
Journal of Cancer 2019, Vol. 10 
 

 
http://www.jcancer.org 

3291 

JJoouurrnnaall  ooff  CCaanncceerr  
2019; 10(14): 3291-3302. doi: 10.7150/jca.29872 

Research Paper 

A Propensity Score-adjusted Analysis of the Effects of 
Ubiquitin E3 Ligase Copy Number Variation in 
Peripheral Blood Leukocytes on Colorectal Cancer Risk 
Haoran Bi, Yupeng Liu, Tian Tian, Tingting Xia, Rui Pu, Yiwei Zhang, Fulan Hu, and Yashuang Zhao 

Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, People's Republic of China.  

 Corresponding authors: Yashuang Zhao, Ph.D., Department of Epidemiology, Public Health College, Harbin Medical University, 157 Baojian Street, Nangang 
District, 150081 Harbin, People’s Republic of China. Tel: 86-(0)451-87502823; Fax: 86-(0)451-87502885; E-mail: zhao_yashuang@263.net and Fulan Hu, Ph.D., 
Department of Epidemiology, Public Health College, Harbin Medical University, 157 BaojianStreet, Nangang District, 150081 Harbin, People’s Republic of 
China. Tel: 86-(0)451-87502823; Fax: 86-(0)451-87502885; E-mail: hufulan@ems.hrbmu.edu.cn 

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license 
(https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. 

Received: 2018.09.11; Accepted: 2019.05.07; Published: 2019.06.02 

Abstract 

Background: The ubiquitin ligases E3 (E3s) plays a key role in the specific protein degradation in 
many carcinogenic biological processes. Colorectal cancer (CRC) development may be affected by 
the copy number variation (CNV) of E3s. Prior studies may have underestimated the impact of 
potential confounding factors' effects on the association between gene CNV and CRC risk, and CRC 
risk predictive model integrating gene CNV patterns is lacking. Our research sought to assess the 
genes CNVs of MDM2, SKP2, FBXW7, β-TRCP, and NEDD4-1 and CRC risk by using propensity 
score (PS) adjustment and developing models that integrate CNV patterns for CRC risk predictions. 
Methods: This study comprising 1036 participants used traditional regression and different PS 
techniques to adjust the confounding factors to evaluate the relationships between five gene CNVs 
and CRC risk, and to establish a CRC risk predictive model. The AUC was applied to evaluate the 
effect of the model. The categorical net reclassification improvement (NRI) and the integrated 
discrimination improvement (IDI) were analyzed to evaluate the discriminatory accuracy 
improvement among the models. 
Results: Compared to variable adjustment, the odds ratios (ORs) tended to be conservative and 
accurate with narrow confidence intervals (CIs) after PS adjustment. After PS adjustment, MDM2 
amplification was related to increased CRC risk (Amp-pattern: OR = 8.684, 95% CI: 1.213-62.155, 
P = 0.031), whereas SKP2 deletion and the (del+amp) genotype were associated with reduced CRC 
risk (Del-pattern: OR = 0.323, 95% CI: 0.106-0.979, P = 0.046; Var-pattern: OR = 0.339, 95% CI: 
0.135-0.854, P = 0.024). The predictive model integrating the gene CNV pattern could correctly 
reclassify 1.7% of the subjects. 
Conclusions: MDM2 amplification and SKP2 CNVs are associated with increased and decreased 
CRC risk, respectively; abnormal CNV-integrated model is more precise for predicting CRC risk. 
Further studies are needed to verify these encouraging outcomes. 
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Introduction 
Colorectal cancer (CRC) remains an influential 

public health threat in most countries. In the United 
States alone, there are approximately 140,250 new 
CRC cases and 50,630 deaths owing to CRC are 
projected to occur in 2018 [1]. In China, CRC is still the 

fifth leading threat to men and the fourth leading 
threat to women [2]. Genetic susceptibility was shown 
to have a significant role in the etiology of CRC [3, 4]. 
Recently, copy number variation (CNV) has been 
identified as an important genomic molecular 
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biomarker of CRC predisposition [5, 6]. CNV can 
increase or decrease relapsing chromosomes, leading 
to abnormal gene expression that affects 
cancer-related biological processes [7]. 

E3 ubiquitin ligase (E3) plays a key role in the 
specific protein degradation of the ubiquitin- 
proteasome system, which participates in cell 
proliferation, differentiation, apoptosis, angiogenesis, 
and cell signaling [8]. Studies suggested that the 
abnormal expression of several key E3 members 
(MDM2 [9], SKP2 [10], FBXW7 [11], β-TRCP [12], and 
NEDD4-1 [13]) caused by CNV was associated with 
many malignancies, including CRC. MDM2 both 
negatively regulates p53 and targets p53 for 
degradation [14]. Moreover, MDM2 also interacts 
with pRb [15], E2F1 [16] and Numb [17] to participate 
in cellular processes. SKP2 is involved in cell cycle 
progression, signal transduction, and transcription by 
mediating the ubiquitination and degradation of 
some key proteins, such as cyclin E, p57, p21, and 
E2F1 [18-21]. Specifically, SKP2 mediates the 
degradation of p27 from the early S phase [22] and 
c-Myc during the G1 to S phase [23] to regulate cell 
cycle transition. FBXW7 targets several key regulatory 
proteins involved in cell division and cell fate 
determination, including cyclin E1, c-Myc, c-Jun and 
Notch [24-26]. β-TRCP regulates cell signaling 
pathways by degrading key signal transduction 
factors, such as β-catenin for Wnt/β-catenin signaling 
and IκBα for NF-κB signaling [27, 28]. β-TRCP also 
ubiquitylates several cell cycle regulators, such as 
EMI1/2, WEE1A, and CDC25 [29]. NEDD4-1 not only 
targets PTEN for proteasomal degradation but also 
transports PTEN into the nucleus [30]. In addition, 
NEDD4-1 targets several important proteins for 
degradation, such as Ras [31], MDM2 [32], 
HER3/ErbB3 [33], EGFR [34], and Notch [35]. 

Currently, CNV in germline DNA is attracting 
public attention [36, 37], while the relationship 
between E3s CNV in peripheral blood leukocyte DNA 
and CRC risk is still poorly explored. CRC risk 
predictive models mainly incorporate family history, 
lifestyle and environmental risk factors. Moreover, the 
predictive effectiveness of models considering single 
nucleotide polymorphisms (SNPs) and environmental 
factors are not ideal in that the areas under the curve 
(AUC) of the receiver operating characteristic (ROC) 
curve are between 0.57~0.73 [38-40]. CNV as a 
regional DNA structural variation may provide more 
powerful evidence for the CRC risk prediction. 

Recently, there has been increasing interest in 
propensity score (PS), with PS being a balancing score, 
defined as the probability of patients being assigned 
to an intervention given a set of covariates [41]. 

Additionally, a comparison of traditional logistic 
regression using PS to control numerous confounders 
can be more efficient [42]. 

The purpose of this second analysis study was to 
investigate whether the results of our primary study 
that focused on the associations between gene CNVs 
of MDM2, SKP2, FBXW7, β-TRCP, and NEDD4-1 and 
CRC risk analyzed with traditional logistic regression 
[43] can be attenuated by adjusting the potential 
confounding factors by PS method. We further 
developed CRC risk predictive models integrating 
different CNV patterns and measured their predictive 
power. 

Materials and Methods 
Subjects and data collection 

After obtaining informed consent from study 
subjects, and approval from the Institutional Research 
Board of Harbin Medical University, 518 CRC cases 
and 518 age- (±2 years) and residence-matched 
controls were recruited from the Tumor Hospital of 
Harbin Medical University and the Second Affiliated 
Hospital, respectively, from November 1st, 2004 to 
May 1st, 2010 (Figure 1). All participants were 
interviewed face-to-face with a structured standard 
questionnaire that was adopted from Shu et al [44], 
collecting information on demographic 
characteristics, lifestyle factors (including family 
history, smoking, alcohol consumption, occupational 
physical activity), and diet during the 12 months 
preceding the interview. 

DNA extraction and CNV detection 
We extracted genomic DNA from 1036 whole 

blood samples using QIAGEN DNeasy Blood & 
Tissue Kit (Qiagen, Hilden, Germany, Cat#51106). 
The copy numbers of MDM2, SKP2, FBXW7, β-TRCP, 
and NEDD4-1 were detected using custom designed 
TaqMan Copy Number Assays (Table S1) on an 
Applied Biosystems 7500 Fast real-time PCR system 
(Thermo Fisher Scientific, America) with a 10 µl 
reaction volume containing 20 ng DNA, 5 µl TaqMan 
Universal PCR Master Mix, 0.5 µl of the CNV assay, 
and 0.5 µl of the reference RNase P assay (Applied 
Biosystems, Carlsbad, Calif). The PCR conditions 
were as follows: 95℃ for 15 seconds and 60℃ for 1 
minute for 40 cycles. One sample with 2 copies of 
CNV was used as the quality control in every 96-well 
assay plate and every sample was repetitively 
detected three times. Then the CNV detection results 
were analyzed by Copy Caller version 2.0 software 
(Applied Biosystems) to estimate the gene copy 
numbers. 
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Figure 1. The flow of participants. 

 

Propensity score method 
Before PS weighing, the missing values were 

addressed using multiple imputations. We used the 
PS strategy to overcome the possible biases in 
selection and observed differences in baseline 
characteristics between participants. The estimates of 
the probability of being in the two groups were 
derived from a multivariable logistic regression 
model, including the variables that could potentially 
affect the CRC risk [45]. We applied stepwise 
screening to select the independent variables in the 
regression analysis with an entering significance level 
of 0.05 and an excluding significance level of 0.2. The 
model goodness-of-fit test and predictive power were 
validated with the Hosmer-Lemeshow and C statistic, 
respectively. The covariates balance after PS matching 
was checked using statistical significance testing (P 
values < 0.05 in the overall analysis, P values < 0.01 in 
PS stratification by Bonferroni’s correction [46]) [47].  

After estimating PS, we applied three PS 
adjusting methods (PS matching, PS stratification and 
regarding PS as an additional covariate), and the PS 
matching was performed as a 1:1 nearest neighbor 
matching analysis with the caliper of 0.2 and without 
replacement [48]. Five subclasses were stratified 
based on the quantiles of the score. Additionally, we 
applied four regression analyses with different 
covariate adjustments. The first analysis calculated 
the crude odds ratio (OR); the second analysis was 
adjusted for the confounding factors that included in 
the PS in a traditional multiple regression; the third 
analysis was adjusted by PS as a covariate; and in the 
last analysis, the cases with the extreme scores were 

excluded based on the third analysis to exam the 
authenticity and stability. Finally, we performed 
subgroup analyses according to tumor location and 
Duke's Stage to assess CRC risk. 

Statistical analyses 
We assessed the homogeneity between groups 

using Student’s t-test for continuous variables and a 
Chi-squared test for categorical variables, and we 
used a paired t-test or McNemar’s test for PS matched 
paired data. The stratification data were analyzed by 
the Mantel-Haenszel method [49]. We used the ORs 
and corresponding 95% confidence intervals (95% 
CIs) to estimate the associations between MDM2, 
SKP2, FBXW7, β-TRCP, and NEDD4-1 CNVs and CRC 
risk via conditional and unconditional logistic 
regression. We defined two copies as the wild-type 
(Wt), more than two copies as the amplification-type 
(Amp) and less than two copies as the deletion-type 
(Del). Three additive CNV patterns were defined as 
follows: Del v.s. amp+wt (Del-pattern), Amp v.s. 
del+wt (Amp-pattern), and Del+amp v.s. wt 
(Var-pattern). The 95% CIs for the AUC, the 
categorical net reclassification improvement (NRI) 
and the integrated discrimination improvement (IDI) 
were estimated using the MedCalc® version 9.5 
(MedCalc Software, Mariakerke, Belgium) and the 
PredictABEL package in R software version 3.4.0, 
respectively. Other analyses were performed using 
SPSS Statistics version 24.0 (IBM, Inc., USA). All 
statistical tests were two-sided, P values < 0.05 were 
considered significant in the overall analysis, and P 
values < 0.025 were considered significant in 
subgroup analysis by Bonferroni’s correction [46]. 
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CRC risk predictive models with CNV 
To explore the predictive effects of CNV patterns 

on CRC risk, we constructed four integrated 
predictive models: model 1 comprised age, gender, 
occupation, marital status, nationality, family history 
of CRC, and factors of smoking and drinking 
(BI-model); models 2-4 were based upon model 1 and 
added five gene Del-pattern, Amp-pattern, and 
Var-pattern, respectively. The ROC curves and the 
AUCs were compared with the DeLong method [50]. 
We applied the risk reclassification table to display 
the number of subjects predicted to be at consistent or 
different risk categories by the basic and extended 
models [51], in which the individuals in the 
medium-risk category may show more shift in risk 
category and individuals in the marginal-risk 
category may be more consistent in the two compared 
models [52]. We further introduced NRI and IDI to 
evaluate the improvement in the discriminatory 
accuracy of each model (taking 0.3 and 0.6 as the 
cut-off points). NRI assesses the improvement in the 
classification of subjects into risk categories after 
adding different CNV pattern into the basic model 
and IDI reflects the change in the predicted 
probability between the two models [51]. The 
predictive models were also evaluated in subgroups 
based on tumor location and Duke's Stage. 

Results 
Characteristics of participants 

The distribution of patients’ characteristics 
before and after PS matching was shown in Table 1, 
and after 1:1 PS matching, the covariates were 
adequately balanced in the PS-matched dataset (Table 
1). 

Association between gene CNV and CRC risk 
The CNV frequencies of the five genes and the 

relationships between the gene CNVs and CRC risk 
with unadjusted, variable adjustment, and PS 
adjustment were shown in Figure 2. Compared to 
variable adjustment, the ORs tended to be 
conservative with narrower confidence intervals after 
PS adjustment. Figure 2 shows the ORs for the 
associations between MDM2 amplification and CRC 
risk were 8.848 (95% CI: 1.231-63.595, P = 0.030) and 
8.684 (95% CI: 1.213-62.155, P = 0.031) after PS 
adjustment for Amp v.s. Wt and Amp-pattern, 
respectively. In the variable adjustment, the ORs were 
13.291 (95% CI: 1.179-149.791, P = 0.036 for Amp v.s. 
Wt) and 12.659 (95% CI: 1.137-140.921, P = 0.039 for 
Amp-pattern), respectively.  

The ORs for the relationship between the loss of 
SKP2 and CRC risk were 0.314 (95% CI: 0.102-0.967, P 

= 0.044) and 0.323 (95% CI: 0.106-0.979, P = 0.046) after 
PS adjustment for Del v.s. Wt and Del-pattern, 
respectively, which became noticeably significant 
compared with the variable adjusting ORs (Figure 2). 
The ORs of the relationship between SKP2 CNVs and 
CRC risk in Var-pattern were 0.322 (95% CI: 
0.111-0.935, P = 0.039) for variable adjustment and 
0.339 (95% CI: 0.135-0.854, P = 0.024) for PS 
adjustment (Figure 2). However, we did not observe 
any significant associations between the CNVs of 
FBXW7, β-TRCP, and NEDD4-1 and CRC risk (Figure 
2).  

After stratified on PS, covariates were balanced 
in each stratification, only drinking alcohol remained 
significant in the first and fifth quintiles (Table S2), 
and we observed the similar relations between gene 
CNV and CRC risk (Figure S1). In the PS matching 
analysis, we only found the same trend but no 
significant results (Figure S2). 

Sensitivity analyses  
As a post hoc sensitivity analysis, we removed 

the individuals with the extreme score to ensure 
comparable participants’ characteristics between 
groups. Similar findings to our main analysis were 
obtained when we only included participants with 
similar PS (Figure S3). 

The predictive effect of CNV models 
We first constructed a BI-model, whose AUC for 

CRC risk was 0.809 (95% CI: 0.784-0.833), and then, we 
added gene CNVs by different variation patterns and 
the AUCs for the BI+Del-model, BI+Amp-model and 
BI+Var-model were 0.814 (95% CI: 0.789-0.838, P < 
0.001), 0.816 (95%CI: 0.791-0.839, P < 0.001) and 0.818 
(95% CI: 0.793-0.841, P < 0.001), respectively (Table 2). 
The predictive efficiency of models was compared by 
delta-AUC and NRI / IDI. Compared with the 
BI-model, the BI+Var-model increased the AUC by 
0.009 (95% CI: 0.002-0.015, P = 0.014), which could 
more accurately identify 1.7% (95% CI: 0.003-0.052, P 
< 0.001) of participants as CRC cases or controls 
(Table 3). 

Subgroup analysis 
Figure 3A shows, in colon cancer, the ORs of 

associations between SKP2 abnormal copy number 
and cancer risk were 0.235 (95% CI: 0.081-0.684, P = 
0.009) and 0.272 (95% CI: 0.115-0.646, P = 0.003) for 
variable adjustment and PS adjustment, respectively. 
In rectal carcinoma, MDM2 amplification was 
associated with 15.578 (95% CI: 1.520-159.672, P = 
0.021) and 14.999 (95% CI: 1.477-152.326, P = 0.022) 
times CRC risk after PS adjustment for Amp v.s. Wt 
and Amp-pattern, respectively (Figure 3B). 
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Table 1. Distribution of demographic and environmental information of CRC patients and controls before and after PS matching. 

Characteristics Overall PS matching 
CRC (518),(%) Controls (518),(%) P valuea CRC (185),(%) Controls (185),(%) P valuea 

Age, years   0.687   0.562 
 Mean ± s.d. 59.8±10.6 60.5±11.2  60.0±11.6 59.6±10.5  
 ≤ 50 100(19.3%) 100(19.3%)  42(22.7%) 36(19.5%)  
 50-60 165(31.9%) 175(33.8%)  55(29.7%) 65(35.1%)  
 60-70 143(27.6%) 148(28.6%)  47(25.4%) 50(27.0%)  
 > 70 110(21.2%) 95(18.3%)  41(22.2%) 34(18.4%)  
Gender   0.002   0.938 
 Male 249(48.1%) 299(57.7%)  96(51.9%) 95(51.3%)  
 Female 269(51.9%) 219(42.3%)  89(48.1%) 90(48.7%)  
BMI   0.176   0.232 
 Mean ± s.d. 24.1±4.4 23.8±3.8  23.7±3.6 23.9±4.4  
 ≤ 24 274(52.9%) 262(50.6%)  97(52.4%) 101(54.6%)  
 24-28 173(33.4%) 163(31.5%)  64(34.6%) 51(27.6%)  
 > 28 71(13.7%) 93(17.9%)  24(13.0%) 33(17.8%)  
Education   0.089   0.916 
 Primary school and below 136(26.2%) 113(21.8%)  53(28.6%) 49(26.5%)  
 Junior middle school 165(31.9%) 151(29.2%)  59(31.9%) 63(34.0%)  
 Senior middle school  113(21.8%) 123(23.8%)  36(19.5%) 34(18.4%)  
 University and above 104(20.1%) 131(25.2%)  37(20.0%) 39(21.1%)  
Occupation   0.001   0.723 
 White collar 92(17.8) 68(13.1%)  26(14.1%) 22(11.9%)  
 Blue collar 268(51.7%) 328(63.3%)  97(52.4%) 104(56.2%)  
 Both 158(30.5%) 122(23.6%)  62(33.5%) 59(31.9%)  
Marriage   0.001   0.288 
 Married 496(95.8%) 468(90.4%)  179(96.8%) 175(94.6%)  
 Others 22(4.2%) 50(9.6%)  6(3.2%) 10(5.4%)  
Nationality   0.012   0.672 
 The Han nationality 505(97.5%) 489(94.4%)  178(96.2%) 179(96.8%)  
 Others 13(2.5%) 29(5.6%)  7(3.8%) 6(3.2%)  
Family history of colorectal cancer  <0.001   0.472 
 No 84(16.2%) 222(42.9%)  57(30.8%) 64(34.6%)  
 Yes 434(83.8%) 296(57.1%)  128(69.2%) 121(65.4%)  
Appendicitis   0.295   0.565 
 No 85(16.4%) 98(18.9%)  27(14.6%) 29(15.7%)  
 Yes 433(83.6%) 420(81.1%)  158(85.4%) 156(84.3%)  
Refined grains, g/day   <0.001   0.772 
 ≤ 250 274(52.9%) 388(74.9%)  107(57.8%) 109(58.9%)  
 > 250 244(47.1%) 130(25.1%)  78(42.2%) 76(41.1%)  
Roughage, g/week   0.012   0.527 
 < 50 250(48.3%) 210(40.5%)  80(43.2%) 74(40.0%)  
 ≥ 50 268(51.7%) 308(59.5%)  105(56.8%) 111(60.0%)  
Vegetable, times/week   <0.001   0.674 
 ≤ 2 317(61.2%) 259(50.0%)  108(58.4%) 104(56.2%)  
 > 2 201(38.8%) 259(50.0%)  77(41.6%) 81(43.8%)  
Fruit, times/week   0.236   0.979 
 ≤ 2 244(47.1%) 225(43.4%)  87(47.0%) 87(47.0%)  
 > 2 274(52.9%) 293(56.6%)  98(53.0%) 98(53.0%)  
Fat meat   <0.001   0.793 
 No 323(62.4%) 255(49.2%)  108(58.4%) 105(56.8%)  
 Yes 195(37.6%) 263(50.8%)  77(41.6%) 80(43.2%)  
Fish, times/week   <0.001   0.597 
 ≤ 1 405(78.2%) 285(55.0%)  138(74.6%) 133(71.9%)  
 > 1 113(21.8%) 233(45.0%)  47(25.4%) 52(28.1%)  
Seafood, times/week   0.462   0.800 
 ≤ 1 336(64.9%) 325(62.7%)  127(68.7%) 130(70.3%)  
 > 1 182(35.1%) 193(37.3%)  58(31.3%) 55(29.7%)  
Braised fish, times/week  0.004   0.674 
 ≤ 1 328(63.3%) 371(71.6%)  125(67.6%) 129(69.7%)  
 > 1 190(36.7%) 147(28.4%)  60(32.4%) 56(30.3%)  
Egg, /week   0.025   1.000 
 ≤ 3 196(37.8%) 232(44.8%)  78(42.2%) 78(42.2%)  
 > 3 322(62.2%) 286(55.2%)  107(57.8%) 107(57.8%)  
Tea   0.085   0.952 
 yes 142(27.4%) 118(22.8%)  45(24.3%) 45(24.3%)  
 no 376(72.6%) 400(77.2%)  140(75.7%) 140(75.7%)  
Sausage, times/month   <0.001   0.730 
 ≤ 1 382(73.7%) 448(86.5%)  155(83.8%) 152(82.2%)  
 > 1 136(26.3%) 70(13.5%)  30(16.2%) 33(17.8%)  
Spicy food, times/week   0.949   0.855 
 ≤ 3 292(56.4%) 291(56.2%)  97(52.4%) 98(53.0%)  
 > 3 226(43.6%) 227(43.8%)  88(47.6%) 87(47.0%)  
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Characteristics Overall PS matching 
CRC (518),(%) Controls (518),(%) P valuea CRC (185),(%) Controls (185),(%) P valuea 

Garlic, times/week   0.595   0.895 
 ≤ 3 304(58.7%) 296(57.1%)  107(57.8%) 105(56.8%)  
 > 3 214(41.3%) 222(42.9%)  78(42.2%) 80(43.2%)  
Chinese pickled sour cabbage, times/month <0.001   0.349 
 ≤ 2 216(41.7%) 320(61.8%)  92(49.7%) 101(54.6%)  
 > 2 302(58.3%) 198(38.2%)  93(50.3%) 84(45.4%)  
Canned fruit, times/week 0.557   0.483 
 ≤ 3 464(89.6%) 459(88.6%)  165(89.2%) 169(91.4%)  
 > 3 54(10.4%) 59(11.4%)  20(10.8%) 16(8.6%)  
Canned meat, times/week  0.767   0.893 
 ≤ 3 28(5.4%) 30(5.8%)  7(3.8%) 8(4.3%)  
 > 3 490(94.6%) 488(94.2%)  178(96.2%) 177(95.7%)  
Tap-water    <0.001   0.772 
 Yes 418(80.7%) 147(28.4%)  117(63.2%) 108(58.4%)  
 No 100(19.3%) 371(71.6%)  68(36.8%) 77(41.6%)  
Leftovers, times/week   <0.001   0.830 
 ≤ 3 301(58.1%) 355(68.5%)  116(62.7%) 114(61.6%)  
 > 3 217(41.9%) 163(31.5%)  69(37.3%) 71(38.4%)  
Physical exercise   <0.001   0.853 
 Yes 455(87.8%) 312(60.2%)  143(77.3%) 142(76.8%)  
 No 63(12.2%) 206(39.8%)  42(22.7%) 43(23.2%)  
Smoking   0.344   0.936 
 No 296(57.1%) 311(60.0%)  116(62.7%) 115(62.2%)  
 Yes 222(42.9%) 207(30.0%)  69(37.3%) 70(37.8%)  
Drinking   <0.001   0.514 
 No 226(43.6%) 376(72.6%)  82(44.3%) 88(47.6%)  
 Yes 292(56.4%) 142(27.4%)  103(55.7%) 97(52.4%)  
Tumor location   -   - 
 Colon 325(62.7%) -  - -  
 Rectum 193(37.3%) -  - -  
Duke's Stage   -   - 
 A+B 315(60.8%) -  - -  
 C+D 203(39.2%) -  - -  

CRC, Colorectal Cancer; PS, propensity score; s.d., standard deviation; BMI, Body Mass Index. 
a P values calculated using Student’s t-test for continuous variables and Pearson’s Chi-squared test for categorical variables for overall data; P values calculated using paired 
t-test or McNemar’s test for paired data. P values < 0.05 were considered statistically significant. 

 

 
Figure 2. The associations between gene CNVs and CRC risk in different adjusted models for overall participants. The forest plot showed the estimated ORs of the five genes 
associated with CRC risk and the bold squares indicated statistically significant. 

 

In Duke's Stage A+B patients, the OR of the 
relationship between SKP2 abnormal copy number 
and CRC risk was 0.330 (95% CI: 0.137-0.794, P = 

0.014) after PS adjustment (Figure 4A). In advanced 
CRC stage, compared to variable adjustment, the 
association between MDM2 amplification and CRC 
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risk became more conservative after PS adjustment 
(Figure 4B). 

We also evaluated model prediction in each 
subgroup. The BI+Var-model performed better than 
the BI-model and the other two CNV pattern models 
(BI+Del-model and BI+Amp-model) for patients with 
colon cancer and in tumor Duke's Stage A+B, it could 
correctly reclassify 7% (95% CI: 0.021-0.119, P = 0.005) 
and 4.7% (95%CI: 0.001-0.093, P = 0.048) of the 
subjects, respectively (Table S3-S4). 

 

Table 2. Diagnostic accuracy of models in the prediction of CRC 
risk. 

Models Cutoff Sensitivity Specificity AUC 95% CI  P valuea 
BI-modelb 0.50 76.83 73.36 0.809 0.784-0.833 <0.001 
BI+Del-modelb 0.51 79.73 70.85 0.814 0.789-0.838 <0.001 
BI+Amp-modelb 0.51 80.89 69.69 0.816 0.791-0.839 <0.001 
BI+Var-modelb 0.51 80.89 70.46 0.818 0.793-0.841 <0.001 

CRC, colorectal cancer; AUC, area under the curve; CI, confidence interval. 

a P values < 0.05 were considered statistically significant. 
b BI-model, model included age, gender, occupation, marital status, nationality, 
family history of CRC, and factors of smoking and drinking; BI+Del-model, model 
included information in BI-model and five gene deletion in Del-pattern (Del v.s. 
wt+amp); BI+Amp-model, model included information in BI-model and five gene 
amplification in Amp-pattern (Amp v.s. wt+del); BI+Var-pattern, model included 
information in BI-model and five gene variation in Var-pattern (Del+amp v.s. wt). 

 

Table 3. The reclassification table and analysis for categorical net 
reclassification improvement and integrated discrimination 
improvement for the overall participants. 

BI-model BI+Del-model BI+Amp-model BI+Var-model 
[0, 
0.3) 

[0.3, 
0.6) 

[0.6, 
1] 

RC% [0, 
0.3) 

[0.3, 
0.6) 

[0.6, 
1] 

RC% [0, 
0.3) 

[0.3, 
0.6) 

[0.6, 
1] 

RC% 

CRC cases             
[0, 0.3) 70 1 0 1 64 7 0 10 62 9 0 13 
[0.3, 0.6) 0 54 0 0 3 49 2 9 1 51 2 6 
[0.6, 1] 1 9 383 3 0 9 384 2 0 20 373 5 
Controls             
[0, 0.3) 296 3 0 1 288 11 0 4 284 15 0 5 
[0.3, 0.6) 8 72 1 11 4 77 0 5 9 71 1 12 
[0.6, 1] 0 12 126 9 0 14 124 10 0 26 112 19 
Total             
[0, 0.3) 366 4 0 1 352 18 0 5 346 24 0 6 
[0.3, 0.6) 8 126 1 7 7 126 2 7 10 122 3 10 
[0.6, 1] 1 21 509 4 0 23 508 4 0 46 485 9 
NRI (95% 
CI)a 

0.014(-0.009-0.036), 
P=0.232 

0.008(0.001-0.034), 
P<0.001 

0.017(0.003-0.052), 
P<0.001 

IDI (95% 
CI)a 

0.007(0.002-0.013), 
P=0.007 

0.009(0.004-0.014), 
P=0.001 

0.014(0.007-0.020), 
P<0.001 

Delta-AUC 
(95% CI)a 

0.005(-0.001-0.010), 
P=0.083 

0.007(0.001-0.013), 
P=0.031 

0.009(0.002-0.015), 
P=0.014 

CRC, colorectal cancer; RC, reclassification percent; CI, confidence interval; NRI, 
net reclassification improvement; IDI, integrated discrimination improvement; 
AUC, area under the curve. 
a P values < 0.05 were considered statistically significant. 

 

Discussion 
In this re-analysis case-control study, we applied 

the PS method to balance all putative influential 
factors across groups to inspect the more accurate 
relationships between the germline CNVs of MDM2, 
SKP2, FBXW7, β-TRCP, and NEDD4-1 and CRC risk. 
Further adjustment for the PS slightly reduced the 
point estimates of the associations, showing that 

MDM2 amplification significantly increased CRC risk, 
and deletion and the (Del+Amp) genotype of SKP2 
were associated with reduced CRC risk. While the 
confidence intervals of the estimate were clearly 
narrowed, our results became more conservative and 
accurate by adjusting PS. Additionally, in sub-set 
analysis, the MDM2 copy number gain was associated 
with increased CRC risk in rectal carcinoma and 
advanced CRC stages, and the SKP2 abnormal copy 
number showed a relationship between reduced CRC 
risk in colon cancer and early Duke's Stages. 
Moreover, the model-integrated gene abnormal copy 
number pattern could improve the predictive 
efficiency of the model in CRC risk prediction 
compared with the BI-model. 

The finding of the infrequent MDM2 CNVs (21 
in 518 CRC cases and 9 in 518 controls, respectively) in 
peripheral blood was in line with the previous study, 
in that MDM2 amplification was observed in only 1 of 
88 primary cases [53]. Either as a dual regulator of p53 
or being p53-independent, the MDM2 features in cell 
cycles progression, apoptosis and DNA damage 
responses confirmed that amplified MDM2 had a 
comprehensive effect on tumorigenesis [54]. 

In our observations, the frequency of SKP2 
deletion was two times that of the amplification 
(specifically, 50 and 25 in total participants 
respectively). SKP2 down-regulation is critical for 
cell-cycle arrest, and its deletion restricts oncogenesis 
and induces apoptosis [55]. Zhu et al. suggested that 
SKP2 copy overrepresentation (13%) and loss (35%) 
were both observed in adenocarcinoma [56]. We first 
focused on the level of SKP2 copy in germline DNA, 
so further research of the copy level of SKP2 in CRC in 
peripheral blood is necessary to confirm our results. 

The results of PS presented here should be seen 
as complementary to our earlier results [43] and will 
tend to be conservative and accurate estimates of the 
associations between gene CNV and CRC risk. Kerry 
C. Cho et al. [57] and Isseki Maeda et al. [58] also 
found that further adjustment for PS slightly modified 
previous associations. Moreover, study also found 
that among the four popular PS methods (including 
matching and stratifying on the basis of the PS, 
Inverse probability weighting applied to each 
observation, and simply including the PS as an 
additional variable in a regression model) covariate 
adjustment performed better than other three [59], 
which was consistent with our results. Although we 
attempted to match participants considering the best 
possible confounder balance, limited data were 
available for analyzing the effects of the CNV. Studies 
by Varlotto J et al. [60] and Shirvani SM et al. [61] also 
found that PS matching analyses limited the 
effectiveness of comparisons. Nevertheless, our 
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multivariate analysis for adjusting PS showed 
statistically significant associations. 

We are the first to introduce CNV patterns into 
predictive models to forecast the CRC risk. By adding 
the integrated information of CNVs of MDM2, SKP2, 
FBXW7, β-TRCP, and NEDD4-1, the model prediction 
became more effective. Compared with the BI-model, 
the BI+Var-model significantly improved the 

discriminatory performance, as gene CNV 
information increased the AUC by 1.11%. Recently, a 
CRC prediction model was developed with the age 
and family history of CRC together with the gene SNP 
information, which reported that the inclusion of 8 
SNPs could increase the AUC by 0.5% to 4.2% beyond 
the AUC provided by conventional risk factors [39]. 
Another CRC predictive model using binary logistic 

 

 

 
Figure 3. Subgroup analysis by tumor location for the associations between gene CNVs and CRC risk in different adjusted models. A. in colon cancer and B. in rectal cancer. 
The forest plot showed the estimated ORs of the five genes associated with CRC risk and the bold squares indicated statistically significant.  
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regression combined with the effect of age, gender, 
family history and 10 SNPs with overall participants 
(42103 individuals) showed that the AUC range was 
0.57-0.59 [38], while our CNV model showed that the 
AUC range was 0.814-0.818. As a regional variation of 
genes rather than single nucleotides variation, CNV 

probably has a stronger association with CRC risk and 
may contain more abundant information for CRC risk 
prediction. Despite being limited by our relative low 
frequency of CNVs in the five genes, enlarging the 
number of related gene CNV detections may be 
facilitative to improve the prediction efficiency. 

 
 

 

 
Figure 4. Subgroup regression analysis by tumor Duke's Stages for the associations between gene CNVs and CRC risk in different adjusted models. A. in Duke's Stage A+B. B. 
in Duke's Stage C+D. The forest plot showed the estimated ORs of the five genes associated with CRC risk and the bold squares indicated statistically significant. 
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We calculated NRI and IDI, involving the 
classification of case and control in risk categories and 
determining how the new model should be 
reclassified when adding new biomarkers [62]. 
Additionally, NRI is sensitive to arbitrary cut-off 
values [51], so the cut-off points were set as 0.3 to 0.6 
to explore the model calibration. The BI+Var-model 
resulted in the reclassification of 1.7% of the subjects 
into more accurate risk categories. If small increases in 
the AUC can bring significant improvement in 
reclassified NRI and steady growth in IDI, although 
improvements in AUC are very limited, it is worth 
incorporating such a factor into the prediction model 
[51]. 

In the stratified analysis, we observed the 
associations between MDM2 amplification and 
increased risk in the rectal tumors, as well as between 
the SKP2 (del+amp) genotype and reduced CRC risk 
in colon cancer. Studies have proposed that 
differences in gene expression levels exist between the 
colon and rectal cancer [63, 64], and overexpression of 
p53 is found more often in rectal cancer than colon 
cancer [64, 65]. MDM2 has been well recognized as a 
key regulator of p53 [54] and the close relationship 
may affect the abnormal expression of MDM2 in rectal 
cancer. Due to many cell cycle regulatory proteins 
being degraded by SKP2, in addition to microarray 
data analysis having identified cell cycle genes being 
mainly expressed in the colon rather than the rectum 
[63], it is reasonable that the protective function of 
SKP2 mainly occurs in colon cancer. 

MDM2 amplification was associated with an 
increased CRC risk in advanced stages, and SKP2 
deletion had a correlation with decreased CRC risk in 
early CRC stages. A Japanese study showed that 
MDM2 amplification in tissues was only 16 of 211 
(7.5%), and the incidence of it in Duke's Stage C was 
significantly higher than that in early A and B [66]. 
The dysregulation of SKP2 expression may occur in 
the precancerous stage, prior to obtaining an invasive 
phenotype during development [10]. Colorectal 
carcinoma forms from dysplasia of mucosal epithelial 
cells, SKP2 disordered copy number may also func-
tion at an early stage of CRC, and its level fluctuates 
as worsening grades of the disease progression. 

Our analysis still had several limitations. First, 
this is a retrospective study, the selection and 
observation bias may still have affected the results. 
Second, we did not add gene-dietary interactions to 
the predictive models because our analysis was based 
on the variables and outcomes collected from 
previous data, and some environmental factors were 
obtained by frequency rather than quantity, possibly 
weakening the efficiency of the analysis. Finally, the 
study was limited by the sample size and the 

percentage of the detectable gene CNVs, so the 
statistical performance needs to be improved in 
further studies.  

Despite these limits, the strengths of this study 
are clear. First, considering many potential 
confounding factors by applying PS adjustment, we 
concluded that MDM2 amplification and SKP2 CNVs 
are associated with increased and decreased CRC risk, 
respectively. Second, we were also the first to consider 
the effectiveness of different CNV patterns and 
introduced them into a CRC risk predictive model. 
Our results indicated that an abnormal 
CNV-combined pattern may be more accurate for 
predicting CRC risk, and further research needs to be 
conducted to validate the efficiency of gene CNV 
models in CRC risk prediction. 
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