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A B S T R A C T   

Background: Necroptosis is associated with oncogenesis, tumor immunity and progression. This 
research aims to investigate the association of necroptosis-related genes with drug sensitivity and 
prognosis in hepatocellular carcinoma (HCC). 
Methods: Based on necroptosis-related signatures, HCC patients retrieved from the TCGA database 
were categorized. Survival outcomes, mutation profile, immune microenvironment, and drug 
sensitivity between HCC subtypes were further compared. Then, LASSO analysis was performed 
to construct a necroptosis-related prognostic signature, which was further evaluated using 
another independent cohort. 
Results: A total of 371 patients with HCC could be categorized into two necroptosis-related sub
types. About 36% of patients were allocated to subtype A, with worse survival, more mutant 
TP53, and a lower likelihood of immunotherapy response. In contrast, patients in subtype B had a 
favorable prognosis, with lower expression of immunosuppressive signatures but a lower abun
dance of B and CD8+ T-cell infiltration. The prognostic risk score calculated using the expression 
levels of nine genes involved in the necroptosis pathway (MLKL, FADD, XIAP, USP22, UHRF1, 
CASP8, RIPK3, ZBP1, and FAS) showed a significant association with tumor stage, histologic 
grade, and Child‒Pugh score. Additionally, the risk score model was proven to be accurate in 
both the training and independent external validation cohorts and performed better than the TNM 
staging system and three well-recognized risk score models. 
Conclusions: Based on necroptosis-related signatures, we identified two HCC subtypes with 
distinctive immune microenvironments, mutation profiles, drug sensitivities, and survival out
comes. A novel well-performing prognostic model was further constructed.  
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1. Introduction 

Hepatocellular carcinoma (HCC) is a common cancer and the fourth leading cause of tumor-related death [1]. Approximately 70% 
of patients relapse within 5 years after HCC resection, while the median overall survival (OS) of advanced HCC patients is approxi
mately 1 year [1,2]. Due to HCC heterogeneity and the influence of nontumor factors, it is difficult to precisely evaluate the survival 
outcome by TNM staging alone. Furthermore, there is no reliable measure to predict drug sensitivity that can aid in clinical 
decision-making. Hence, further research on the mechanisms of HCC tumorigenesis and progression is needed, which will facilitate the 
discovery of novel prognostic indicators and therapeutic targets. 

In contrast to apoptosis, necroptosis is programmed necrotic cell death independent of caspase and was first identified in 2005 [3]. 
Necroptosis has been linked to hepatic inflammation, regeneration, fibrogenesis, and cancers [4–7]. Accumulating evidence has 
suggested that necroptosis and necroptosis-related genes are associated with tumorigenesis, sensitivity to drug therapy, and prognosis 
in HCC patients [8–11]. Therefore, patient classification and risk score in HCC based on necroptosis-related signatures (mRNA 
expression levels) can help to identify patient characteristics, guide clinical decisions and predict prognosis. Nevertheless, the effect of 
necroptosis-related signatures on HCC classification has not been estimated. 

In this research, according to necroptosis-related signatures, HCC patients retrieved from The Cancer Genome Atlas (TCGA) 
database were assigned to different molecular subgroups. Then, the association of molecular subgroups with clinicopathological 
characteristics, prognosis, mutation profile, immune microenvironment, and drug sensitivity was further investigated. Moreover, a 
novel necroptosis-related prognostic model was established and estimated. 

2. Methods 

2.1. Data sources and processing 

The mRNA expression, somatic mutation profiles, and clinical data of HCC samples were downloaded from the TCGA database 
(https://portal.gdc.cancer.gov/) in February 2022. International Cancer Genome Consortium (ICGC) (https://dcc.icgc.org/) HCC 
cohorts (ICGC-LIRI) were retrieved for external validation. To lower statistical bias, the transcripts per kilobase million (TPM) format 
was adopted for mRNA expression data [12]. HCC patients without complete follow-up data were excluded from the survival analysis. 

2.2. Consensus clustering analysis 

Based on previous publications [4,13–17], 18 necroptosis-related key genes were retrieved and are listed in Supplementary 
Table S1. The TCGA-LIHC cohort was divided into different molecular subtypes based on necroptosis-related gene expression by the R 
package “ConsensusClusterPlus” for consensus unsupervised clustering analysis [18]. The optimum number of subgroups was 
determined according to the following criteria: After categorization, the intercluster correlation decreased, but the intracluster cor
relation increased. Meanwhile, the cumulative distribution function (CDF) curve rose steadily. Finally, none of the subtypes had a 
sample size that was too small. Furthermore, using the R package “Rtsne” [19], t-SNE analysis was applied to validate the accuracy of 
this classification. 

2.3. Evaluating the differences in HCC patients among molecular subtypes 

Kaplan‒Meier curves were utilized to compare the difference in survival time between distinct subgroups. The 20 most commonly 
mutated genes were identified by the R package “maftools” [20]. A Perl script was utilized to compute tumor mutation burden (TMB). 
The data on tumor-infiltrating cell abundance in the TCGA-LIHC cohort were downloaded from the xCell program [21]. xCell is a 
validated tool to conduct immune cell type analysis from transcriptome data. When screening differentially expressed genes between 
different subtypes, an adjusted p value < 0.05 and |log2-fold change (FC)| > 1 were set as the cutoff. The R packages “clusterProfiler”, 
“org.Hs.eg.db”, and “enrichplot” were used to conduct Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) 
enrichment analyses [22]. 

2.4. Drug sensitivity analysis 

Immune checkpoint inhibitor (ICI) therapy responses were predicted by Tumor Immune Dysfunction and Exclusion (TIDE) [23] by 
assessing immune evasion signatures. After uploading the transcriptome data, predicted immunotherapy responses and TIDE scores 
can be retrieved, and a lower TIDE score means a higher likelihood of immunotherapy response. The Genomics of Drug Sensitivity in 
Cancer (GDSC) algorithm [24] and R package “pRRophetic” [25] were employed to compute the half-maximal inhibitory concen
tration (IC50) of chemotherapy or targeted drugs. 

2.5. Development of the necroptosis-related prognostic model 

Least absolute shrinkage and selection operator (LASSO) analysis was employed by the R package “glmnet” [26] to select potent 
independent prognostic genes from necroptosis-related signatures. Nine necroptosis-related genes were selected to build the risk 
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signature based on the optimal lambda identified by 10-fold cross-validation and “one-standard error (1 se)”. The necroptosis-based 
risk score was calculated in the following way: Risk score =

∑
(exp GeneN × coef GeneN). 

2.6. Estimation of the prognostic model 

HCC patients were allocated to the high- or low-risk group according to necroptosis-related risk scores and the optimum OS cutoff 
generated by the R package “survminer”. Likewise, the formula and cutoff were utilized to determine the risk scores for patients in an 
external ICGC cohort. Cox regression analysis was employed to retrieve the 95% confidence intervals (CI) and hazard ratios (HR) of 
variables. Then, a nomogram was developed and evaluated by the calibration curve and receiver operating characteristic (ROC) curve. 
After that, decision curve analysis (DCA) was performed to compare the prognostic accuracy of TNM staging and the nomogram model. 

Fig. 1. Consensus clustering analysis in patients with hepatocellular carcinoma based on necroptosis-related genes. (A) HCC patients were divided 
into two subtypes based on the consensus clustering matrix (k = 2). (B) CDF of cluster result. (C) Delta area of cluster result. (D) t-SNE analysis based 
on necroptosis-related signatures. CDF, cumulative distribution function. CDF plots display consensus distributions for each k. Delta area plot 
displays the relative change of the area under the CDF curve between each k and k-1. The larger the value, the more obvious the improvement of the 
clustering effect under this k value is compared with that of k-1. They can be used to help decide the best cutoff of k. 
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2.7. Statistical analysis 

R software was utilized to conduct all statistical analyses. Strawberry Perl was employed to retrieve mRNA expression and mutation 
profiles for subsequent analyses. The differences in the categorical and continuous variables between the groups were compared via 
Pearson’s chi-square test and the Mann‒Whitney U test. A two-tailed p or FDR (false discovery rate) q < 0.05 indicated a statistically 
significant difference. 

3. Result 

3.1. Necroptosis-related signatures identified two HCC subtypes 

The gene expression data of 371 HCC patients were obtained from the TCGA database. Unsupervised consensus clustering analysis 
was utilized to categorize patients according to necroptosis-related gene expression, which demonstrated that the optimum choice was 
k = 2. Therefore, HCC patients from the TCGA database were divided into subtype A (n = 132, 35.6%) and subtype B (n = 239, 64.4%) 
(Fig. 1A–C). Furthermore, the t-SNE analysis demonstrated that the two subtypes could be distinguished clearly (Fig. 1D). 

3.2. Association of molecular subtypes with prognosis and clinicopathological features 

Kaplan‒Meier curves indicated that the patients with subtype B had significantly prolonged survival (Fig. 2A). The differences in 
demographic and clinical characteristics between the molecular subtypes were compared, and it was found that the patients in subtype 
A had a higher histologic grade and positive vascular invasion (Table 1 and Fig. 2B). Furthermore, mutational characteristic analysis 
was performed using somatic mutation data from 361 HCC patients, which showed that the most prevalent mutation among both 
molecular subtypes was missense mutations (Fig. 3A–B). The horizontal histogram visualized the top 20 mutant genes, showing that 
TP53 (44.0% vs. 22.6%), FAM47A (6.4% vs. 0.4%), TSC2 (7.2% vs. 1.3%), OBSCN (13.6% vs. 4.8%), and LRP1B (13.6% vs. 5.2%) were 
mutated more frequently in subtype A, while mutant SPHKAP (0% vs. 3.9%) was more frequent in subtype B (Fig. 3C). Additionally, 
TTN, CTNNB1, and MUC16 were the most prevalent mutant genes in the two subtypes. 

To clarify the potential effect of necroptosis-related classification on the signaling pathway of HCC, we identified 678 differentially 
expressed genes between HCC subtypes (Supplementary Table S2). Of these, 349 were upregulated in subtype A, and the others were 
downregulated (Fig. 3D). Functional enrichment analysis showed that several pathways relevant to metabolic processes were 
significantly enriched in subtype A (such as GO_GLYCINE_METABOLIC_PROCESS and KEGG_RETINOL_METABOLISM), while 
immune-related or cancer-related pathways (such as GO_ANTIGEN_BINDING and KEGG_PATHWAYS_IN_CANCER) were enriched in 
subtype B (Fig. 3E–F). 

ICIs have shown promising efficacy in tumors, including HCC. In addition to immune-related signatures, tumor-infiltrating immune 
cells and TMB may also be predictive markers of immunotherapy for HCC [27–29] Thus, tumor-infiltrating cells and TMB in the two 
subtypes were further investigated. For tumor-infiltrating cells, the abundance of B cells, CD8+ T cells, mast cells, plasmacytoid 
dendritic cells, Th1 cells and Th2 cells was significantly higher in subtype A. However, the abundance of CD4+ T cells, dendritic cells, 
and regulatory T cells was comparable in the two HCC subtypes (Fig. 4A). Furthermore, the patients in subtype A had a significantly 
higher TMB (Fig. 4B). Except for PDL1 and CTLA4, other immunosuppression-related genes or immune checkpoint molecules, 
including LILRB2, LILRB4, NRP1, SIGLEC15, TIM3, and VEGFA, were also significantly upregulated in subtype A (Fig. 4C). 

Fig. 2. Association of hepatocellular carcinoma molecular subtypes with survival outcomes. (A) Kaplan–Meier survival curves of the HCC subtypes. 
(B) Heatmap of necroptosis-related gene expression levels and selected clinicopathological features in each sample. 
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3.3. Drug sensitivity analysis 

Drug sensitivity to immunotherapy, targeted therapy and chemotherapy in HCC subgroups was compared using the TIDE and GDSC 
databases. The results indicated that HCC patients assigned to subtype B had lower TIDE scores and a desirable immunotherapy 
response rate (Fig. 5A and B). Moreover, HCC patients assigned to subtype A had lower IC50 values of gemcitabine, etoposide, 
doxorubicin, rucaparib, and veliparib, while the patients in subtype B had significantly lower IC50 values of docetaxel, dasatinib, 
erlotinib, gefitinib, and motesanib (Fig. 5C-L). Nevertheless, the estimated IC50 values of cisplatin in the two HCC subtypes were not 
significantly different (Fig. 5M). 

3.4. Necroptosis-related prognostic risk score 

The survival data of 365 HCC patients were utilized to determine potential independent prognostic genes from necroptosis-related 
signatures. After LASSO analysis, nine genes were retained (Fig. 6A–B). According to the results of LASSO analysis, the necroptosis- 
related prognostic risk score was calculated using nine mRNA expression levels: (0.042570191 × MLKL) + (0.002207222 ×
FADD) + (0.005074737 × XIAP) + (0.006645083 × USP22) + (0.025310464 × UHRF1) + (0.025523506 × CASP8) +
(− 0.062858811 × RIPK3) + (− 0.018298609 × ZBP1) + (− 0.019736246 × FAS). Subsequently, HCC patients from the TCGA database 
were assigned into high- and low-risk groups based on the optimum cutoff (0.630) for the risk score. As shown in Table 2, sex, family 
history of cancer, and residual tumor status were not significantly correlated with the necroptosis-related prognostic score. 

Table 1 
Association of necroptosis-related subtypes with clinicopathological features in HCC patients.   

Subtype p 

Total A B 

(N = 365) (N = 128) (N = 237) 

Age (year) 
<65 216 (59.2%) 80 (62.5%) 136 (57.4%) 0.402 
≥65 149 (40.8%) 48 (37.5%) 101 (42.6%)  
Gender 
Male 246 (67.4%) 79 (61.7%) 167 (70.5%) 0.113 
Female 119 (32.6%) 49 (38.3%) 70 (29.5%)  
Family history of cancer 
Yes 112 (30.7%) 39 (30.5%) 73 (30.8%) 0.916 
No 204 (55.9%) 73 (57.0%) 131 (55.3%)  
Unknown 49 (13.4%) 16 (12.5%) 33 (13.9%)  
TNM stage 
I 170 (46.6%) 47 (36.7%) 123 (51.9%) 0.083 
II 84 (23.0%) 36 (28.1%) 48 (20.3%)  
III 83 (22.7%) 34 (26.6%) 49 (20.7%)  
IV 4 (1.1%) 1 (0.8%) 3 (1.3%)  
Unknown 24 (6.6%) 10 (7.8%) 14 (5.9%)  
Histologic grade 
G1–2 230 (63.0%) 66 (51.6%) 164 (69.2%) 0.003 
G3–4 130 (35.6%) 59 (46.1%) 71 (30.0%)  
Unknown 5 (1.4%) 3 (2.3%) 2 (0.8%)  
Ishak score 
0-4 132 (36.2%) 45 (35.2%) 87 (36.7%) 0.165 
5-6 77 (21.1%) 21 (16.4%) 56 (23.6%)  
Unknown 156 (42.7%) 62 (48.4%) 94 (39.7%)  
Child-Pugh grade 
A 216 (59.2%) 69 (53.9%) 147 (62.0%) 0.136 
B–C 22 (6.0%) 6 (4.7%) 16 (6.8%)  
Unknown 127 (34.8%) 53 (41.4%) 74 (31.2%)  
Vascular invasion 
None 205 (56.2%) 60 (46.9%) 145 (61.2%) 0.025 
Micro 90 (24.7%) 36 (28.1%) 54 (22.8%)  
Macro 16 (4.4%) 5 (3.9%) 11 (4.6%)  
Unknown 54 (14.8%) 27 (21.1%) 27 (11.4%)  
Alpha fetoprotein 
Positive 275 (75.3%) 103 (80.5%) 172 (72.6%) 0.123 
Negative 90 (24.7%) 25 (19.5%) 65 (27.4%)  
Residual tumor 
R0 320 (87.7%) 106 (82.8%) 214 (90.3%) 0.115 
R1-2 18 (4.9%) 9 (7.0%) 9 (3.8%)  
Unknown 27 (7.4%) 13 (10.2%) 14 (5.9%)  
Living status 
Alive 235 (64.4%) 73 (57.0%) 162 (68.4%) 0.041 
Dead 130 (35.6%) 55 (43.0%) 75 (31.6%)   
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Nevertheless, a higher necroptosis-related prognostic score was correlated with advanced TNM stage, higher histologic grade, positive 
vascular invasion and serum alpha fetoprotein, suggesting that the necroptosis-related risk score may be related to HCC progression. 
Consistently, Kaplan‒Meier curves demonstrated that the patients assigned to the low-risk group had significantly prolonged survival 

Fig. 3. Differences in mutation characteristics, differentially expressed genes, and enriched pathways between the two hepatocellular carcinoma 
subtypes. (A, B) Phenotype and distribution of the 20 most prevalent mutant genes in subtypes A and B. (C) The difference in gene mutation 
frequencies in the two subtypes. (D) The differentially expressed genes in cluster A compared with cluster B. (E, F) GO and KEGG analyses of 
functional pathways in cluster A compared with cluster B. 
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(Fig. 7A). Likewise, the prognostic risk score was robust when examined in an external ICGC cohort (Fig. 7B). Moreover, the 
necroptosis-related prognostic score was positively correlated with the TIDE score (Fig. 7C), suggesting a higher immunotherapy 
response rate in low-risk patients. On the other hand, when used to predict the OS of HCC patients, the necroptosis-related prognostic 
risk score constructed in the present study performed better than the well-recognized risk score models developed in the previously 
published three studies [30–32], both in the TGCA-LIHC and ICGC-LIRI cohorts (Supplementary Figures S1A-S1H). 

3.5. Development and assessment of the necroptosis-related prognostic nomogram 

As shown in Table 3, univariate Cox analysis demonstrated that vascular invasion status, TNM stage, and necroptosis-related risk 
score were potential indicators of OS in patients with HCC. Considering that there was no significant difference in OS between patients 
with TNM stage I and stage II HCC (Table 3), we combined patients with TNM stage I and stage II HCC into one group and performed 
Cox analysis with the same procedure (Supplementary Table S3). Multivariate Cox analysis identified advanced TNM stage and a 
higher risk score (HR: 1.98, 95% CI: 1.36–2.87, p < 0.001) as independent predictors of poor OS. Based on multivariate analyses, a 
prognostic nomogram for HCC patients was developed according to risk score and TNM stage (Fig. 8A). Furthermore, the calibration 
plot demonstrated that the nomogram had good agreement between the actual and predicted OS (Fig. 8B). The areas under the curve 
(AUCs) for OS at 1-, 3-, and 5- years were 0.719, 0.737, and 0.719, respectively (Fig. 8C). Ultimately, the DCA curve indicated that the 
nomogram was more accurate than TNM staging (Fig. 8D). 

4. Discussion 

The necroptosis-related microenvironment can lead to the transformation from HCC to cholangiocarcinoma, suggesting that 

Fig. 4. The difference in infiltrating immune cell abundance, TMB, and immune-related gene expression between the two HCC subtypes. (A) Tumor- 
infiltrating immune cell abundance, (B) TMB, and (C) the expression of immune-related genes in the two subtypes. TMB, tumor mutation burden. *p 
< 0.05, **p < 0.01, ***p < 0.001. 
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necroptosis may determine liver cancer lineage commitment [9]. The main mediators of necroptosis include RIPK1, RIPK3, and MLKL 
[33]. Most HCC cell lines, including Hep3B and HepG2, lose RIPK3 expression and thereby inhibit necroptosis initiation, suggesting 
that escaping necroptosis is an important process in HCC oncogenesis [7]. HCC is a tumor that generally does not respond to 
chemotherapy [34]. Nevertheless, restoring RIPK3 expression can enhance the chemosensitivity of HCC cells, suggesting that regu
lating necroptosis may have the potential to improve sensitivity to chemotherapy [35]. Consistently, necroptosis blockade can lead to 
sorafenib resistance in HCC [8], while higher expression of necroptosis-related genes is associated with lymphocyte aggregation and 
longer survival in HCC [11]. These evidences support that, in part, appropriate necroptosis in HCC contributes to eliminating 
drug-resistant tumor cells and improving patient prognosis. Intriguingly, necroptosis can also contribute to oncogenesis, cancer 
development, metastasis, and induce inflammatory responses [36]. The role of necroptosis in antitumor immunity is context 
dependent. The acute and intense necroptosis of cancer cells induced by radiotherapy or chemotherapy is usually immunogenetic, 
while the mild and spontaneous necroptosis of cancer cells contributes to protumor effects [36]. Considering the effect of necroptosis 
on hepatic inflammation and fibrosis [37], which is closely linked to liver cancer, it is understandable that necroptosis-related sig
natures play a vital role in HCC. 

In the present research, we demonstrated for the first time that patients with HCC could be classified by necroptosis-related sig
natures. Survival outcomes in the two HCC subgroups were significantly different, confirming the effect of necroptosis on HCC 
prognosis. Then, we identified that the patients in subgroup A had a poorer survival outcome, higher histologic grade, and higher 
mutation frequencies of TP53, FAM47A, TSC2, OBSCN, and LRP1B, while the patients in subgroup B had more mutant SPHKAP. TP53 
mutation is believed to be correlated with poor prognosis in various tumors, including HCC [2,38]. TSC2 is a tumor suppressor gene 
and a potential predictive marker for poor prognosis in HCC [39]. Moreover, LRP1B mutation has been reported to be a marker of 
unfavorable survival outcomes and poor response to immunotherapy in HCC [40]. SPHKAP mRNA upregulation is related to poor 
prognosis and higher histologic grade in HCC, but the effect of SPHKAP mutation on HCC has not been identified [41]. Nevertheless, 
the role of other genes with significantly different mutation rates between subgroup A and subgroup B, such as FAM47A and OBSCN, in 
tumors has been less studied. 

HCC is characterized by angiogenic and inflammatory microenvironments, with heterogeneous sensitivity to immunotherapy and 
antiangiogenic drugs. Antiangiogenic drugs such as sorafenib have long been the standard treatment for advanced HCC [42]. The 
IMbrave150 study demonstrated that antiangiogenesis in combination with ICI therapy in the first-line setting could prolong the 
survival time of HCC patients, but some patients cannot benefit from the combined therapy [29]. Notably, our results showed that HCC 
patients in necroptosis-related subgroup B, with enriched immune-related pathways, may have a higher likelihood of an ICI response. 
However, the patients in subtype A were estimated to have a lower immunotherapy response rate, despite having a higher infiltration 
level of CD8+ T cells. This may be due to the higher expression of immunosuppressive-related genes or immune checkpoint molecules 
in subtype A, suggesting that the combination of inhibitors targeting different immune checkpoints may be a worthwhile treatment 
option for patients in subtype A. In addition, multikinase inhibitors against tumor angiogenesis, dasatinib and motesanib, were also 
estimated to be more effective in subtype B, suggesting that ICI plus antiangiogenesis-based therapy may be an advisable treatment 
regimen for subtype B patients. Intriguingly, inducing necroptosis may synergize efficiently with immunotherapy and deserves further 
validation in clinical trials [43,44]. We also noticed that the patients in subtype A had higher expression of VEGFA but higher IC50 
values of dasatinib and motesanib. It is necessary to clarify that the VEGFA expression level may not be associated with the efficacy of 

Fig. 5. The difference in drug sensitivity between the two molecular subtypes. (A) The difference in the TIDE score. (B) The estimated immuno
therapy response rate using the TIDE database in the two subtypes. (C-M) IC50 of targeted therapy or chemotherapy drugs in different subtypes. A 
lower TIDE score means a higher likelihood of immunotherapy response. The higher the IC50 value is, the lower the drug sensitivity. IC50, half 
maximal inhibitory concentration. 

Fig. 6. Determination of potential prognostic genes from necroptosis-related signatures. (A) LASSO coefficient profiles. (B) Screening the best 
lambda. LASSO, least absolute shrinkage and selection operator. 
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antiangiogenic drugs [45], but its higher expression predicts a poorer prognosis in patients with HCC [46]. 
Finally, we constructed a prognostic risk score according to nine necroptosis-related genes (MLKL, FADD, XIAP, USP22, UHRF1, 

CASP8, RIPK3, ZBP1, and FAS). This is consistent with previous studies showing that higher expression of XIAP, USP22, and UHRF1 is 
associated with poorer prognosis in HCC [47–49], while the relationship between the rest of the genes and prognosis in HCC has not 
been determined. Surprisingly, the necroptosis-related prognostic risk score constructed in the present study performed better than the 
well-recognized risk score models developed in the previously published three studies, which were used to predict postoperative 
recurrence risk and prognosis [30–32]. Additionally, the necroptosis-related prognostic nomogram showed good agreement between 
the actual and predicted OS and performed better than TNM staging. Except for use for prognosis evaluation, the necroptosis-related 
prognostic score was correlated with the TIDE score, supporting the role of necroptosis in cancer immunity. 

To date, this is the first study categorizing HCC patients according to necroptosis-related signatures. Moreover, a necroptosis- 
related prognostic risk score and nomogram were constructed and validated. These results confirmed the important role of nec
roptosis in HCC and can aid in clinical decision making and prognostic prediction. For example, patients classified as subgroup A with 
worse prognosis may prefer a more aggressive chemotherapy regimen over immunotherapy. Nevertheless, some limitations of this 
research need to be pointed out. First, this study was retrospective, in which the inherent confounding bias is almost inevitable, and the 
causal relationship between gene expression and prognosis could not be determined. Hence, validation using prospective trials and 
preclinical experiments is warranted. Second, we failed to analyze the sensitivity of some important drugs for HCC, including len
vatinib, which may be settled in vitro and in vivo experiments. Third, given that proteins are the executors of cellular functions, 
necroptosis is also induced based on protein signaling. Despite the lack of a highly specific marker for necroptosis 

Table 2 
Association of the necroptosis-related prognostic risk score with clinicopathological features in HCC patients.   

Risk group p 

Total High Low 

(N = 365) (N = 116) (N = 249) 

Age (year) 
<65 216 (59.2%) 82 (70.7%) 134 (53.8%) 0.003 
≥65 149 (40.8%) 34 (29.3%) 115 (46.2%)  
Gender 
Male 246 (67.4%) 70 (60.3%) 176 (70.7%) 0.066 
Female 119 (32.6%) 46 (39.7%) 73 (29.3%)  
Family history of cancer 
Yes 112 (30.7%) 28 (24.1%) 84 (33.7%) 0.169 
No 204 (55.9%) 72 (62.1%) 132 (53.0%)  
Unknown 49 (13.4%) 16 (13.8%) 33 (13.3%)  
TNM stage 
I 170 (46.6%) 37 (31.9%) 133 (53.4%) < 0.001 
II 84 (23.0%) 32 (27.6%) 52 (20.9%)  
III 83 (22.7%) 39 (33.6%) 44 (17.7%)  
IV 4 (1.1%) 0 (0%) 4 (1.6%)  
Unknown 24 (6.6%) 8 (6.9%) 16 (6.4%)  
Histologic grade 
G1–2 230 (63.0%) 50 (43.1%) 180 (72.3%) < 0.001 
G3–4 130 (35.6%) 64 (55.2%) 66 (26.5%)  
Unknown 5 (1.4%) 2 (1.7%) 3 (1.2%)  
Ishak score 
0-4 132 (36.2%) 35 (30.2%) 97 (39.0%) 0.009 
5-6 77 (21.1%) 18 (15.5%) 59 (23.7%)  
Unknown 156 (42.7%) 63 (54.3%) 93 (37.3%)  
Child-Pugh grade 
A 216 (59.2%) 54 (46.6%) 162 (65.1%) < 0.001 
B–C 22 (6.0%) 5 (4.3%) 17 (6.8%)  
Unknown 127 (34.8%) 57 (49.1%) 70 (28.1%)  
Vascular invasion 
None 205 (56.2%) 52 (44.8%) 153 (61.4%) 0.012 
Micro 90 (24.7%) 32 (27.6%) 58 (23.3%)  
Macro 16 (4.4%) 8 (6.9%) 8 (3.2%)  
Unknown 54 (14.8%) 24 (20.7%) 30 (12.0%)  
Alpha fetoprotein 
Positive 275 (75.3%) 96 (82.8%) 179 (71.9%) 0.035 
Negative 90 (24.7%) 20 (17.2%) 70 (28.1%)  
Residual tumor 
R0 320 (87.7%) 99 (85.3%) 221 (88.8%) 0.648 
R1-2 18 (4.9%) 7 (6.0%) 11 (4.4%)  
Unknown 27 (7.4%) 10 (8.6%) 17 (6.8%)  
Living status 
Alive 235 (64.4%) 60 (51.7%) 175 (70.3%) < 0.001 
Dead 130 (35.6%) 56 (48.3%) 74 (29.7%)   
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Fig. 7. Estimating the necroptosis-related prognostic risk score in cohorts. (A) TCGA-LIHC dataset. (B) ICGC-LIRI dataset. (C) Correlation analysis 
between the TIDE score and the necroptosis-related prognostic score. 

Table 3 
Cox analyses of overall survival.  

Variables Univariate analysis Multivariate analysis 

HR (95% CI) p HR (95% CI) p 

Age (≥65 vs.<65) 1.24 (0.88,1.75) 0.228 – – 
Gender (Male vs. Female) 0.82 (0.57,1.16) 0.260 – – 
Family history of cancer (Yes vs. No) 1.18 (0.82,1.70) 0.382 – – 
TNM stage (II vs. I) 1.43 (0.88,2.34) 0.151 1.25 (0.72,2.19) 0.427 
TNM stage (III vs. I) 2.72 (1.78,4.15) < 0.001 1.85 (1.15,2.98) 0.012 
TNM stage (IV vs. I) 5.79 (1.78,18.78) 0.003 7.41 (2.27,24.22) 0.001 
Histologic grade (G3–4 vs. G1–2) 1.12 (0.78,1.61) 0.528 – – 
Ishak score (5–6 vs. 0–4) 0.82 (0.48,1.40) 0.464 – – 
Child-Pugh grade (B–C vs. A) 1.63 (0.81,3.30) 0.173 – – 
Vascular invasion (Micro vs. None) 1.21 (0.77,1.89) 0.411 1.08 (0.65,1.80) 0.768 
Vascular invasion (Macro vs. None) 2.21 (1.05,4.65) 0.036 1.49 (0.69,3.26) 0.313 
Alpha fetoprotein (Positive vs. Negative) 1.27 (0.84,1.92) 0.264 – – 
Residual tumor (R1–2 vs. R0) 1.57 (0.80,3.11) 0.191 – – 
Risk score (High vs. Low) 2.33 (1.64,3.31) < 0.001 1.94 (1.33,2.82) 0.001  
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immunohistochemical analysis, further proteomic studies are also needed to assess the effect of necroptosis on HCC. Nonetheless, 
many previous studies have also focused on necroptosis at the transcriptome level. Meanwhile, necroptosis-related signatures 
demonstrate good accuracy in prognosis evaluation and provide abundant information about the HCC microenvironment, suggesting 
that it is rational to analyze the role of necroptosis in HCC based on necroptosis-related mRNA signatures. 

5. Conclusion 

In conclusion, based on necroptosis-related signatures, two HCC subtypes were identified with different mutation characteristics, 
drug sensitivities, and survival outcomes. Additionally, a necroptosis-related prognostic model was constructed and validated. Our 
findings add to the growing evidence supporting the role of necroptosis-related signatures in HCC and are worth being fully elucidated 
and validated. 
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