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Personalization of cancer immunotherapies such as therapeutic vaccines and adoptive 
T-cell therapy may benefit from efficient identification and targeting of patient-specific 
neoepitopes. However, current neoepitope prediction methods based on sequencing 
and predictions of epitope processing and presentation result in a low rate of validation, 
suggesting that the determinants of peptide immunogenicity are not well understood. 
We gathered published data on human neopeptides originating from single amino 
acid substitutions for which T cell reactivity had been experimentally tested, including 
both immunogenic and non-immunogenic neopeptides. Out of 1,948 neopeptide-HLA 
(human leukocyte antigen) combinations from 13 publications, 53 were reported to elicit 
a T cell response. From these data, we found an enrichment for responses among pep-
tides of length 9. Even though the peptides had been pre-selected based on presumed 
likelihood of being immunogenic, we found using NetMHCpan-4.0 that immunogenic 
neopeptides were predicted to bind significantly more strongly to HLA compared to 
non-immunogenic peptides. Investigation of the HLA binding strength of the immu-
nogenic peptides revealed that the vast majority (96%) shared very strong predicted 
binding to HLA and that the binding strength was comparable to that observed for 
pathogen-derived epitopes. Finally, we found that neopeptide dissimilarity to self is a 
predictor of immunogenicity in situations where neo- and normal peptides share com-
parable predicted binding strength. In conclusion, these results suggest new strategies 
for prioritization of mutated peptides, but new data will be needed to confirm their value.

Keywords: neoepitopes, neoantigens, prediction, immunogenicity, mutations, Mhc binding

inTrODUcTiOn

Tumor cells can be naturally recognized by the adaptive immune system based on the sequence and 
abundance of the immunogenic peptides presented on the tumor cell surface. The majority of known 
tumor antigens are either normal peptides expressed at an unusually high level, or peptides derived 
from translation of somatic mutations (neoepitopes).

Neoepitopes are important in several successful approaches to enhance tumor killing by T cells. 
Inhibitors of immune checkpoints such as programmed cell death protein 1 and cytotoxic T lym-
phocyte-associated protein 4 counter the inhibition of T cell responses often observed in cancer 
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patients. With both of these approaches, a higher mutation load 
predicts greater clinical benefit, suggesting that neoepitopes are 
important for immune response, at least in selected cancer types 
(1, 2). Adoptive transfer of expanded tumor-infiltrating lym-
phocytes (TILs) increases the proportion of tumor-responsive 
T  cells, and selective expansion of neoepitope-specific T  cells 
has been successfully demonstrated (3). Recent studies using 
peptide vaccines of patient-specific neoepitopes have shown that 
targeting neoepitopes may be an effective method to treat cancer 
(4, 5). Thus, rapid and accurate identification of patient-specific 
neoepitopes is an important goal.

Neoepitopes can be identified in various ways. Early studies 
used T cell reactivity screening of cDNA expression libraries (6). 
More recently, a common approach is to first identify somatic 
mutations by sequencing DNA and/or RNA from a tumor and 
matched normal specimen. These somatic mutations can be used 
to infer changes in protein sequences, resulting in “neopeptides” 
that are potentially present in tumor cells but not in normal cells. 
Such candidate neopeptides can next be synthesized and tested 
for reactivity by autologous T  cells using various assays such 
as ELISPOT, fluorescently labeled HLA tetramers, or barcode-
labeled HLA multimers (7). However, most neopeptides do not 
serve as neoepitopes. For a neopeptide to become a neoepitope, 
at least two properties must be fulfilled: the peptide must be 
processed and presented by HLA, and the presented peptide 
must be recognized by a suitable T cell. The problem of predicting 
neoepitopes can, therefore, be split into two individual problems: 
(1) predict neopeptide antigen processing and presentation (pres-
entation) and (2) predict which peptides, if presented by HLA, 
can trigger a T cell response (immunogenicity).

Predicting HLA presentation is typically done based on 
prediction of HLA binding between an individual peptide 
sequence and the relevant HLA alleles, using tools such as 
NetMHC (8) or NetMHCpan (9). If available, mRNA expression 
data may be used to eliminate neopeptides from genes that are 
not expressed. Abelin et al. (10) trained a prediction algorithm 
considering mass spectrometry (MS) data from eluted peptides, 
peptide expression and cleavage, outperforming NetMHC 4.0 
and NetMHCpan 2.8, although this predictor is not yet publicly 
available. It should be mentioned that the newest version (4.0) 
of NetMHCpan is also trained on MS eluted ligand data as well 
as binding affinity data (11).

To predict immunogenicity, one proposal has been to use 
the “differential agretopic index” (DAI), defined as the differ-
ence in binding strength between the mutated neopeptide and 
its unmutated normal peptide counterpart (12). The reasoning 
behind this is based on the mechanism of immune tolerance 
ensuring that no T  cell will recognize HLA presented self 
peptides. Given this, one way for a neopeptide to become a 
neoepitope would be to have significantly improved HLA-
binding capacity compared to the normal peptide. In this 
situation, only the neopeptide will be presented by surface 
HLA, and hence, no tolerization is present against the normal 
peptide. Consequently, tolerization against the neopeptide is 
expected to play a minor role for the immunogenicity in this 
situation. In contrast, when the neopeptide and the normal 
peptide are both HLA binders, tolerization against the normal 

peptide has taken place, and this tolerization is expected to 
impact the immunogenicity of the neopeptide. Consequently, 
in this situation, the immunogenicity will depend on the lack 
of similarity between the mutated neopeptide and the normal 
counterpart.

Typically, only a minority of the tested neopeptides evoke a 
T cell response, suggesting that current methods to select candidate 
neopeptides are insufficient. In order to characterize the proper-
ties of neoepitopes, at least two groups have analyzed the charac-
teristics of combined lists of published, confirmed neoepitopes. 
Van Buuren et al. (13) compiled a list of 17 neoepitopes that were 
identified without predictions and thus tested in an “unbiased” 
manner and found that their prediction algorithm would have 
correctly predicted 12 of the 17, for a sensitivity of 70%. However, 
this analysis does not provide a specificity estimate, and the data 
set is too small to analyze the relative importance of their indi-
vidual selection criteria. Fritsch et al. (14) did a similar study on 
a larger group of 40 published neoepitopes, and found that in the 
majority of cases both the mutated and unmutated peptide were 
predicted to bind to HLA. Importantly, neither of these studies 
analyzed their data considering the set of neopeptides that did 
not elicit a T cell response. Recently, several studies have assessed 
immunogenicity of larger sets of neopeptides and have published 
lists of neopeptides, which both did and did not elicit a T cell 
response. We set out to analyze these data to investigate if any 
broad patterns emerge that might enable better predictions of 
neoepitopes.

MaTerials anD MeThODs

Data collection and correction
Data was gathered from the 13 published papers (Table  1). 
For 10 of 13 studies, both neopeptides and the corresponding 
unmutated peptide were provided. For the other three studies, 
the corresponding normal peptides were missing or partially 
missing. For the missing normal peptides, we used “pepmatch,” 
a program available as part of MuPeXI (15), to identify the most 
similar peptide from the normal human peptidome. The normal 
human peptidome was defined as all unique peptides of lengths 
8–11 extracted from human proteins available in Ensembl 
release 85, based on human genome GRCh38. Out of 820 
neopeptides analyzed with pepmatch, 20 matched a reference 
peptide exactly with no mismatches, and 14 matched a refer-
ence peptide with more than a single mismatch. Additionally, 
one study included peptides originating from indels resulting in 
one peptide originating from a frameshift mutation being tested. 
An additional 7 peptide-HLA combinations were duplicates and 
were removed from the dataset together with the 35 non-single 
nucleotide variant (SNV) peptides; we note that none of these 
elicited an immune response. Thus, the final dataset included 
1,948 peptide-MHC combinations of 27 HLA alleles and 1,874 
unique mutated peptides. It should be noted that we included all 
11 peptides from the study by Strønen et al., only two of these 
were found in autologous TILs, whereas the rest of the immu-
nogenic peptides were identified in peptide stimulated PBMCs 
from healthy donors.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 1 | Data included in this study.

reference Publication 
date

First and last author Journal Tumor 
type

Patients Peptides 
tested

T cell 
responses

Test 
method

Peptide 
lengths

(16) 2013–05 Robbins et al. and Rosenberg Nat Med SKCM 3 227 10 ELISPOT 9–10
(17) 2013–11 Van Roij et al. and Schumacher J Clin Oncol SKCM 1 – 1 FLT 9
(18) 2014–03 Wick et al. and Nelson Clin Cancer Res HGSC 3 109 1 ELISPOT 8–11
(19) 2014–06 Rajasagi et al. and Wu Blood CLL 2 48 3 ELISPOT 9–10
(20) 2014–07 Lu et al. and Robbins Clin Cancer Res SKCM 2 10 2 ELISA 8–11
(1) 2014–12 Snyder et al. and Chan N Engl J Med SKCM 1 – 1 ICS 9
(2) 2015–04 Rizvi et al. and Chan Science NSCLC 1 – 1 FLT 9
(21) 2015–10 Cohen et al. Robbins J Clin Invest SKCM 8 427 9 FLT 9–10
(22) 2016–01 Kalaora et al. and Samuels Oncotarget SKCM 1 2 1 ICS 9, 11
(23) 2016–03 McGranahan et al. and Swanton Science NSCLC 2a 642a 3/8a FLT/BLM 9–11
(24) 2016–05 Strønen et al. and Schumacher Science SKCM 4 56 11 FLT 9–11
(25) 2016–05 Bassani-Sternberg et al. and Krackhardt Nature Commun SKCM 1 8 2 MS-FLT 8–10, 12
(26) 2016–08 Bentzen et al. and Hadrup Nat Biotechnol NSCLC 2a 703a 9a BLM 9–11

Total 13 4 30 1,874 53 5 5

1,874 unique tested peptides, 1,948 peptide-HLA combinations, from 27 HLA alleles.
FLT, fluorescently labeled tetramers; BLM, DNA barcode-labeled multimers; ICS, intracellular cytokine staining; MS, mass spectrometry; SKCM, skin cutaneous melanoma; NSCLC, 
non-small cell lung cancer; CLL, chronic lymphocytic leukemia; HGSC, ovarian high grade serous carcinoma.
aPeptides and patient overlap between studies.
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Binding Prediction
We used a custom Python script to extract additional information, 
including the amino acid change, peptide mutation position, and 
number of mismatches, in addition to running NetMHCpan-4.0 
(11) for HLA binding prediction and extracting the output 
predicted affinity and eluted ligand likelihood percentile rank 
(EL%Rank) score. NetMHCpan 4.0 is trained on both in vitro 
binding affinity and MS eluted ligand data and includes distinct 
prediction modes for each of the two data types. The default 
mode for NetMHCpan-4.0 (and the mode recommended for 
eluted ligand and epitope prediction) is eluted ligand-likelihood 
predictions. However, the user has the possibility to use the bind-
ing affinity mode by selecting the −BA. In this study, the recom-
mended mode was used, evaluating the peptides on EL%Rank 
score. This score indirectly accounts for peptide cleavage and 
translocation when predicting peptide binding, as part of the 
dataset used for training consisted of MS identified HLA eluted 
ligands.

anchor Mutation annotation
Anchor positions for each HLA allele were manually defined 
from NetMHCpan-3.0 sequence motifs (9). Peptides were anno-
tated according to whether the mutation occurred in the given 
HLA allele anchor position (Table S1 in Supplementary Material, 
column: “BindingPosition,” “Anchor”).

analysis and statistics
The resulting data was analyzed in R, and plots were generated 
using R packages ggplot2 and ggbeeswarm. P-values for differ-
ence in proportion were calculated using a two-sided Fisher’s 
exact test and/or Student’s t-test.

self-similarity Predictions
The similarity between pairs of neo- and normal peptides was cal-
culated using the kernel similarity measure proposed by Wen-Jun 
Shen et al. (27). The measure gives a value between 0 and 1 for the 

similarity of two peptides, where a value of 1 indicates a perfect 
match. In basic terms, this similarity is calculated from matching, 
at different length scales, all kmers (a substring of length k) in 
one peptide to the kmers in the other peptide using a Blosum 
similarity measure. In Figure S1 in Supplementary Material, we 
show the average similarity between a set of 9-mer peptide pairs 
with single mutations at different positions, forming 3,420 single 
mutant peptide pairs (20 random natural peptides each mutated 
to 19 single mutant variants at each of the 9 peptide positions). 
From this plot, it is clear that single mutation variations toward 
the N and C terminal of the peptide have very limited impact 
on the similarity between two peptides (the similarity is high) 
compared to mutations in the central part of the peptides (where 
the similarity is lower).

receiver Operator characteristic (rOc) 
curve generation
Generally, a ROC curve is created by plotting the true positive 
fraction (or sensitivity) against the false positive fraction (or 1—
specificity) at various threshold settings. In the ideal case, where 
a threshold exists that can perfectly separate the positive and 
negative data point, the area under the ROC curve (AUC) is 1, 
and in the situation where the predictive model has no predictive 
power, the ROC curve forms a straight line x = y and the AUC 
is 0.5. The plots where generated in R using the packages ggplot2 
and plotROC.

The full dataset including all predictions, deselected peptides, 
HLA alleles, and additional peptide-specific information can be 
found in Table S1 in Supplementary Material.

resUlTs

We searched for published studies in which putative neoepitopes 
were first identified by tumor DNA sequencing and then 
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TaBle 2 | Associations between peptide characteristics and T cell 
responsiveness.

T cell response Total Proportion  
responding

P

no Yes

Peptide length
8mer 24 1 25 0.040 1.00
9mer 742 33 775 0.043 N/A
10mer 720 18 738 0.024 0.063
11mer 408 1 409 0.002 0.00001
12mer 1 0 1 0.000 1.00

hla gene
HLA-A 1,440 42 1,482 0.028 N/A
HLA-B 414 9 423 0.021 0.50
HLA-C 41 2 43 0.047 0.35

P-values represent a test for difference in proportion responding, between the given 
row and the corresponding most frequent row (9mers or HLA-A).
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experimentally tested for T  cell reactivity. We chose to focus 
on studies in which native T cell reactivity against the minimal 
peptide of a neoepitope was assessed and did not include vaccine 
studies in which an induced T cell response was assessed. We con-
sidered only neopeptides derived from a SNV/missense mutation. 
We identified 13 relevant studies from which we created a dataset 
consisting of 1,948 unique peptide-HLA complexes, of which, 
53 were reported to elicit a T cell response (Table 1; Table S1 in 
Supplementary Material). This represents 1,874 unique peptides; 
some of which were evaluated in combination with more than 
one HLA allele.

First, we searched for broad trends in factors that might 
influence neopeptide immunogenicity (Table  2). We analyzed 
the proportion of neopeptides eliciting a response according to 
neopeptide length and found that 9-mers had the highest relative 
frequency of response (4.3%), substantially higher than 10-mers 
(2.4%, P = 0.063) or 11-mers (0.2%, P = 0.00001). Note that this 
analysis accounts for the larger number of 9 and 10mer peptides 
experimentally evaluated compared to 8 or 11mer (Table 2). We 
next compared the three HLA genes and did not find a statistically 
significant difference between HLA-A and HLA-B (P = 0.50). The 
number of HLA-C restricted responses was too low to make any 
meaningful analyses related to the relative importance of this 
locus.

Even though the neopeptides included in this study were 
selected by the original study authors based on predicted bind-
ing affinity, we asked whether predicted HLA binding could 
be used to further prioritize the neopeptides. We did this by 
examining the predicted HLA binding strength of neopeptides 
and normal peptides with NetMHCpan-4.0 using the EL%Rank 
score (results for binding affinities are included in Table S1 in 
Supplementary Material). We found a broad range of predicted 
binding values of the neopeptides from each study (Figure 1A), 
and immunogenic neopeptides (neoepitopes) were overall 
predicted to bind significantly more strongly (P  <  0.0001, 
Student’s t-test, AUC  =  0.72) than non-immunogenic pep-
tides (Figure 1B). Similar but less significant differences were 
observed when comparing the HLA-binding strength of the 
immunogenic and non-immunogenic peptides in terms of 

predicted binding affinity and predicted EL%Rank scores (data 
not shown). We also analyzed the DAI described by Duan et al. 
(12), but this was only moderately predictive (AUC  =  0.57). 
The vast majority (75%) of the neoepitopes were predicted to 
be very strong HLA binders with EL%Rank scores less than 0.5. 
Only seven neoepitopes had a predicted EL%Rank score greater 
than 2, and 5 of these were 10- or 11-mer peptides, which all 
contained nested submer peptides with improved binding to 
the HLA allele, suggesting that these peptides were not mapped 
to the minimal epitope (27). The remaining two were 9-mer 
peptides both containing segments of double or triple cysteines 
(KVCCCQILL, NLNCCSVPV). Such cysteine-rich peptides are 
handled poorly by the MHC binding prediction tools due to 
the bias against cysteines in the peptide data used to train these 
methods. In fact, replacing the cysteines in the two peptides 
with X (making NetMHCpan ignore these residues) confirms 
the strong binding strength (EL%Rank score less than or equal 
to 1, data not shown). Overall, we hence find that neoepitopes, in 
accordance with earlier studies analyzing HLA ligands and T cell 
epitopes in general (9, 11), are characterized by strong predicted 
binding to the restricting HLA molecules. We find that 96% of 
the neoepitopes (given the handling of outliers described above) 
are identified at a EL%Rank threshold of 2.

We plotted the predicted binding strength of neopeptide 
and normal peptide and observed the previously described 
pattern (14) that the data can be split into two broad groups 
(Figure 1C). One group (CB for conserved binding) is defined 
by peptides where the neo- and normal peptides have compa-
rable binding strength (peptides located close to the diagonal), 
and one group (IB for improved binding) where the neopep-
tides have improved binding compared to the normal peptides 
(peptides located in the upper left corner). As a reflection of the 
processes applied to selected neo-peptides, very few examples 
are found where the neopeptide has decreased binding com-
pared to normal.

Next, we split the peptides into two equal sized groups of IB 
and CB. The split was determined based on the ratio between 
the EL%Rank scores for the mutated and corresponding nor-
mal peptide (EL%Rankn/EL%Rankm). The IB group included 
neopeptides, which had at least a 20% improved binding (ratio 
≥1.2) whereas the CB group included the remaining peptides 
(ratio <1.2). Note that this ratio-based measure shares a high 
overlap with the DAI. As expected, a very large proportion 
(45%) of the peptides in the IB group are characterized by 
mutations in the HLA anchor positions, whereas the propor-
tion of peptides with such mutations is low in the CB group 
(14%) (Figure 1C).

Given the split of peptides into IB and CB, we now investigated 
how the similarity of the neopeptide to “self ” (here taken as the 
normal counterpart peptide) would impact the peptide immuno-
genicity. This we did by calculating the similarity between each 
neo- and normal peptide using the kernel similarity measure 
proposed by Wen-Jun Shen et al. (27). In short, the similarity in 
this measure is estimated from the combined set of overlapping 
kmer (substring peptides of length k) peptides. An inherent bias 
of this approach is that it focuses on the central part of the peptide 
(for details see Materials and Methods). This bias makes it an 
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FigUre 1 | HLA-binding properties of neopeptides. Predicted eluted ligand likelihood percentile rank (EL%Rank) score of neopeptides, corresponding to individual 
studies (a) or summarized according to mutant peptide T cell response (B). As there is an overlap in patients between the Bentzen and the McGrannahan study, 
only unique observations are plotted, the first refereeing to the peptides tested with barcode labeled multimers and the second with fluorescently labeled tetramers 
(a). (c) Predicted EL%Rank score for neopeptides and their corresponding normal peptides, with mutant peptide T cell response and anchor position mutations 
indicated. The curve corresponding to the median EL%Rankn/EL%Rankm value equal to 1.2, used to define the groups of peptides with improved binding strength 
(IB) and conserved binding strength (CB), is shown as a solid line. Thresholds for weak (2 EL%Rank) and strong binders (0.5 EL%Rank) are indicated with dashed 
lines. ****P < 0.0001.
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FigUre 2 | Similarity between neo- and normal peptides. The plot shows the average and SE for the immunogenic (blue) and non-immunogenic (red) peptides  
for each of the three peptide groups; all (all peptides in the given study), IB (neopeptides with increased binding compared to the normal peptide), and CB  
(neopeptides with comparable binding compared to the normal peptide). For details, see text. The difference in similarity scores is significant only for CB 
(*P = 0.025, Student’s t-test).
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ideal first approximation to the HLA fingerprint on T cell intera-
ctions with peptide–HLA complexes; here, the C and N terminal 
positions of the peptide are generally found to play a minor role 
due to their important contribution to the HLA binding (28). 
The measure gives a value between 0 and 1 for the similarity of 
two peptides, where a value of 1 indicates a perfect match. Using 
this measure, the self-similarity scores of the immunogenic and 
the non-immunogenic neopeptides were compared for either the 
complete data set, or the two groups (IB and CB) defined above in 
terms of the difference in HLA binding strength between mutant 
and normal peptide (Figure 2).

These results demonstrate that self-similarity in general is a 
relatively poor predictor for peptide immunogenicity. However, 
this situation is changed when focusing on the CB subset of 
peptides where the neo- and normal peptide share compara-
ble HLA binding strength. Here, we found the immunogenic 
peptides to be significantly less similar to self, compared to 
the non-immunogenic peptides (P = 0.02499, Student’s t test). 
For the IB subset of peptides with improved HLA binding 
strength of the neopeptide compared to self, immunogenic 
and non-immunogenic peptides were found to have the same 
level of self-similarity. The difference in self-similarity score 
is even more evident when directly comparing IB versus CB 
peptides among the immunogenic neoepitopes only. Here, we 
find that CB neoepitopes are indeed characterized by a lower 
self-similarity score compared to IB neoepitopes (P = 0.00395, 
Student’s t-test).

We summarize these findings in Figure  3 where receiver 
operator characteristic (ROC) curves for the predictive 

performance of HLA binding of the neopeptides, the DAI 
score, and the self-similarity score are shown for the complete 
data set and for the two peptide groups IB and CB. In short, a 
ROC curve is a graphical illustration of the power of a predic-
tive model, in this case, how good predicted HLA binding, DAI 
and the self-similarity score are at sorting the immunogenic 
peptides before the non-immunogenic peptides (for details 
see Materials and Methods). The plots in Figure  3 confirm 
the above findings, namely that binding strength to HLA is an 
overall good predictor for neopeptide immunogenicity (the 
mutant peptide EL%Rank score achieves the highest predic-
tive performance in all 3 plots), that DAI demonstrates poor 
predictive performance for the data included in the given study 
(the AUC is low and close to 0.5 in all cases), and that neo-
peptide self-similarity can be used as an additional correlate 
besides binding to peptide immunogenicity for peptides with 
comparable HLA binding between neo- and normal peptide 
(AUC = 0.65 in Figure 3 CB).

Taken together, these results support the notion that immu-
nogenicity of neopeptides should be predicted using different 
approaches according to the relationship of the neopeptide HLA 
binding strength to the binding strength of the counterpart 
normal peptide. In cases where the neo- and normal peptides 
both are binders and share similar binding strength, self-simi-
larity plays an important part in the prediction of the neopeptide 
immunogenicity. This is in contrast to the situation where only 
the neopeptide is predicted to bind HLA. Here, self-similarity 
plays a limited role, if any, for the prediction of neopeptide 
immunogenicity.
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FigUre 3 | Receiver operator characteristic analyses of the predictive performance of the NetMHCpan-4.0 eluted ligand likelihood percentile rank (EL%Rank) 
score, the “differential agretopic index” (DAI), and the self-similarity measure. The diagonal line corresponding to AUC = 0.5 is included as a guide to the eye.
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DiscUssiOn

Previous studies have analyzed published neoepitopes for 
patterns in peptide binding affinity (13, 14). To the best of our 
knowledge, this is the first study analyzing published neoepitopes 
along with neopeptides from the same studies, which failed to 
elicit a T cell response. By comparing these two sets of peptides, 
we identified several patterns that may improve prioritization of 
candidate neoepitopes.

First, we observed that 9-mer neopeptides were substantially 
more likely to elicit a T cell response than other peptide lengths. 
However, it is possible that this reflects the relative inaccuracy in 
earlier versions of HLA binding prediction algorithms in predicting 
HLA binding affinity for peptides with length different from 9. Newer 
versions of, e.g., NetMHCpan better account for peptide length pref-
erences. Indeed, NetMHCpan-4.0 predicts overall stronger affinity 
for the 9-mers in this study compared to other lengths.

Second, we found that predicted HLA binding was a strong 
correlate to neopeptide immunogenicity, despite the fact that all 
neopeptides analyzed in this study were selected in the original 
publications based on such predictions. Analyzing the HLA bind-
ing strength in terms of the EL%Rank score of NetMHCpan-4.0, 
we found that the immunogenic neopeptide bound HLA 
significantly stronger than the non-immunogenic peptides. In 
terms of absolute prediction scores, 96% of the neoepitopes were 
found to bind with a EL%Rank score of 2 or less. This binding 
threshold and sensitivity value is in agreement with earlier studies 
of HLA ligands and T  cell epitopes outside the cancer epitope 
field (9, 11), and suggest that neoepitopes bind HLA with similar 
binding strength as pathogen derived epitopes. In the context of 
HLA binding, we also found that the DAI alone is, overall, less 
predictive than the HLA binding strength of the neopeptide.

Finally, we found that different characteristics were associated 
with immunogenicity when splitting the peptides into two groups 

based on neopeptides with conserved binding strength (CB) or 
improved binding strength (IB) compared to the normal peptide. 
For the IB neopeptides, no difference in self-similarity between 
immunogenic and non-immunogenic peptides were observed. In 
contrast, for the IB neopeptides, the immunogenic peptides were 
found to share significantly lower self-similarity compared to the 
non-immunogenic. Given the limitations of the current study 
(in particular related to the very small number of neoepitopes 
included), we believe this result to reflect the impact of T  cell 
tolerance on neopeptide immunogenicity. Tolerization against self 
is only relevant for antigen presented peptides. If a normal peptide 
fails to bind HLA, no tolerization would have happened against this 
peptide, and we hence expect similarity toward this peptide to play 
a minor role in the prediction of immunogenicity. In contrast, we 
would expect tolerization to take place against a HLA binding self-
peptide, and hence also that similarity toward such self-peptides 
plays a prominent role when predicting neopeptide immunogenic-
ity. This hypothesis is reflected directly in our results.

We are aware that this study suffers from several important 
limitations. First, 3 of the 13 studies did not provide the peptides, 
which did not elicit T  cell recognition or activation. The non-
immunogenic peptides are important for discovering patterns 
that distinguish non-immunogenic neopeptides from immuno-
genic neoepitopes. However, a more profound limitation of this 
study is the small amount of data available. We anticipate that 
newer high-throughput T  cell reactivity screening systems will 
provide much more data, which will enable a more detailed analy-
sis. Also, it is clear that the model used to assess peptide similarity 
is very simplistic, and most likely could be refined substantially 
by for instance taking into account the direct impact on the TCR 
fingerprint imposed by variations in HLA anchor positions, and 
by incorporating an amino acid similarity measure different from 
the protein evolution-based Blosum score used here. Finally, it 
will be important to evaluate the effects of other factors such as 
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antigen processing, HLA binding stability (29, 30), gene expres-
sion, mutant allele frequency, and clonality (23), each of which 
may be associated with immunogenicity.
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