identification 
by mass spectrometry.70 This approach can identify proteins that 
participate in the same biological process as the “bait” and iden-
tify immune components that would be recalcitrant to genetic 
analyses due to redundancy or essentiality.

Proteomics of Effector complexes
The P. syringae T3SE HopN1 is a cysteine protease that 

inhibits cell death in tomato and Nicotiana tabacum71 and 
ROS production in Arabidopsis.72 Proteomic investigation of 
its host targets was performed by in vitro pulldown of HopN1. 
Recombinant HopN1-His

6
 was immobilized and incubated with 

tomato extract, ultimately identifying oxygen evolving complex 
subunit PsbQ, the water oxidizing complex of PSII, as an inter-
acting protein.72 Recombinant HopN1 demonstrated proteolytic 
activity against PsbQ in thylakoid membranes, while chloroplasts 
isolated from leaves inoculated with bacteria expressing HopN1 
had reduced PSII activity. Silencing of PsbQ in N. benthamiana 
inhibited ROS production and HR during ETI, suggesting that 
HopN1 inhibits PCD by decreasing PSII activity required for 
ETI signaling.72

Proteomics of NB-LRR protein complexes
RPS2
In order to identify RPS2 associated proteins, microsomal 

preparations of transgenic Arabidopsis expressing affinity tagged 
RPS2 were treated with a protein chemical crosslinker prior to 
affinity purification of RPS2 complexes and protein identifica-
tion by mass spectrometry.73 Chemical cross-linking of protein 
complexes allowed for use of harsh detergent conditions to solu-
bilize microsomal pellets, and has been beneficial in purification 
of transient protein complexes in yeast74 and Arabidopsis.75 While 

RIN4 was identified as a member of RPS2 complexes, RPM1 was 
absent. Interestingly, immunoaffinity purification of RIN4 in an 
independent study identified RPS2 but not RPM1, suggesting 
that either different pools of RIN4 interact with each NB-LRR-
protein76 or that RPM1/RIN4 interactions are transitory based 
on RIN4 phosphorylation.50

Two members of the hypersensitive induced reaction gene 
family, AtHIR1 and AtHIR2, were also identified as RPS2 com-
plex members. AtHIR proteins are oligomeric plasma membrane 
proteins that are associated with detergent resistant plasma mem-
brane microdomains.77 These proteins are known to increase in 
abundance during RPS2 mediated ETI.50 Disruption of AtHIR2 
or AtHIR3 compromises AvrRpt2 induced ETI, while overexpres-
sion of AtHIR1, AtHIR2 or AtHIR3 enhances ETI and reduces 

Figure 1. Models of T3Se recognition by NB-LRR proteins to trigger eTi. 
NB-LRR proteins monitor host proteins targeted by T3Se for modifica-
tion. Detection of modified host proteins causes NB-LRR conformational 
change, initiating eTi signaling.14  (A) The NB-LRR RPM1 monitors the host 
protein RiN4.25,26 interaction of RiN4 with the T3Se AvrRpm1 or AvrB trig-
gers RiN4 phosphorylation by the host kinase RiPK, activating RPM1.50,83 
(B) RiN4 is also monitored by the NB-LRR RPS2. The T3Se AvrRpt2 is acti-
vated by the host cyclophillin AtROC1, and causes proteolytic cleavage 
of RiN4 resulting in activation of RPS2.48 The RiN4 complexes in A and 
B are membrane associated. (C) Oligomeric complexes of Pto family 
host kinases80 and the NB-LRR Prf recognize the T3Ses AvrPto35,36 and 
HopAB2.37 interaction of AvrPto or HopAB2 with a Pto monomer acti-
vates Pto kinase activity, causing transphosphorylation and activation of 
the second Pto monomer. This causes a second transphosrphorylation 
event resulting in phosphorylation of both Pto kinases and activation 
of Prf.81
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PtoDC3000(AvrRpt2) growth. This supports the role of AtHIR 
proteins in RPS2 signaling and suggests that RPS2 complexes 
may be organized in plasma membrane microdomains.

The RPS2 complex also includes kinases associated with 
brassinosteroid (BR) signaling, namely the BR-signaling kinases 
(BSK) 1 and 8.77 These kinases also interact with the PRR 
FLS277,78 supporting a functional link between ETI and PTI. 
Further confirmation of ETI/PTI receptor association was also 
provided by the co-immunoprecipitation of RPM1, RPS2 and 
RPS5 with FLS2.79 Altogether, this demonstrates that receptors 
from both branches of plant immunity can interact and are likely 
co-localized in large protein complexes organized into plasma 
membrane subdomains.

Prf /Pto
A targeted proteomic approach was also used to identify Prf-

associated proteins using transgenic tomato expressing affinity 
tagged Prf.80 Multiple Pto kinase family members including Pto, 
Fen, Pth2, and Pth3 were identified as Prf complex members. 
Proteomic analysis of affinity tagged Pto also identified Prf, Fen, 
Pth5 and either Pth2 or Pth3 as members of Pto/Prf complexes.80 
This implies that Prf forms heterocomplexes containing both Pto 
and Pth family members, that may allow Prf to recognize T3SEs 
that potentially target Pto-related kinases.

Characterization of Pto phosphorylation sites during Prf 
mediated ETI was accomplished through immunoaffinity puri-
fication of Pto transiently expressed with AvrPto and Prf in N. 
benthemiana.81 Double phosphorylation events on Ser198 and 
Thr199 within the kinase activation domain of Pto were identi-
fied as ETI specific. Mutation of either site to residues that do 
not accept phosphor-transfer had no effect on Prf signaling while 
a double mutant PtoS198A/T199A inhibits Prf signaling. Nevertheless, 
expression of a phosphomimetic PtoS198D/T199D does not trigger 
T3SE independent ETI, indicating that Pto phosphorylation 
alone is not sufficient for ETI signaling, rather, Prf mediated 
ETI requires a combination of Pto phosphorylation and T3SE 
interaction. Consistent with this, the kinase inactive, double 
phosphomimetic mutant PtoD164N/S198D/T199D can still recognize 
AvrPto, whereas the kinase inactive PtoD164N does not. Therefore, 
both Pto phosphorylation and T3SE interaction are required for 
Prf mediated ETI. Currently, T3SEs are thought to trigger Prf 
signaling by interacting and perturbing one Pto kinase, result-
ing in transphosphorylation of the perturbed kinase by the recip-
rocal Pto kinase of the Prf/Pto oligomeric complex. Critically, 
such a model provides a mechanism for signaling through Prf 
heterocomplexes containing Pto kinase family members lacking 
kinase activity.82 Theoretically, inactive family members Pth2–5 
may act as a molecular “trap” or decoy for T3SEs in the Prf het-
erocomplex. Interaction of T3SEs and the inactive Pto family 
member may induce transphosphorylation by the active family 
members Pto or Fen to trigger Prf signaling.

Proteomics of NB-LRR associated proteins
RIN4
Targeted proteomics of RIN4 complexes have provided insight 

into the mechanism underlying ETI signaling. Complexes con-
taining RIN4 were isolated from transgenic Arabidopsis expressing 
DEX inducible AvrRpm1, identifying the RPM1-induced protein 

kinase (RIPK) as a RIN4 interacting protein.50 Disruption of 
RIPK compromises ETI triggered by AvrB, and to a lesser extent 
AvrRpm1.50,83 RIPK phosphorylation sites on RIN4 were mapped 
by mass spectrometry to Thr21, Ser160 and T166. Transient co-
expression of RPM1 and phosphomimetic RIN4T21D/S160D/T166D or 
RIN4T166D induces HR in N. benthamiana, while disruption of 
RIPK in Arabidopsis reduces RIN4 phosphorylation in response 
to AvrRpm1 and AvrB.50 These studies show that phosphoryla-
tion of RIN4 by RIPK at T166 positively regulates RPM1 medi-
ated ETI.

MOS4
Arabidopsis plants with constitutively active forms of the 

NB-LRR protein SNC1 display enhanced disease resistance.84 In 
addition, constitutive SNC1 activity also results in smaller stat-
ure of Arabidopsis plants and constitutive expression of defense-
related genes. Signaling components downstream of SNC1 have 
been identified by forward genetic screens for suppression of small 
stature and constitutive defense gene expression, termed Modifier 
of snc1 (MOS) genes. One SNC1 suppressor, MOS4, interacts 
with a three proteins by yeast-two-hybrid that form a MOS4-
associated complex (MAC).85 The MAC protein AtCDC5 is a 
transcription factor homologous to yeast and human proteins 
involved in RNA processing and splicing. In order to determine 
if the MAC complex contains more than the three core members, 
proteomic analysis of transgenic Arabidopsis expressing affinity 
tagged MOS4 was used to identify MAC interacting proteins86 
In addition to the three core proteins, another 22 proteins were 
identified as MAC members including 19 proteins that showed 
homology to members of the Nineteen Complex (NTC) in yeast 
and humans. This complex plays roles in spliceosome assembly, 
DNA repair and cell-cycle progression. Two MAC complex mem-
bers, MAC3A and MAC3B, are homologous to the founding 
member of the NTC in yeast. Arabidopsis mac3a/mac3b plants 
have compromised immunity to PtoDC3000 and PtoDC3000 
expressing the ETI inducing T3SEs AvrRps4 or AvrPphB, imply-
ing a role for the MAC in both PTI and ETI. Further, mac3a/
mac3b mutants suppress constitutive SNC1 activation, confirm-
ing its role downstream of SNC1 in mediating ETI.86 Currently, 
it is unclear if MAC mediates ETI through altered transcription 
or splicing. However, the role of MAC in ETI signaling suggests 
that RNA processing and/or splicing play crucial roles in ETI.

Conclusions

Our current molecular understanding of plant ETI has been 
shaped by genetic studies. More recently, proteomic approaches 
have expanded our knowledge of the players and mechanisms 
involved in ETI using both global and targeted proteomic 
approaches (Table 1 and Table 2). Despite these advances, the 
proteomics of ETI still faces important challenges. ETI com-
plexes are often membrane associated and their study incurs 
the challenges faced by researchers studying membrane pro-
teins, including extraction and maintenance of complex integ-
rity during purification. It is unclear if complexes isolated from 
plasma membrane microdomains represent protein complexes 
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maintained by protein-protein interactions or bridged together 
by common lipid properties maintained during extraction proce-
dures. Although significant advances have been made in global 
analyses, abundant proteins still confound deep protein discov-
ery in many studies. Consequently, global proteomic analyses 
have failed to identify components of ETI that have been uncov-
ered using genetic approaches. These limitations are likely due to 
their low abundance, subcellular localization and/or their lack 
of changes in abundance during ETI signaling. Rather, global 
analyses to date have provided insight into the output of ETI 
including changes in photosynthesis, redox regulation and lipid 
metabolism rather than signaling mechanisms. On the other 
hand targeted proteomics approaches, including affinity purifi-
cation of known immune components, have been more success-
ful at advancing our knowledge of ETI signaling, but lack the 
breadth of responses revealed by global approaches.

Future advances in plant proteomics will require continued 
application of the most advanced mass spectrometry technologies 
and sample preparation techniques. This may involve the devel-
opment of a repository of contaminant plant proteins identified 
using affinity purification-mass spectrometry analogous to the 

contaminant repository for affinity purification (the CRAPome) 
developed for humans and yeast.87 Despite current limitations, 
there is no doubt that proteomic approaches form a crucial com-
ponent for future advances in the study of ETI signaling. These 
will include the characterization of more NB-LRR complexes, 
comparative proteomic analyses of ETI induced by different 
T3SE as well as the temporal and spatial dynamics of the ETI 
response. The proteomic age of ETI research should continue 
to increase in momentum as access to proteomic facilities, latest 
technologies and expertise continues to increase. Currently, the 
field is perfectly positioned to build on the foundation provided 
by classical genetics, and to complement advanced genomics 
approaches provided by next-generation sequencing technologies.
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