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Abstract
High-grade serous carcinoma (HGSC) is the most common and deadliest form of ovarian

cancer. Yet it is largely asymptomatic in its initial stages. Studying the origin and early pro-

gression of this disease is thus critical in identifying markers for early detection and screen-

ing purposes. Tissue-based mass spectrometry imaging (MSI) can be employed as an

unbiased way of examining localized metabolic changes between healthy and cancerous

tissue directly, at the onset of disease. In this study, we describe MSI results from Dicer-
Pten double-knockout (DKO) mice, a mouse model faithfully reproducing the clinical nature

of human HGSC. By using non-negative matrix factorization (NMF) for the unsupervised

analysis of desorption electrospray ionization (DESI) datasets, tissue regions are segre-

gated based on spectral components in an unbiased manner, with alterations related to

HGSC highlighted. Results obtained by combining NMF with DESI-MSI revealed several

metabolic species elevated in the tumor tissue and/or surrounding blood-filled cyst including

ceramides, sphingomyelins, bilirubin, cholesterol sulfate, and various lysophospholipids.

Multiple metabolites identified within the imaging study were also detected at altered levels

within serum in a previous metabolomic study of the same mouse model. As an example

workflow, features identified in this study were used to build an oPLS-DA model capable of
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discriminating between DKOmice with early-stage tumors and controls with up to 88%

accuracy.

Introduction
High-grade serous carcinoma (HGSC), a subtype of ovarian cancer also known as high-grade
serous ovarian cancer, is responsible for 70% of all ovarian cancer deaths and yet the origin and
early progression of this deadly disease remains poorly understood.[1–4] Reliable screening
tests in clinical practice are currently unavailable, and the asymptomatic course through early
stages of the disease make early detection of HGSC extremely difficult. Consequently, most
HGSC cases (> 95%), and by extension the majority of ovarian cancer cases, are diagnosed at
advanced stages leading to poor 5-year survival rates–approximately 44.6% for all cases diag-
nosed during 2004–2010.[1, 5–7] However, when the cancer is diagnosed early and is confined
to the primary tumor site, the 5-year survival rate increases to over 90%.[8] It is therefore
imperative that early detection methods are developed to combat ovarian cancer mortality.

The identification of biochemical changes within tissues from early- to late-stage HGSC
could provide a means for selecting markers that could be monitored in blood or urine for
early detection and diagnosis. A major challenge associated with this approach, however, is dif-
ficulty in finding patients with early-stage ovarian cancer, as early stages are asymptomatic.
Recent mouse models of ovarian cancer, with HGSC originating in the fallopian tube or ovary,
present a unique opportunity to overcome this challenge.[9–11] When two critical genes are
conditionally disabled (Dicerflox/flox Ptenflox/flox Amhr2cre/+), these double-knockout (DKO)
mice develop fallopian tube-originated HGSCs, which then spread to the ovary before metasta-
sizing throughout the abdominal cavity, causing ascites and leading to death.[9] Alternatively,
double-mutant mice carrying mutant p53 and Pten deletion produce ovary-originated HGSCs
as well as non-HGSCs in the ovary with normal fallopian tubes. [10] In addition, triple-mutant
mice, (p53LSL-R172H/+ Dicerflox/flox Ptenflox/flox Amhr2cre/+) that include mutant p53, the most
frequently observed mutations in human HGSC (~97%), also develop fallopian tube-originated
HGSC with the identical pattern of metastasis as DKO mice. Though both DKO and TKO
models duplicate equally well the clinical nature of human HGSC, the DKO model has also
been characterized at the molecular level, with DKO HGSC exhibiting molecular similarity to
human HGSC. Therefore, in this study DKOmice were selected for further investigation using
mass-spectrometry-based imaging analyses.

In mass spectrometry imaging (MSI), mass spectra are recorded at discrete spatial points
across the tissue sample, leading to a datacube with a mass spectrum for each (x,y) pixel. Two-
dimensional false-color images that map the spatial distribution of specific analytes are created
from these data.[12] Two well-established MSI methods that have been applied to cancer stud-
ies are matrix-assisted laser desorption/ionization (MALDI),[13–18] and desorption electro-
spray ionization (DESI).[19–25] Specifically for ovarian cancer, several MALDI MSI studies
have been published focusing on both protein and peptide biomarker identification.[26–29]
Only a report by Liu et al has investigated the potential role of metabolites using MSI.[30] In
this study, MALDI experiments were directed by transcriptomic analysis and focused specifi-
cally on the detection of sulfatides, a subclass of glycosphingolipids. DESI MSI, on the other
hand, has only been applied to the study of the molecular-level changes observed between pre-
and post-ovulation, but not to early cancer biomarker detection.[31]

Given the vast amount of chemical information generated in MSI, extracting the most bio-
logically-relevant information related to a specific factor may not be straightforward, requiring
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visual inspection and comparison of hundreds to even thousands of images for each experi-
ment. To simplify MSI data analysis, comparison of spectra from multiple regions or multiple
samples is possible using region-of-interest (ROI) selection.[32] ROI comparisons are straight-
forward, averaging spectra obtained at each pixel from a selected region, and are best suited for
analyses where histological boundaries are well defined. However, in cases where histological
boundaries are less clear or when new biological hypothesis are being generated, manually
defining ROI’s can be challenging. In the investigation of disease progression in large tissue sec-
tions, for example, chemical markers may be sparsely distributed and at low abundances, mak-
ing their detection by ROI selection difficult.

Semi-supervised methods employing clustering algorithms that automatically assign seg-
mentation maps according to patterns of co-localized molecules can be employed in such sce-
narios. However, these methods still divide the data into discrete spatial segments and require
the user to inspect many individual ion images to confirm they match with the corresponding
segment.[33] Unsupervised methods based on statistical algorithms are therefore preferred for
data mining of large, heterogeneous tissue samples, requiring minimal human intervention.
[34, 35] Such algorithms have been investigated for analysis of MSI datasets including Principal
Component Analysis (PCA)[36], Maximum Autocorrelation Factorization[37], K-Means[38]
and Fuzzy C-Means[39] clustering, Probabilistic Latent Semantic Analysis[40], and Non-Neg-
ative Matrix Factorization (NMF)[41]. Comparison of the Pearson correlation of output com-
ponent images against true sample images showed that of all these methods, NMF had the
highest mean image correlation.[35] Also, because of the built-in non-negativity constraints,
NMF component images are easily interpreted and better suited for mass spectrometric data
than other multivariate statistical methods, such as PCA.[42, 43]

Herein we follow up on our serum metabolomics study of the Dicer-Pten DKOmice with a
DESI MSI study of the complete reproductive system of the same mouse model.[44] DESI MSI
multivariate data analysis was carried out with a new version of omniSpect[45], now capable of
handling larger (~TB) MSI datasets. By separating the MSI data into multiple NMF compo-
nents via omniSpect, features representing metabolomic changes between healthy and cancer-
ous tissue were readily visualized. The corresponding NMF “component spectra” describing
these images were then studied, identifying chemical species altered in the HGSC tumor micro-
environment, several of which had also been previously detected at the serum level.[44]

Materials and Methods

Dicer-Pten Double-Knockout (Dicer-Pten DKO) Mice
Dicer-Pten DKO (Dicerflox/flox Ptenflox/flox Amhr2cre/+) mice were generated by mating males
(Dicerflox/flox Ptenflox/flox Amhr2cre/+) with females (Dicerflox/flox Ptenflox/flox). Female Dicerflox/flox

Ptenflox/flox (a genotype not carrying Amhr2cre/+) mice were used as controls. All mice were
obtained from in-house breeding at the Baylor College of Medicine and were housed in a vivar-
ium with a controlled temperature of 21°C. They were fed 5053 irradiated PicoLab Rodent Diet
20 and had access to drinking water supplied in bottles. Dicerflox/flox Ptenflox/flox Amhr2cre/+ DKO
mice used in this study develop ascites as tumors metastasize. Once mice begun to show signs of
ascites, they were monitored daily. Mice were recommended for euthanasia when the ascites
volume reached 10% of the animal's body weight. All mice used in this study (10 in total)
were sacrificed before reaching the limit for euthanasia via an overdose inhalation of carbon
dioxide to prevent unnecessary pain and distress in accordance to the animal protocol (AN716)
approved by the Institutional Animal Care and Use Committee (IACUC) at the Baylor College
of Medicine.
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Sample Preparation
The whole reproductive system of DKOmice (including uterus, fallopian tubes, and ovaries)
were excised and flash frozen at -80°C. The intact excised tissue was embedded in an aqueous
solution of gelatin (10% w/v) and carboxymethyl cellulose (5% w/v) and frozen at -80°C.
Embedded tissue blocks were placed in the chamber of a Cryostar NX70 cryostat (Thermo Sci-
entific Inc., San Jose, CA, USA) for 30 min and then sectioned at 20 μm thickness with both the
cutting block and sample block maintained at -20°C. Tissue sections were thaw mounted onto
Superfrost Plus Micro Slides (VWR International LLC., Radnor, PA, USA) and kept at -80°C
until analyzed.

Desorption Electrospray Ionization-Mass Spectrometry Imaging
DESI-MS images were acquired using a custom-built ion source consisting of an Omni Spray
DESI sprayer (Prosolia Inc., Indianapolis, IN) capable of fine adjustments using manual stages
and multi-axis platforms (Thorlabs, Inc., Newton, NJ). The following DESI-MS geometric and
experimental variables were optimized for the imaging experiment: height of sprayer-tip above
surface (5 mm), incident angle (55°), sprayer-tip distance fromMS inlet (15 mm), inlet height
above surface (<1 mm), spray solvent (methanol), solvent flow rate (5 μL min-1), nebulizing
gas (nitrogen), nebulizing gas pressure (100 psi), and spray voltage (-5 kV). The mass spec-
trometer inlet used was specifically designed for DESI-MS imaging and protrudes 18 cm from
the front of the instrument, allowing access to larger sample surfaces.

While the DESI sprayer and MS inlet were held stationary, the sample to be imaged was
moved in a “comb” shaped pathway, allowing the DESI sprayer to raster the entire sample sur-
face in 2-dimensions using an OptiScan II motorized microscope stage (Prior Scientific Inc.,
Rockland, MA) controlled by a Labview VI program described previously.[19, 45] The stage
velocity was set to 160 μm s-1 in the x-dimension with a line step of 200 μm in the y-dimension.
Negative-ion mass spectra were acquired on an Exactive Plus Orbitrap mass spectrometer
(Thermo Scientific, San Jose, CA) over the range ofm/z 400–1000 in centroid mode after opti-
mizing the following experimental variables: mass resolution (17,500 atm/z 200), automatic
gain control target (1e6 ions), microscans per scan (2), s-lens voltage (75 V), maximum injec-
tion time (100 ms), and capillary temperature (250°C).

Data Processing
The MS imaging data file as a single, continuous acquisition, along with Labview time and out-
put position files were uploaded to the omniSpect web-based server (http://cs.appstate.edu/
omnispect).[45] From the Labview-generated stage position and timing information, omniS-
pect creates an image cube line-by-line using mass spectra collected on the first pass along the
comb-shaped path. The original mass spectra are linearly interpolated onto a regularly spaced
grid along the x-axis.[46]

For collected spectra, omniSpect first estimates a full profile using a common logarithmi-
cally-spacedm/z scale for all scans and applying a small Gaussian window around each peak.
We used a standard deviation ofm/z 0.001 and a bin-width ofm/z 0.0005 atm/z 850 for these
data. In general, reducing the bin-width allows the Gaussian center to more accurately repre-
sent the centroid data peak center (i.e., the experimentalm/z value) with surrounding bins
being filled to accommodate mass shifts over the course of the experiment. The standard devia-
tion therefore corresponds to the tolerated variance of this mass shift and represents the
expected peak width if the data were collected in profile mode. The precision for centroided
data is configurable in the latest version of omniSpect (http://cs.appstate.edu/omnispect/) with
three preset settings:m/z ± 0.1, 0.01, and 0.001. At the highest precision, this approach
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generates data cubes with very large dimensions but very sparse data. For example, typical
mouse MSI data produced an image cube of size [805×59×2556741] which would require 904
GB if stored as double precision values. Because only 0.06% of the elements are nonzero, using
a sparse matrix representation results in files requiring less than 2 GB in memory.

Given an MSI data cube, NMF models each component spectrum as the non-negative linear
combination of source spectra and each component ion image as the non-negative linear com-
bination of source images. For example, source spectra in a given tissue sample might pertain
to different ions combinations or “components”, being produced at various tissue types, each
occupying different but possibly correlated spatial distributions. NMF recovers the non-nega-
tive component spectra and spatial distributions by minimizing the difference between the
modeled and the observed data.

First, the 3-D data cube is converted into a 2-D matrix by vectorizing the pixel coordinates
into a single dimension. The user selects the number of components to extract and NMF esti-
mates them. Among the many algorithms for NMF, we use the Alternating Least Squares
(ALS) approach to minimizing the Frobenius norm[47]:

D ¼ 1

2
kV�WHk2F

where V represents the data matrix,W represents the component images, andH represents the
component mass spectra. Each column ofW and corresponding row ofH represents the spatial
distribution and mass spectra from one component, respectively. Their product,WH, repre-
sents the linear combination of components that approximates the data. The algorithm starts
by initializingH with positive values. Then, it solves for theW that minimizes D for fixedH
using the least squares solution:

W ¼ VHTðHHTÞ#

where # represents the Moore-Penrose pseudoinverse. Any negative values inW are replaced
with zeros and the process is repeated forH. Specifically, D is minimized for the new value of
W:

H ¼ ðWTWÞ#WTV

Again, negative values are replaced with zeros, and the process is repeated, alternating
betweenW andH until convergence. After estimation, component images are represented as
2-dimensional false-color plots and the relative abundance of ions within the spectra are nor-
malized to the base-peak within the set of NMF components.[47]

Data Analysis
Mass spectral features from the fourth NMF component were cross-referenced with the
extracted and curated list of spectral features obtained following UPLC−MS analysis of serum
from 14 early-stage tumor (ET) DKO mice and 11 controls.[44] UPLC-MS spectral features
were extracted from the data using MZmine 2.0 software[48] and involved chromatogram
alignment, peak identification and integration, peak area extraction, and normalization after
curation of the data matrix. Curation of the data consisted of the removal of signals that were
present in the blank samples, the solvent, or were not present in at least 50% of the serum sam-
ples. Mass spectral features overlapping between the selected NMF component and the curated
UPLC-MS list were used to build a model for sample class discrimination via orthogonal partial
least squares discriminant analysis (oPLS-DA) using MATLAB (MATLAB version 7.13.0, The
MathWorks, Natick, MA with PLS_Toolbox v.6.71, Eigenvector Research, Wenatchee, WA).
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Results
Four Dicer-Pten DKOmice at age 8 months were sacrificed and the intact reproductive organs
were collected. One mouse displayed a large primary tumor with a blood-filled cyst at the end
of one uterine horn and a healthy ovary with a pre- or non-cancerous cyst at the other uterine
horn (Fig 1A). This sample was selected for MSI analysis as it was hypothesized that by imag-
ing the healthy ovary, pre- or non-cancerous cyst, and mature tumor together, direct spectral
comparisons could be made between the different tissue regions. Differing spectral compo-
nents detected, particularly those localized within the tumor/cyst region, could then be charac-
terized and assessed for their biological role or as potential markers of disease.

A negative-ion mode DESI-MS image was acquired from a 20 μM thick section of the com-
plete reproductive system excised from the aforementioned DKOmouse. Fig 1 shows an opti-
cal image of the tissue sample along with the false-color image and corresponding spectra for
both the total ion chronogram (TIC) and single-component NMF result. Comparison of both
images and spectra illustrate how closely the ALS algorithm can approximate the data cube

Fig 1. (a) Photograph of a thin tissue section of a DKOmouse reproductive system thaw-mounted onto a glass slide. (b) A single
component NMF image representing the DESI-MS negative-ion mode data for the DKOmouse reproductive system and (c) the
corresponding NMF spectrum. (d) The total ion current (TIC) image for the DESI-MS negative-ion mode data and (e) the
corresponding TIC spectrum.

doi:10.1371/journal.pone.0154837.g001
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factors and therefore how well NMF results represent the true data. The images presented in
Fig 1B and 1D are similar but not identical, as NMF approximates every spectrum in this
image as a scaled version of one component spectrum. Regions of the NMF component image
that do not match the TIC image indicate those regions have spectra that differ from the TIC
spectrum. For example, the tumor/cyst region on the right shows a higher intensity on the
false-color scale in the TIC image but the average spectrum for that region is not modeled well
by the ‘average’ spectrum for the entire image. Therefore, by comparison, the tumor/cyst
region is represented with lower relative intensity on the false-color scale in the single-compo-
nent NMF image. However, the spectra in Fig 1C and 1E are almost identical with peak lists
and relative abundances conserved. Progressively segmenting the data into two or more com-
ponents using NMF could therefore provide meaningful results regarding biological differences
related to disease progression by revealing these spectral differences. Determining the optimum
number of NMF components so as to model true biological variance while rejecting unwanted
noise, technical variation, and artifacts is thus central to understanding the level of useful infor-
mation contained in these data.

Fig 2A and 2C show the results from splitting the data cube into two NMF components.
The image in Fig 2A resembles that of Fig 1B with the base peak atm/z 885.5436 dominating
the corresponding spectra for both images. The accurate mass of this peak suggests it corre-
sponds to the [M-H]- ion of a phosphatidylinositol (PI) with 38 total carbons and 4 total dou-
ble bonds in the acyl chains (theo. [M-H]-;m/z 885.5499). This lipid species is one of the most
abundant acidic lipid species present in mammalian cell membranes and is routinely detected
when performing MSI of mammalian tissues.[49] The most notable difference between Figs 2A
and 1B is the reduced signal intensity in Fig 2A within the tumor/cyst region. Fig 2C shows the
second NMF component and reveals a stark contrast to the first NMF component, with
increased signal intensities in the tumor/cyst region and decreased intensities in the healthy
ovary region. Fig 2D represents the corresponding spectrum for the image in Fig 2C, revealing
the species that contribute to the increased signal intensity within the tumor/cyst region. Three
major species were observed in Fig 2D atm/z 572.483, 682.589, and 684.595. For the species at
m/z 572.483 and 684.595, an M+2 peak was observed at a relative abundance ratio of 3:1, sug-
gesting the presence of one chlorine atom within each species. Form/z 682.589, the M+2 signal
overlaps with the species atm/z 684.595. The species atm/z 684.595 has a relative abundance
much higher than that expected for the 37Cl isotope ofm/z 682.589. Therefore, ions atm/z
684.595 are attributed to a separate chemical species with possible contribution from a 37Cl iso-
tope. Interestingly, these three ions were also detected in a study that investigated cellular lipid
extracts from murine tumor cell lines by ESI-MS and were identified as the [M+Cl]- ions of
C16, C24:1, and C24:0 ceramides (theo.m/z 572.4815,m/z 682.5911, andm/z 684.6067, respec-
tively).[50] Elevation of these three metabolites have been reported to be involved in tumor-
induced dendritic cell apoptosis by down-regulating the phosphoinositide-3-kinase (PI3K)
pathway.[50] By releasing these immunosuppressive signaling compounds, the tumor creates a
favorable microenvironment whereby it can evade the host’s immune response and proliferate.
[51]

Region-of-interest (ROI) spectra from the combined early-stage tumor and blood-filled cyst
region (Fig 2E) and the early-stage tumor by itself (Fig 2G) were extracted from the data cube
using a MATLAB script for comparison to the corresponding NMF component image. By
manually selecting an ROI for a specific tissue region, an averaged spectrum is generated from
spectra for each pixel within the selected region. The second NMF component spectrum (Fig
2D) and the ROI spectrum (Fig 2F) share a high degree of similarity, with all of the major ions
detected in the ROI spectrum also present in the NMF component spectrum, albeit with slight
differences in relative abundances. The major differences observed between Fig 2D and 2F
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arise due to NMF placing greater emphasis on combinations of species detected with higher
degrees of variation from other regions of the image. To confirm that the major peaks identi-
fied in Fig 2D and 2F are actually present in the tumor region and are not simply associated
with the biological differences between blood and solid tissue, an ROI spectrum of the early-
stage tumor without the blood-filled cyst is shown in Fig 2H. The corresponding ROI spectrum
contains all the peaks present above 5% relative abundance within Fig 2D. However, in Fig 2H
these same peaks are present at much lower relative abundances due to the highly abundant
membrane lipids, i.e., PI(38:4) atm/z 885.54. The ROI method provides a more accurate repre-
sentation of the all species present in the selected region; however, NMF can isolate species that
distinguish between regions, potentially aiding in the discovery of species with relatively low
abundances that might be altered. This attribute is critical in trying to identify disease progres-
sion through tissue without supervised user intervention to define boundaries between diseased
and healthy tissue.

Fig 2. The resulting NMF component images (a) and (c), and corresponding spectra (b) and (d) from splitting the DESI-MS negative-
ion mode acquisition into two NMF components. (e) The TIC image from the same dataset showing the region-of-interest (ROI)
manually selected for the early-stage tumor and blood-filled cyst areas (red oval) and (f) the corresponding averaged spectrum from
the ROI. (g) The TIC image showing the region-of-interest (ROI) selected for the early-stage tumor site only (red oval) and (f) the
corresponding averaged spectrum from the ROI.

doi:10.1371/journal.pone.0154837.g002
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Splitting the dataset into three, four, and five NMF components (S1 and S2 Figs, and Fig 3,
respectively) progressively segregates the signals that are distinctly associated with the tumor/
cyst region from the rest of the healthy tissue. What emerges is an image primarily representing
the healthy ovary, one or more images (depending on the number of components selected)
exhibiting different ion distributions throughout the uterus and healthy ovary, and an image
showing elevated species in the tumor/cyst region. The spectra corresponding to the healthy
ovary component image (Fig 3C) that acts as our pseudo-control sample for this experiment is
dominated by the ion atm/z 885.5436 with all other ions observed at a relative abundance of

Fig 3. The resulting NMF component images and corresponding component spectra from splitting the DESI-MS negative-
ion mode dataset into five NMF components.

doi:10.1371/journal.pone.0154837.g003
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5% or less. The progressive NMF factorization of the signals contributing to the uterus (Fig 3A,
3E and 3I) show a lower relative abundance of the ion atm/z 885.5436 than Fig 3C. In addition,
a greater relative contribution from other ions in these spectra is observed, particularly those in
the lipid region betweenm/z 600–1000 from potential phosphatidylethanolamines (PE;m/z
716.5247, 722.5070, 746.5053, 766.5324, and 794.5395), phosphatidylserines (PS;m/z
788.5369, 810.5229, 834.5229), phosphatidylglycerols (PG;m/z 747.5108), and phosphatidyli-
nositols (PI;m/z 833.5120, 857.5111, 909.5489).[49]

Of the five NMF component images, Fig 3A exhibits the highest intensity in the tumor
region. However, Fig 3A also shows a relatively high correlation to the NMF component spec-
tra (Fig 3B) throughout the majority of the tissue section. Although the peaks in Fig 3B are ele-
vated in the tumor region, they are not necessarily ideal biomarkers to differentiate between
tumor and healthy tissues. This is supported by the majority of peaks identified in Fig 3B being
common mammalian cell membrane lipids that are known to be elevated due to an increased
rate of lipid synthesis in cancerous tissues.[52] On the contrary, Fig 3G shows a much greater
relative difference between the tumor/cyst region and the remainder of the tissue section. It is
true that the highest intensities and the majority of the most intense pixels are observed in the
cyst but there is still a significant number of pixels with elevated intensities in the tumor region.
As the component image in Fig 3G almost exclusively shows the tumor/cyst region with mini-
mal contributions from other tissue areas, this component should be highly representative of
metabolic changes within the tumor microenvironment. The three remaining NMF compo-
nents describe presumably non-cancerous regions of the tissue (i.e., healthy ovary and majority
of the uterus). Therefore, the component image in Fig 3G is expected to contain minimal con-
tributions from chemical species not specific to the cancer biology, with the corresponding
spectrum shown in Fig 3H.

The performance of NMF as an unsupervised segmentation algorithm applied to MSI data
was assessed by the comparison with a more typical clustering algorithm such as K-Means clus-
tering. The K-Means results from segmenting the MSI dataset into k = 5 clusters is shown in S3
Fig. Four of the five K-Means clusters were spatially and spectrally very similar to the NMF
results observed in Fig 3, with the blood-filled cyst, healthy ovary, and remaining tissue all seg-
mented into separate clusters. For the K-Means analysis, one of the clusters contained large
contributions from the chemical background signal and therefore that cluster correlated spa-
tially with the region outside the biological tissue. Segmentation of this background region was
not observed within the NMF results, instead the uterus was separated into three segments
(compared to two with the K-Means clustering). It is evident that NMF is more suitable for
MSI data analysis as NMF provides the degree of correlation of every pixel to the spectral
approximation set for each component, whereas K-Means only gives a binary indication for
each pixels inclusion to that specific cluster. Thus NMF images provide a more informative
descriptor for MSI data than K-Means clustering.

To illustrate the selective power of NMF, ions detected within the tumor spectrum at an
abundance of� 5% relative to the base peak are listed in Table 1. Tentative structural identities
of these ions are suggested based on accurate mass measurements, database searches, and liter-
ature reporting the detection of similar species in murine or human carcinomas.[53, 54] Eigh-
teen ions representing fifteen different metabolites were tentatively identified in Table 1,
including six ceramide species, two sphingomyelin species, various lysophospholipids, choles-
terol sulfate, and bilirubin. Not surprisingly, sphingolipids comprise the majority of metabo-
lites in this list, as they are known to play a significant biological role in cell cycle progression,
telomerase function, and cell migration.[55] In addition, cholesterol sulfate is known for its sta-
bilizing and regulatory role as a cell membrane component in a range of mammalian tissues
and has also been detected in elevated levels in human uterine cervical carcinoma, squamous
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cell cancers, and prostate cancer tissues.[56, 57] The alteration in levels of bilirubin, a heme
degradation product, may stem from the host’s immune response to the tumor. It has been
reported that bilirubin plays a role in the defense against cancer by interfering with pro-can-
cerogenic signaling pathways.[58] Interestingly, our previous serum metabolomics study of the
same Dicer-Pten DKOmouse model also identified bilirubin as a marker for detecting early-
stage HGSC, highlighting the potential for MSI to complement more traditional biomarker dis-
covery studies.

To validate the NMFMSI results, individual images for eachm/z value reported in Table 1
were extracted. These are shown in Fig 4 as false-color plots. All eighteen extracted ion images
indicated elevated ion abundances within the tumor/cyst region. A few species also displayed a
unique distribution throughout the remaining tissue that may be indicative of their normal bio-
logical role, or suggest their involvement in the formation of pre-cancerous lesions. For exam-
ple, the extracted ion image form/z 465 tentatively identified as the [M-H]- ion for cholesterol
sulfate shows elevated abundances in both the tumor/cyst region and the healthy ovary, but
not the uterus. This observation is consistent with previous studies that suggest cholesterol sul-
fate is heavily utilized in the mitochondria of rodent ovaries as a substrate for the synthesis of
sulfated steroids.[56] Since cholesterol is a precursor for steroid hormones, which are primarily
synthesized in the ovary, this may also suggest that the ovaries, though not necessarily the ori-
gin of the cancer in the DKO mouse model, may play an indirect role in carcinogenesis via ste-
roid hormones.

Table 1. Major ions detected from NMF components that exhibit elevated relative abundance at the primary tumor site and blood- and their tenta-
tive structural identification based on accurate massmeasurements.

Monoisotopic mass
(exp.)

Elemental
formula

Monoisotopic mass
(theo.)

Rel. error
(ppm)

Molecular
species

Tentative structural
identification

436.2826† C21H43NO6P 436.2834 1.8 [M-H]- LPE(P-16:0)

464.3139 C23H47NO6P 464.3147 1.7 [M-H]- LPE(O-18:1), LPE(P-18:0)

465.3054† C27H46O4S 465.3044 1.3 [M-H]- Cholesterol Sulfate

480.3091† C23H47NO7P 480.3096 0.8 [M-H]- LPE(18:0)

524.2975† C24H47NO9P 524.2994 3.6 [M-H]- LPS(18:0)

536.5044† C34H66NO3 536.5048 0.9 [M-H]- Cer(d34:1)

572.4827 C34H67NO3Cl 572.4815 2.1 [M+Cl]- Cer(d34:1)

583.2567† C33H36N4O6 583.2562 0.3 [M-H]- Bilirubin‡

599.3209† C27H52O12P 599.3202 1.2 [M-H]- LPI(18:0)

626.5328 C38H73NO3Cl 626.5285 6.8 [M+Cl]- Cer(d38:2)

646.6124 C42H80NO3 646.6144 3.1 [M-H]- Cer(d42:2)

648.6272 C42H82NO3 648.6300 5.9 [M-H]- Cer(d42:1)

656.5800 C40H79NO3Cl 656.5754 7.0 [M+Cl]- Cer(d40:1)

658.5919 C40H81NO3Cl 658.5910 1.5 [M+Cl]- Cer(d40:0)

682.5891 C42H81NO3Cl 682.5911 2.9 [M+Cl]- Cer(d42:2)

684.5952 C42H83NO3Cl 684.6061 15.9 [M+Cl]- Cer(d42:1)

737.5318† C39H79N2O6P 737.5369 6.9 [M+Cl]- SM(d34:1)

847.6430 C47H93N2O6PCl 847.6465 4.1 [M+Cl]- SM(d42:2)

†Mass also detected in LC-MS analysis of serum from the same Dicer-Pten DKO mouse model diagnosed with early-stage high-grade serous ovarian

cancer.[44]
‡Metabolite identified in serum and reported as a discriminatory marker between control mice and Dicer-Pten DKO mouse model diagnosed with early-

stage high-grade serous ovarian cancer.[44]

doi:10.1371/journal.pone.0154837.t001
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The metabolites listed in Table 1 were also cross-referenced against the list of serum metab-
olites observed via UPLC−MS analysis of the same mouse model.[44] In that study, blood sam-
ples were collected from 23 Dicer-Pten DKOmice (Dicerflox/flox Ptenflox/flox Amhr2cre/+)
containing early-stage tumors and compared to 21 control mice (Dicerflox/flox Ptenflox/flox).
UPLC−ESI-MS analysis of the blood samples was performed using a Waters ACQUITY UPLC
H Class system fitted with a Waters ACQUITY UPLC BEH C8 column (2.1 × 100 mm, 1.7 μm
particle size) and coupled to a Xevo G2 QTOF mass spectrometer. The chromatographic
method for sample analysis involved elution with water (mobile phase A) and methanol
(mobile phase B) at a flow rate of 0.40 mL min−1 using the following gradient program: 0−15
min 20−90% B; 15−19 min 90% B. Due to similarities in ionization mechanism, DESI-MS
yields mass spectra similar to those obtained by ESI-MS and with methanol being the major
solvent for both studies, detection of the same classes of compounds from both blood and tis-
sue is expected.[59]

Fig 4. Extracted ion images shown as 2-dimensional false-color plots for the eighteenm/z values listed in Table 1 (see above).

doi:10.1371/journal.pone.0154837.g004
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Of the eighteen features listed in Table 1, eight were also present in the curated list of
UPLC-MS-detected species (denoted with †). These eight metabolites were used to build a
model for sample class discrimination between control and ET DKOmice via oPLS-DA. Per-
formance characteristics of the oPLS-DA analysis that included the eight selected metabolic
features (Fig 5A and 5B) were 88%, 91%, and 86% for the cross-validated accuracy, sensitivity,
and specificity, respectively. A total of 2 mice samples, both ET DKO samples, were misclassi-
fied. This 2 latent variable model interpreted 17.04% and 22.87% variance from the X- (feature
peak areas) and Y-block (mouse class membership), respectively.

Interestingly, of the eight metabolites used for oPLS-DA, six of those were measured in
lower abundance in the ET DKOmice sera relative to the control samples. This lower serum
abundance may be indicative of the elevated cellular metabolism occurring within the tumor
microenvironment in order to support its growth and survival.[60] These metabolites may be
biologically necessary for tumor proliferation and sequestered by the tumor cells from circulat-
ing blood, thereby decreasing their abundance relative to control blood samples. Conversely,
metabolite depletion in the blood may also be the result of increased uptake in the tumor area
due to the host’s immune response, which could also explain the changes in serum observed
for bilirubin. Additionally, two metabolites identified by MSI and detected at elevated levels in
DKO mice sera relative to control mice were Cer(d34:1) atm/z 536.5044 and lysophosphatidy-
linositol (18:0) (LPI(18:0)) atm/z 599.3209. This specific LPI, among several other LPI species,
have been detected at increased levels in both plasma and ascites fluid of ovarian cancer
patients and has been implicated as a signaling molecule in various cellular systems.[61–63]

To further elucidate the relationship between relative metabolite abundance in tissue com-
pared to relative changes detected in serum, extracted ion images for metabolites in the best
serum discriminatory panel which were not present in the fourth NMF component were also
investigated (Fig 6). The feature detected atm/z 402.7997 (unassigned metabolite in serum)
showed no spatial correlation with any region of the tissue in the extracted ion image. Features
detected atm/z 452.2783 (LPE 16:0) and 476.2772 (LPE 18:2) both exhibited elevated abun-
dance within the blood-filled cyst region, however, only LPE 18:2 was elevated in DKO mice
sera compared to control samples. Features detected atm/z 625.4240 (C42H58O4) and 627.5034
(DG 37:5) exhibited very irregular, yet almost identical extracted ion images. This could

Fig 5. (a) oPLS-DA calibration scores plot using the 8 discriminant metabolites overlapping between the fourth DESI MSI NMF
component and those detected in serum via UPLC-MS. The model consisted of 2 LVs with 17.04% and 22.87% total captured X-
and Y-block variances, respectively. The performance characteristics of the oPLS-DA analysis were 88% accuracy, 91%
sensitivity, and 86% specificity. (b) Corresponding ET cross-validated prediction plot for panel (a). There were only 2 misclassified
mice using leave-one-out cross-validation.

doi:10.1371/journal.pone.0154837.g005
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suggest that the major contributing species to each of these two extracted ion images may be
biologically or chemically related. There are two possible explanations for these imaging
results: (i) these extracted ion images may be representing chemical species other than
C42H58O4 and DG(37:5), or (ii) that the tentative metabolite identification reported for these
metabolites in serum could be revised–a possibility as these species were not confirmed by
chromatographic comparison to standards. The feature detected atm/z 711.3057 exhibited a
very unique extracted ion image, showing relatively high abundance in the tumor tissue but
not in the blood-filled cyst or the healthy ovary. This feature also remained structurally uniden-
tified in the serum analysis but the selective localization in the tumor tissue suggests it may rep-
resent an important biochemical marker worthy of future identification efforts. The feature
detected atm/z 780.5530, tentatively identified from the serum analysis as PE(39:4), showed
relatively high abundance in the healthy ovary and the tumor/cyst regions. This spatial distri-
bution was comparable with other PE lipids detected (m/z 716.5247, 722.5070, 746.5053,
766.5324, and 794.5395), except this particular PE species shows a much higher relative abun-
dance in the blood-filled cyst region. Although this metabolite was detected at only slightly ele-
vated levels in DKOmice sera compared to controls (+0.061 log2 fold change), the extracted
ion image gave a clear indication that this metabolite was associated with the ovary biochemis-
try and elevated with tumor progression. The feature detected atm/z 889.7234 exhibited a spa-
tial distribution similar to some prominent membrane phospholipids, e.g., PI(38:4), PE(38:4),
and PS(36:1). However, this metabolite was tentatively identified as the [M-H]- ion of triacyl-
glycerol TG(55:7) in serum, so further structural investigations may be warranted for this spe-
cies. The ninth metabolic feature reported in the serum panel and detected by DESI-MS atm/z
903.6231 showed a slight abundance increase within parts of the tumor tissue, but it was also
present throughout the entire tissue section, making it difficult to draw any significant biologi-
cal conclusions.

Conclusion
Applying NMF and DESI-MSI to the reproductive system of a DKO mouse model revealed
several metabolites present in tumor tissue and the surrounding blood-filled cyst at elevated

Fig 6. Extracted negative ion DESI-MS images for the ninemetabolites in the ET DKO/control serum discriminatory panel not included in the
fourth NMF component spectrum.

doi:10.1371/journal.pone.0154837.g006
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levels relative to adjacent healthy tissue. Three ceramide species, Cer(d34:1), Cer(d42:2), and
Cer(d42:1) were among the most abundant ions detected, being identified as active metabolites
involved in protecting cancerous cells from the host immune system. Eight of the most abun-
dant metabolites present in the selected NMF component, including several lipids and small
metabolites, were also detected in sera and used to discriminate ET DKOmice from controls
with 88% accuracy. Furthermore, DESI-MSI data was able to link metabolites identified as dis-
criminatory features in a previous serum metabolomic study with their spatial distribution
within the tissue, providing support for their biological relevance.

Future work will involve combining both negative- and positive-ion DESI-MS data and
expanding to higher spatial resolution MSI methods such as MALDI and secondary-ion mass
spectrometry to obtain a more complete picture of molecular changes related to early-stage
ovarian cancer progression. These additional ionization techniques will also provide wider
metabolome coverage and provide complementary information to that obtained by conven-
tional ESI-MS analyses. Moreover, these approaches could allow us to investigate stage-specific
changes in metabolite abundances during the progression of ovarian cancer.

Supporting Information
S1 Fig. The resulting NMF component images and corresponding component spectra from
splitting the DESI-MS negative-ion mode dataset into three NMF components.
(TIF)

S2 Fig. The resulting NMF component images and corresponding component spectra from
splitting the DESI-MS negative-ion mode dataset into four NMF components.
(TIF)

S3 Fig. The resulting K-Means clustering images and corresponding spectra for the
DESI-MS negative-ion mode dataset where k = 5.
(TIF)
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