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Summary

CD147 is a widely expressed plasma membrane protein that has been impli-
cated in a variety of physiological and pathological activities. It is best known
for its ability to function as extracellular matrix metalloproteinase inducer
(hence the other name for this protein, EMMPRIN), but has also been shown
to regulate lymphocyte responsiveness, monocarboxylate transporter expres-
sion and spermatogenesis. These functions reflect multiple interacting
partners of CD147. Among these CD147-interacting proteins cyclophilins
represent a particularly interesting class, both in terms of structural consid-
erations and potential medical implications. CD147 has been shown to func-
tion as a signalling receptor for extracellular cyclophilins A and B and to
mediate chemotactic activity of cyclophilins towards a variety of immune
cells. Recent studies using in vitro and in vivo models have demonstrated a
role for cyclophilin–CD147 interactions in the regulation of inflammatory
responses in a number of diseases, including acute lung inflammation, rheu-
matoid arthritis and cardiovascular disease. Agents targeting either CD147 or
cyclophilin activity showed significant anti-inflammatory effects in experi-
mental models, suggesting CD147–cyclophilin interactions may be a good
target for new anti-inflammatory therapeutics. Here, we review the recent
literature on different aspects of cyclophilin–CD147 interactions and their
role in inflammatory diseases.
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Introduction

Leucocyte trafficking and recruitment are critical compo-
nents of inflammation-mediated pathology. The main regu-
lators of leucocyte trafficking are chemokines, a family of
chemoattracting cytokines that control cell migration and
adhesion [1]. However, other factors, in particular extracel-
lular cyclophilins, can also induce potent chemotactic
responses in immune cells (reviewed in [2]). We [3–6] and
others [7,8] have observed that secreted cyclophilin A
(CypA) is a potent leucocyte chemoattractant in vitro. In
addition, CypA has also been shown to elicit inflammatory
responses, characterized by a rapid influx of leucocytes,
when injected in vivo [7,8]. Based on the potent chemotactic
properties of cyclophilins, we proposed several years ago [2]
that extracellular cyclophilins might contribute directly to
leucocyte recruitment during inflammatory responses and
thereby complement chemokines as innate immunity
factors. In studies aimed at establishing the mechanism
whereby cyclophilins mediate their chemotactic activity, our

group was the first to identify CD147 as the principal signal-
ling receptor for extracellular cyclophilins [3]. Indeed, all
human [3,6] and mouse [4,5] leucocytes examined to date
require expression of CD147 for extracellular cyclophilin-
dependent chemotaxis to occur. A recently published review
covered CD147 function in health and disease [9], so in this
review we will focus upon cyclophilin–CD147 interactions
and will overview the role that these interactions might play
in disease pathology.

Physiological functions of CD147 and cyclophilins

CD147 nomenclature

CD147 is a widely expressed integral plasma membrane
glycoprotein. It has been characterized under a variety of
names in different species: OX-47 antigen [10] and CE9 [11]
in rats, gp42 [12] and basigin [13,14] in mice, HT7 [15],
neurothelin [16,17] and 5A11 antigen [18] in chickens. In
humans, this protein was first discovered by Biswas and
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colleagues as a tumour cell-derived factor stimulating pro-
duction of a collagenase (matrix metalloproteinase type 1,
MMP-1) by fibroblasts [19,20] and was designated ‘tumour
cell-derived collagenase stimulatory factor’ (TCSF) [21].
Later, it was found that TCSF is expressed not only on cancer
cells, but also on normal cells [22,23]. The same human
protein was described in other studies as hBasigin, M6
or Hab18G [24,25]. It has become better known under
the name ‘extracellular matrix metalloproteinase inducer’
(EMMPRIN), because this property of the protein has been
studied most extensively. For consistency, in this review we
will refer to this protein by its recently adopted designation,
CD147 [26].

CD147 is expressed at varying levels in many cell types,
including haematopoietic, epithelial and endothelial cells
[10,22,27]. It is up-regulated markedly on CD71-positive
early erythroblasts, and in heart, placenta and thyroid tissues
[28]. Human CD147 is a 269 amino acid-long protein that
belongs to the type I integral membrane protein family with
a predicted molecular mass of 27 kDa [23]. The N-terminal
extracellular part of CD147 consists of two immuno-
globulin (Ig)-like domains that are heavily glycosylated
[12–14,29,30]. Endoglycosidase F treatment leads to a
mobility shift from 58 kDa to 28 kDa approximately, sug-
gesting that the majority of CD147 glycosylation is N-linked
[24]. Recently, another form of CD147, containing an addi-
tional extracellular membrane-distal Ig-like domain, has
been characterized [31]. This form was shown to be respon-
sible for the majority of homophilic CD147 interactions.

Phylogenetically, the CD147-like molecules can be traced
in invertebrate organisms as far back as Drosophila and Schis-
tosoma [32,33]. When compared with other members of the
immunoglobulin superfamily, CD147 is placed as a separate
lineage neighbouring the CD2 and CD4a clusters [34].

CD147 functions

Much of our understanding of CD147 functions comes from
studies of CD147 knock-out mice [35,36]. These animals are
defective in lymphocyte responsiveness [35], spermatogen-
esis [37,38], retinal [39,40] and neurological [41] functions
at the early stages of development. Female mice deficient in
CD147 are infertile due to the failure of female reproductive
processes including implantation and fertilization [36,37].
The implantation defect may indicate a misregulation of
MMP production [42]. CD147-null animals also show a dra-
matic reduction in accumulation of the monocarboxylate
transporter (MCT)-1 and -3 proteins in the retinal pigment
epithelium, supporting a proposed role for CD147 in target-
ing these transporters to the plasma membrane [43,44]. The
deletion of MCT-3 in the basolateral membrane of the
retinal pigment epithelium results in severely diminished
expression of CD147, confirming the functional importance
of this interaction as a regulator of CD147 expression [45].
Interestingly, positioning of the retinal lactate transporters

appears to be regulated by the rare 3-Ig-like domain form of
CD147, as cDNAs for this form have been identified only in
human and mouse retina [31]. Additionally, CD147 knock-
out mice are characterized by enhanced mitogenic response
of T lymphocytes in mixed lymphocyte reactions [35], sug-
gesting a potential negative regulatory function of CD147 in
T cell activation.

In support of such a negative regulatory role for CD147,
recent studies in which CD147 was over-expressed in Jurkat
T cells demonstrated an inhibition of nuclear factor-
activated T cell (NF-AT)-mediated T cell activation, with a
converse increase in activation when CD147 was silenced, via
the Vav1/Rac1 signalling pathway [46]. However, another
study, in which CD147 expression was silenced in Jurkat T
cells, showed a reduction, rather than an increase, in T cell
activation [47]. The reasons for this discrepancy are
unknown, although it should be noted that the first study
focused upon changes in intracellular signalling pathways
and the second measured changes in cell function. Interest-
ingly, the authors of the signalling study reported that the
inhibition of NF-AT activity by CD147 was mediated exclu-
sively by its intracellular tail, with no participation from
either the extracellular or transmembrane regions [46].
Thus, variable outcomes between studies could be due to
different functional parameters, regulated by distinct regions
of CD147, having been measured. Additional support for a
negative regulatory role by CD147 during T cell activation is
provided by in vitro studies in which anti-CD147 mono-
clonal antibodies (mAbs) were shown to inhibit activation
mediated by anti-CD3 [48–51], or phorbol myristate acetate
(PMA)/ionomycin [49], in human peripheral blood T cells
and T cell lines. Because the observed effects were functional
in nature, anti-CD147 clones with a signalling capacity must
have been selected. Alternatively, the antibodies could have
been mediating their effect by hindering sterically certain
interactions between CD147 molecules and other ligands,
including signalling partners within membrane lipid rafts
[50], adhesion partners on the cell surface [52,53] and/or
soluble partners in the extracellular microenvironment (see
below).

Cyclophilins: intracellular and extracellular activities

The second player in the cyclophilin–CD147 chemotactic
pathway is extracellular cyclophilin. Cyclophilins are best
known as ubiquitously distributed intracellular proteins
which were first recognized as the host cell receptors for the
potent immunosuppressive drug, cyclosporin A (CsA) [54].
While most studies to date have focused upon the intra-
cellular activities of cyclophilins, including their role in
regulating protein folding, their function as molecular
chaperones [55], and the activity of CypA as a modulator of
CD4+ T cell signal transduction and T helper type 2 (Th2)
cytokine production [56], accumulating evidence suggests a
role for cyclophilins as mediators of intercellular communi-
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cation via extracellular sources of the proteins [2]. Some
members of the cyclophilin family, notably cyclophilin B
(CypB), contain endoplasmic reticulum (ER)-directed signal
sequences that promote their secretion [57]. Indeed, CypB is
detected readily in both human milk [58] and plasma [59].
CypB can also be released from chondrocytes by activated
MMPs [60]. Cyclophilin A (CypA) has been shown to be
secreted by cells in response to inflammatory stimuli [7,8]
and oxidative stress [61,62]. Activated platelets have also
been demonstrated to secrete CypA [63]. Unlike CypB, CypA
does not contain any of the prototypical signal peptides
found on most proteins undergoing secretion through a clas-
sical pathway. Instead, the mechanism of CypA secretion was
shown recently to proceed via a vesicular pathway [62]. In
these studies, CypA was found to localize to the plasma
membrane of vascular smooth muscle cells following reac-
tive oxygen species (ROS) stimulation, with secreted CypA
protein detectable within 30 min of stimulation. Apart from
CypA and CypB, no other members of the cyclophilin family
have been shown to be secreted actively, although the possi-
bility remains that some intracellular cyclophilins become
extracellular due to protein release by dead or dying cells.

The active site residues of cyclophilins have been demon-
strated to be critical for both the signalling and chemotactic
activities induced by these proteins. For example, peptidyl–
prolyl cis-trans isomerase-defective CypA mutants fail to
initiate signalling events [3]. This suggests an unusual
rotamase-dependent mechanism of signalling through the
CD147 receptor. Such a mode of signalling requires only a
transient interaction between the ligand and the receptor,
consistent with a low-affinity binding interaction between
CD147 and CypA. Indeed, we demonstrated recently that
CypA can catalyse the peptidyl–prolyl cis-trans isomeriza-
tion of Pro211 in CD147 [64] (see below). Similarly, CypB
has also been shown to be enzymatically active on CD147
[65], although in this case the catalysed residue was identi-
fied as Pro180.

It is important to note that both the signalling and chemo-
tactic activities of CypA and CypB are also dependent upon
the presence of heparan sulphate proteoglycans (HSPGs),
which probably serve as primary binding sites for these
cyclophilins on target cells. Removal of HSPGs from the cell
surface of neutrophils eliminates signalling responses to
cyclophilins and abolishes cyclophilin-dependent chemot-
axis and adhesion of neutrophils and T cells [3,65]. Interest-
ingly, activation of T cells was shown to remove the
dependence of CypA-specific responses on heparans [6],
suggesting that increased CD147 expression and/or dimer-
ization in activated T cells may substitute for heparans by
enhancing CypA binding to CD147. This result supports a
model whereby cyclophilin binding to HSPGs is required to
complement a low-affinity interaction between cyclophilins
and CD147 expressed on non-activated cells. Importantly,
the rotamase activity of cyclophilins is not influenced by
HSPGs expressed on the cell surface [65].

CD147 and cyclophilins: structural and
signalling aspects

CD147 is a multi-functional molecule. In addition to its
activities described above as a cyclophilin receptor and an
inducer of MMPs, CD147 can also affect the activation and
development of T cells [48,50,66], regulate transport of
monocarboxylate transporters (MCT) to the plasma mem-
brane [67] and contribute to the blood–brain barrier func-
tion of cerebral endothelial cells [68]. Interestingly, these
different activities appear to involve different domains of
CD147. CD147 consists of a 206 amino acid extracellular
region containing two Ig-like domains, a 24 aa residue trans-
membrane domain and a 39 aa cytoplasmic domain
(Fig. 1a). The extracellular region contains three N-linked
glycosylation sites. The extracellular portion of CD147 is
quite diverse, while the 24 residue-long transmembrane
domain, represented by a hydrophobic stretch of amino
acids interrupted by a charged residue (glutamic acid), is
almost identical among different species [3,69]. This struc-
tural feature of the transmembrane domain suggests a
potential for additional functional roles besides anchoring
CD147 in the membrane. Charged residues are not usually
found in proteins spanning the membrane only once (as is
the case for CD147), because a charged residue in the middle
of the lipid bilayer is highly energetically unfavourable.
Thus, CD147 has a propensity to form complexes with other
membrane proteins thereby shielding the charge in an ener-
getically stable state. Indeed, the transmembrane domain is
responsible for many of the interactions between CD147 and
other transmembrane proteins [70], including b1 integrins
[52,71], CD43 [72] and syndecan [73] (Fig. 1a). Such inter-
actions may contribute to the activity of CD147 in leucocyte
adhesion [72,73]. They may also be involved in CD147-
mediated signalling responses. Indeed, our recent study [74]
demonstrated that the cytoplasmic domain of CD147 is not
required for extracellular-regulated kinase (ERK) activation,
a key signalling event initiated by cyclophilin-CD147 inter-
action [3,75–77], providing support for the involvement of
transmembrane CD147-associated proteins in CD147-
mediated signal transduction.

CD147 has been shown to interact with several other pro-
teins (Table 1). For example, interaction of CD147 with
MCTs, the proton-coupled transporters of monocarboxy-
lates [31,44,67], occurs within the cellular membrane
and depends critically upon the described above centrally
positioned glutamic acid residue 218 in the CD147
transmembrane domain. When association of CD147 with
monocarboxylate transporter MCT1 was disrupted by
mutating this glutamic acid, neither CD147 nor MCT1
reached the plasma membrane [78], suggesting that CD147
might be a part of the heteromeric membrane complex
involving MCTs. In support of this notion, a recent study [79]
showed the association of MCT4, CD147 and b1-integrin at
the basolateral membrane, and suggested that this complex
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may regulate cell migration through modulation of focal
adhesions. CD147 also interacts with caveolin-1 on cell sur-
faces and this interaction seems to regulate CD147 clustering
and activity negatively, thus exerting tumour-suppressing
activity [80]. Conversely, several reports suggested carcino-
genic activity of caveolin-1 via up-regulation of CD147 gly-
cosylation, which is linked to MMP induction and tumour
invasion [81,82]. Association with caveolin-1 depends upon
the second Ig domain in the extracellular portion of CD147.

Finally, leucine 252 (along with the adjacent amino acids
243–246 in the cytoplasmic domain of CD147) was identified
as a signal targeting CD147 to the basolateral membrane in
extraocular epithelia. Deletion of these amino acids results in
mistargeting of CD147 to the apical membranes [83]. This
signal seems to function only in some cell types (e.g. it was
not recognized in human retinal pigment epithelium cells
[83]), suggesting that it mediates interaction with limited
cell-specific regulators of protein trafficking. Future studies
will hopefully integrate these findings into a unifying model
of CD147 trafficking. Such a model will suggest not only new
targets for therapeutic interventions in diseases where CD147
is recognized as a pathogenic factor [e.g. cancer or rheuma-
toid arthritis (RA)], but will also explain the role of CD147 in
other biological processes, such as development of the eye or
spermatogenesis [84,85].

Addition of CypA or CypB to CD147-expressing cells ini-
tiates a signalling response characterized by Ca2+ flux and
activation of ERK1/2 kinases [3,75–77]. Genetic analysis
demonstrated that amino acids Pro280Gly281 are critical for
this signalling [3]. In addition, Pro211 is involved in interac-
tion with another cyclophilin, Cyp60, which regulates cell
surface expression of CD147 [86]. Pro211 is located either
near the end of the transmembrane domain facing the
outside of the cell or may be partially exposed and accessible
to extracellular cyclophilins. Indeed, nuclear magnetic reso-
nance (NMR) studies of the recombinant proteins revealed
that CypA-mediated isomerization of CD147 stabilizes the
rare cis-conformer of the Trp210-Pro211 peptidyl–prolyl bond,
potentially representing a ‘proline switch’ [64]. Thus,
cyclophilin/CD147 interactions may represent the first dis-
covered ligand/receptor interaction in which proline isomer-
ization on the outside of the cell results in intracellular
signalling on the inside of the cell. Although no direct inter-
action of CypA was found with Pro180 of CD147, there may
be other mediators involved in sequestering cyclophilins to
this site by way of ternary interactions. CypA forms ternary
complexes with calcineurin and calcineurin inhibitors such
as cyclosporin [87], suggesting that a complex array of inter-
actions may underlie cyclophilin/CD147 signalling. There-
fore, interaction of cyclophilin with Pro180 may be necessary
for binding, whereas subsequent interaction with Pro211

induces signal transduction. As with signalling induced by
homotypic interaction between CD147 molecules, the
mechanisms of cyclophilin-induced signalling remain
unknown. Again, additional molecules that are associated
directly and indirectly with CD147 appear to be involved in
signalling, as the cytoplasmic tail of CD147 is not necessary
for CypA-induced ERK activation [74]. Adding to the com-
plexity of the issue, it remains to be determined whether
ERK activation is in fact required for chemotactic responses
mediated by cyclophilin–CD147 interaction, or whether
some other signalling pathway is involved.

While different CD147 domains are involved in MMP
induction and chemotactic responses, these domains may be

(a)

(b)

Cell
CD147

Chemotaxis

MMP induction

Pro180

Pro211

MMP induction

Integrin β1
CD43
Syndecan–1

Ig1

Ig2

?

?

CypA
Glu218

Domain
Swapping

Fig. 1. Schematic representation of CD147 and its interactions.

(a) Matrix metalloproteinase (MMP) induction is mediated by a

homotypic interaction between CD147 molecules on different cells;

chemotactic responses are initiated by interaction between cyclophilin

and CD147. Immunoglobulin 1 (Ig1) domain is involved in MMP

induction, whereas proline 211 and possibly proline 180 are required

for interaction with cyclophilins and for cyclophilin-induced

signalling. Glutamic acid in position 218 is potentially involved in

interactions with other transmembrane proteins, such as CD43, b1

integrin and syndecan. The relevance of these interactions to disease

pathogenesis is described in the text. (b) Potential model of CD147

homophilic interactions. A recently solved structure of CD147 Ig1

domain alone has revealed that the C-terminal beta-strand of one

subunit is swapped with that of the other subunit [99]. It is still

unclear how this process is regulated. See text for details.
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close to each other due to intermolecular interactions with
other mediators. Bending of the CD147 molecule due to
interaction between the Ig domains would explain how a
single monoclonal antibody to CD147 (clone UM-8D6) can
inhibit both MMP induction and chemotactic responses
(unpublished observation).

Structural aspects of cyclophilin-independent
activities of CD147

Stimulation of MMP production by CD147 occurs both via
heterotypic cell interactions, such as those between tumour
cells and fibroblasts, and by homotypic cell interactions,
potentially representing a cyclophilin-independent means of
signalling. In fact, multiple extracellular CD147 forms have
been identified that include full-length CD147 associated

with large microvesicles where CD147 continues to stimulate
the secretion of MMPs and proinflammatory cytokines
[88–91]. Interestingly, the entire CD147 ectodomain as well as
the individual Ig-like domains are cleaved from the cell
surface by many of exactly the same MMPs that are secreted
due to CD147 stimulation [92–95]. The stimulatory activity
of these extracellular CD147-derived peptides has been
demonstrated recently. Here, the recombinant CD147
ectodomain that comprises both Ig-like domains (residues
22–205) was shown to stimulate secretion of MMPs [96] and
proinflammatory cytokines [64]. The first Ig-like domain
(Ig1 in Fig. 1a) and N-linked glycosylation are responsible for
MMP-stimulating activity [23,97,98]; however, how this
occurs remains unknown. For example, CD147 Ig-like
domains appear not to associate directly with each other at
even millimolar concentrations [64], suggesting that other

Table 1. CD147-interacting proteins.

Protein

CD147 domain

involved Interaction experiments Result of interaction Disease relevance References

CD147 Extracellular,

Ig-like domain 1

Cell adhesion assay;

biotin label

transfer/MS; peptide

screening

MMP induction Promotes tumour cell

invasion

[96,98,160]

Monocarboxylate

transporters

MCT1, 3, 4

Transmembrane Cross-linking/co-IP;

FRET;

co-localization

analysis

Facilitates MCT

surface expression

Tumour cell glycolysis [67,78,79,155,161]

CD98,

b1-integrin

Extracellular Co-IP;

cross-linking/MS

Induces homotypic cell

aggregation; affects

cytoskeletal

architecture

Aberrant cell migration

in proliferative

vitreoretinopathy

and metastatic

cancer

[52,79,162–164]

MMP-1,

MT1-MMP

Extracellular Phage display; affinity

chromatography;

immunocytochemistry;

co-localization

Induces the production

of secreted MMPs

Mediates CD147

shedding; modifies

the tumour cell

pericellular matrix to

promote invasion

[92,93]

Caveolin-1 Extracellular,

Ig domain 2

Co-IP Inhibits CD147

dimerization and

activity; upregulates

CD147 glycosylation

Tumour-suppressing

effect but also

promotes MMP

induction and

tumour invasion

[80–82]

CypA Extracellular,

P180; P211

Cross-linking/co-IP;

cell binding; solution

binding; functional

assays (signalling,

chemotaxis), NMR

Induces intracellular

signalling events and

chemotaxis;

up-regulates MMP-9

Immune cell

chemotaxis in

inflammatory

diseases; cartilage

destruction in RA

[3,64,77,165]

CypB Extracellular,

P180

Functional assays

(signalling,

chemotaxis, CD147

isomerization)

Induces intracellular

signalling events and

adhesion to matrix

Immune cell adhesion

in inflammatory

diseases

[53,65,75,166]

Cyp60 Transmembrane,

P211

Co-localization; co-IP Stimulates CD147

surface expression

Unknown [86]

FRET, fluorescence resonance energy transfer; Ig1, immunoglobulin 1; IP, immunoprecipitation; MCT, monocarboxylate transporter; MMP, matrix

metalloproteinase; MS, multiple sclerosis; NMR, nuclear magnetic resonance; RA, rheumatoid arthritis.
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protein interactions may mediate the proposed CD147 Ig1
homophilic association. Adding to this complexity, the
CD147 Ig1 domain has been found to form a highly stable
‘swapped dimer’, where one C-terminal beta-strand (residues
94–103) folds structurally into the other monomer [99]
(Fig. 1b). Although this appears to be mediated by two
proline cis/trans isomerizations (Pro91 and Pro93), there is
currently no evidence that CypA (or any other cyclophilin)
mediates such an interaction or that this isomerization can
occur spontaneously in solution [64]. Thus, how swapping
occurs, whether CypA is involved and whether domain-
swapping underlies CD147 homophilic interactions remains
to be seen. CD147 Ig1 domain-swapping may, in turn, result
in a conformational change to other interacting proteins,
similar to that of the cadherin family [100]. However, unlike
the cadherins, there is no evidence of a monomer/dimer
equilibrium for CD147 and all extracellular forms have been
found to be monomeric. Thus, CD147 Ig1 domain-swapping
represents either a misfolded form that rarely occurs for
recombinant Ig-like domains [101] or there may be mediators
of CD147 activity that induce domain-swapping and subse-
quent signalling. With regard to intracellular signalling
associated with this cyclophilin-independent activity, experi-
ments where purified CD147 was added to fibroblasts to
stimulate MMP-1 transcription demonstrated a critical role
of p38 mitogen-activated protein kinase (MAPK) in this
activation [102]. Whether p38 activation is mediated by sig-
nalling originating from the cytoplasmic tail of CD147, or
from a CD147-associated protein, remains unknown. In con-
trast, MMP-2 production by fibroblasts was shown to
be dependent upon the phospholipase A2/5-lipoxygenase
pathway, but not on MAPK p38 activation [88]. It appears
that different signalling pathways leading to MMP induction
can be initiated by CD147, suggesting a complex regulation
probably involving two kinds of signalling molecules: those
that associate directly with the CD147 cytoplasmic tail and
those that associate with CD147 indirectly, via a bridging
protein.

Role of CD147 in disease pathogenesis

Given the multiple partners and activities of CD147 it is not
surprising that this protein has been implicated in the patho-
genesis of a number of diseases. For example, CD147 might
also represent a universal co-receptor for viral entry into host
cells, as it was shown to enhance infection by human immu-
nodeficiency virus (HIV-1) and severe acute respiratory syn-
drome (SARS) coronavirus [74,103,104]. In addition, recent
reports identified CD147 as a crucial part of the multi-protein
g-secretase complex [105,106]. This complex cleaves the
b-amyloid precursor protein to produce amyloid b-peptides
associated with the formation of amyloid plaques in Alzhe-
imer’s disease patients [106]. What is surprising is that most
of pathogenic effects of CD147 are related either to MMP
induction or CD147 capacity to mediate chemotactic activity

by extracellular cyclophilins. It could be that other activities of
CD147 are not sufficiently obvious to contribute significantly
to disease pathogenesis, but most probably we simply do not
know enough to make such connections.

CD147 in cancer

The best-studied activity of CD147 is its role in cancer. This
activity is linked tightly to CD147-mediated induction of
MMPs, which promote tissue destruction and facilitate
tumour metastasis [28]. The role of CD147 in cancer has been
the topic of many studies and reviews [9,28,107,108]. CD147
stimulates MMP production by stromal fibroblasts and
endothelial cells around the tumour, as well as by tumour cells
themselves, through a mechanism involving homophilic
interactions between CD147 molecules on opposing cells
[88,93,102,109]. Elevated levels of CD147 are detected in
numerous malignant tumours and have been shown to cor-
relate with tumour progression in experimental and clinical
conditions [88,110–113]. Recently, CD147 was proposed as a
novel marker of poor outcome in serous ovarian [114], hepa-
tocellular carcinoma [115,116], advanced bladder [117] and
cervical cancer [118], lung adenocarcinoma [119] and gall-
bladder carcinoma [120]. The MMP-inducing function of
CD147 is also known to contribute significantly to tissue
repair and remodelling during cancer development as well as
several pathological conditions (reviewed recently in [121]).
Notably, CD147 has been shown to promote tissue remodel-
ling by inducing the expression of a-smooth muscle actin in
models of cardiovascular disease [122] and corneal wound
healing [123]. It has been suggested that this function of
CD147 may be tissue-specific, as well as MMP-specific [124].
Interestingly, there is some evidence linking cancer-
promoting activity of CD147 to interaction with extracellular
cyclophilin. The extracellular CypA was shown to stimulate
proliferation of lung cancer cell line by inducing ERK1/2
signals [125], activity shown previously to be mediated by
CD147 [3]. A similar proliferation-promoting activity of
CypA was shown for human pancreatic cancer cells, where
CypA activated the ERK1/2 and p38 pathways [126]. The
exact mechanisms of this proliferative activity and its role in
pathogenesis of cancer remain unclear and await further
confirmation.

Role of CD147–cyclophilin interactions in
inflammatory diseases

CD147 and cyclophilins are up-regulated in human
inflammatory diseases

Although a requirement for up-regulated levels of CD147 to
mediate MMP induction has not been demonstrated for-
mally, many pathological conditions involving an inflamma-
tory component are associated with increased expression of
CD147 in tissues and cells. These include lung inflammatory
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diseases [127,128], RA [77,129–132], systemic lupus erythe-
matosus (SLE) [133], chronic liver disease induced by hepa-
titis C virus (HCV) [134], atherosclerosis [135–138] and
ischaemia [76,139]. High levels of extracellular cyclophilins
have also been detected in several different human inflamma-
tory diseases, such as severe sepsis [140,141], vascular smooth
muscle cell disease [61], atherosclerosis [63], lupus [142],
Lyme disease [143] and RA [144,145]. Of note, the list of
diseases with increased cyclophilin levels overlaps with dis-
eases where CD147 is up-regulated, suggesting that cyclophi-
lins, via their interactions with CD147, may contribute to the
recruitment of immune cells to sites of inflammation via
chemokine-like activity [146]. For example, the level of CypA
in synovial fluid isolated from RA patients was reported to
correlate with the numbers of neutrophils present within
synovial spaces, as well as disease severity [145]. In another
study, cartilage chondrocytes were shown to secrete cyclophi-
lins in response to matrix metalloproteinases or other stimuli,
providing an additional source of extracellular cyclophilins
released during ongoing RA [147,148].

Interestingly, studies looking at proinflammatory leuco-
cytes have reported increased expression of cell surface
CD147 on these cells, relative to non-inflammatory cells
[149]. For example, an up-regulated expression of CD147 was
observed in the synovial membrane [132], as well as on
circulating and synovial monocytes/macrophages [149], in
RA patients. Increased levels of CD147 were also reported
recently on a murine synovial fibroblast cell line used for
studies of cartilage invasion and destruction [150]. One
might postulate that an increase in CD147 expression would
enhance the interaction between leucocytes and extracellular
cyclophilins, thereby promoting their recruitment. In
support of this, we reported recently that activated CD4+ T
cells showed enhanced cyclophilin-mediated chemotaxis that
correlated with an up-regulated expression of CD147 [5,6].

Animal models of inflammatory diseases

Recent studies in several animal models of human disease
have underscored the important role of cyclophilin–CD147
interaction in disease pathogenesis. Our study using a mouse
model of lipopolysaccharide (LPS)-induced acute lung
inflammation demonstrated that treatment with either anti-
CD147 mAb, or a non-immunosuppressive CsA analogue,
NIM811, reduced the inflammatory response significantly
[4]. Both treatments led to a 40–50% inhibition of neutro-
philia within lung tissues and airways. Importantly, treating
mice with a combination of anti-CD147 mAb and CsA led to
an inhibition of neutrophil infiltration only slightly greater
than that induced by the individual treatments, indicating
that anti-CD147 and CsA are probably acting on the same
cyclophilin–CD147 interaction. We also demonstrated in a
mouse model of acute asthmatic inflammation that in vivo
treatment with anti-CD147 mAb reduced significantly (by
up to 50%) the accumulation of eosinophils and effector/

memory CD4+ T lymphocytes, as well as antigen-specific
Th2 cytokine secretion, in pulmonary airways and tissues of
allergen challenged mice [5]. This treatment also reduced
significantly airway epithelial mucin production and bron-
chial hyperreactivity to methacholine challenge.

In the collagen-induced arthritis mouse model of human
RA, in vivo treatment with anti-CD147 mAb inhibited the
development of joint inflammation by more than 75%
[129]. Factors associated with the presence of proinflamma-
tory leucocytes, including tumour necrosis factor (TNF)-a
and myeloperoxidase, were also reduced significantly, sug-
gesting that anti-CD147 treatment was impacting leucocyte
recruitment into joints. These findings are consistent with a
recent report demonstrating that anti-CD147 alone or in
combination with anti-TNF-a inhibited cartilage erosion
and synovitis in the severe combined immunodeficiency
(SCID) mouse model of RA [151].

Cyclophilin–CD147 interaction can promote
MMP production

As described above, MMPs play important role in pathogen-
esis of many diseases, including inflammatory conditions,
and there is evidence that extracellular cyclophilins, probably
via interaction with CD147, may contribute to MMP
production. A report by Seizer and co-authors [152], study-
ing atherosclerosis in an apolipoprotein E (apoE)-deficient
mouse model, demonstrated that silencing of CD147 expres-
sion by siRNA during the cell differentiation process hin-
dered up-regulation of MMPs (MT1-MMP, MMP-9). The
presence of a cyclophilin inhibitor, NIM811, also reduced
MMP-9 secretion significantly during the differentiation
process. Conversely, the presence of CypA enhanced MMP-9
secretion by mature foam cells. CypA and CD147 were found
consistently in atherosclerotic plaques of apoE-deficient
mice. These results suggest that the CypA/CD147 pathway
may play a relevant role in promoting the vulnerability of
atherosclerotic plaques and thus contribute to the patho-
genesis of atherosclerosis. A similar effect was reported by
Yang et al. [77] in human RA. They demonstrated that
CypA increased the in vitro production and activation
of MMP-9 in monocytes/macrophages derived from RA
synovial fluid, whereas anti-CD147 antibody decreased the
observed MMP-9 expression dramatically. Therefore, MMP
up-regulation may be another mechanism by which
cyclophilin-CD147 interaction might contribute to RA
pathogenesis by promoting cartilage destruction.

Therapeutic targeting of CD147–cyclophilin
interactions

Given the role that cyclophilin–CD147 interactions play in
pathogenesis of inflammatory diseases, they present an
attractive target for therapeutic interventions. The agents
that can potentially disrupt these interactions can be

CD147–cyclophilin interactions
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grouped into agents targeting CD147 and drugs targeting
cyclophilins. These agents may also be useful for treatment of
other diseases involving cyclophilins and/or CD147, such as
cancer or HIV infection [74,103,153].

Inhibition of CD147 using anti-CD147 monoclonal anti-
body provided a more than 50% reduction of inflammation
in mouse models of acute lung inflammation, asthma and
RA [4,5,129,151]. Therapeutically useful antagonistic anti-
bodies would prevent cyclophilin-induced signalling and
MMP-inducing activity of CD147. Interestingly, the sites
responsible for these two functions appear to be adjacent in
a secondary structure of CD147 [64], so it may be possible to
inhibit both functions with a single monoclonal antibody (S.
C. and M. B., unpublished observation). For future clinical
applications, it would be necessary to ensure that the anti-
body does not exert any agonistic activity, which may com-
promise the therapeutic effect.

An attractive approach to inhibit CD147 activity is via
antagonistic peptides derived from extracellular domains of
CD147. Such 12-amino acid peptides were shown to inhibit
CD147-dependent MMP production and invasiveness of
synoviocytes from RA patients [130], MMP-2 and MMP-9
production and invasive potential of PMA-differentiated
THP-1 cells (human monocytic leukaemia cell line) [154],
and infection of host cells by SARS coronavirus [104]. No
report yet has shown in vivo activity of CD147-targeting
peptides in an animal model of human disease.

Yet another possible way to target CD147 is to down-
regulate its expression using the RNAi approach. This tech-
nique works usefully in vitro to suppress CD147-dependent
cell proliferation, invasiveness and metastatic activity of
cancer cells [47,155,156] and induce their apoptosis [157],
but its usefulness for clinical applications awaits further
studies.

Another arm of the CD147-cyclophilin axis are cyclophi-
lins, and cyclophilin-targeting drugs CsA and FK-506 have
been used for many years as immunosuppressors.
Obviously, immunosuppressive activity would be an
unwanted complication in clinical use of these drugs as
anti-inflammatory or anti-cancer agents. Furthermore, as
chemotaxis of inflammatory cells depends upon the activ-
ity of extracellular cyclophilins, there is no need to inhibit
calcineurin function to suppress cyclophilin-dependent
chemotaxis. Our studies demonstrated that non-
immunosuppressive CsA derivative, NIM811, exerted a
potent anti-inflammatory activity, comparable to that of
unmodified CsA, in a mouse model of acute lung inflam-
mation [4]. Even more exciting, a recent report described a
modification that, when introduced into the CsA molecule,
makes it unable to penetrate cell membrane but still
retain cyclophilin-binding activity [158]. When such non-
permeable CsA derivative was used in a mouse model of
acute lung inflammation, it showed an extremely potent
anti-inflammatory activity, significantly exceeding that of
NIM811 [158]. Non-permeable CsA is likely to have very

few adverse effects and appears to be an ideal candidate for
development as an anti-inflammatory drug to treat such
diseases as RA, asthma and atherosclerosis.

Taken together, these results show an important contribu-
tion of cyclophilin–CD147 interactions to the initiation
and/or progression of inflammatory responses via recruit-
ment of leucocytes into inflamed tissues and stimulation of
MMP production, and show great potential of therapeutic
targeting of these interactions for treatment of inflammatory
diseases.

Conclusions

Based upon the various studies reviewed above, it is clear
that both CD147 and cyclophilins have multi-functional
properties, both independently and as an interacting
complex. A number of mechanistic details of interactions
between cyclophilins and CD147 is still unknown and
awaits further studies. In particular, it would be extremely
important to refine our understanding of cyclophilin-
induced signalling through CD147. How does isomeriza-
tion of Pro211 on CD147 initiate intracellular signals?
What other sites on CD147, besides Pro211, are involved in
signalling response to cyclophilin? Does this signalling
involve any other proteins? What signalling pathways are
initiated by cyclophilin and what are signal transduction
mechanisms for these pathways? Answers to these questions
would be essential for future translational efforts aimed at
targeting cyclophilin/CD147 pathway. Indeed, demonstra-
tion that these molecules and their interactions play a
direct role in different types of inflammatory conditions
provides an attractive new target for intervention. Although
reagents that block either CD147 or cyclophilin function
were shown to be effective in reducing inflammatory
responses in experimental models of disease, the specificity
of these reagents is still quite broad, in that multiple func-
tions of CD147 and cyclophilins were probably inhibited.
The current challenge is to design therapeutic agents with
the capacity to block specific functions of these molecules,
while leaving other functions unaffected. In this context, a
recent study reported the development of a small-molecule
compound with the capacity to specifically inhibit the
function of CypA, without any effect on CypB activity
[159]. Similar approaches are under investigation to
develop reagents that impact selective functions of CD147,
for example by targeting different domains of the molecule.
Progress in these endeavours will provide new treatment
opportunities for many inflammatory diseases, including
RA and asthma, and may also contribute to treatment of
such diseases as atherosclerosis and cancer.
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