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Abstract

Cell-cell communication is mediated by many soluble mediators, including over 40 cyto-

kines. Cytokines, e.g. TNF, IL1β, IL5, IL6, IL12 and IL23, represent important therapeutic

targets in immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel

disease (IBD), psoriasis, asthma, rheumatoid and juvenile arthritis. The identification of

cytokines that are causative drivers of, and not just associated with, inflammation is funda-

mental for selecting therapeutic targets that should be studied in clinical trials. As in vitro

models of cytokine interactions provide a simplified framework to study complex in vivo

interactions, and can easily be perturbed experimentally, they are key for identifying such

targets. We present a method to extract a minimal, weighted cytokine interaction network,

given in vitro data on the effects of the blockage of single cytokine receptors on the secretion

rate of other cytokines. Existing biological network inference methods typically consider the

correlation structure of the underlying dataset, but this can make them poorly suited for

highly connected, non-linear cytokine interaction data. Our method uses ordinary differential

equation systems to represent cytokine interactions, and efficiently computes the configura-

tion with the lowest Akaike information criterion value for all possible network configurations.

It enables us to study indirect cytokine interactions and quantify inhibition effects. The

extracted network can also be used to predict the combined effects of inhibiting various cyto-

kines simultaneously. The model equations can easily be adjusted to incorporate more com-

plicated dynamics and accommodate temporal data. We validate our method using

synthetic datasets and apply our method to an experimental dataset on the regulation of

IL23, a cytokine with therapeutic relevance in psoriasis and IBD. We validate several model

predictions against experimental data that were not used for model fitting. In summary, we

present a novel method specifically designed to efficiently infer cytokine interaction net-

works from cytokine perturbation data in the context of IMIDs.
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Author summary

Cytokines are the messenger molecules of the immune system, allowing intercellular com-

munication and mediating effective immune responses. They are an important therapeu-

tic target in immune mediated inflammatory diseases such as inflammatory bowel disease

(IBD) and rheumatoid arthritis. Cytokines interact in a tightly regulated network and

depending on the context a particular cytokine can be involved in anti-inflammatory or

inflammatory activities. In order to determine which cytokines to target in specific disease

types and patient subsets, it is critical to study the effects of the inhibition of one or more

cytokines on the larger cytokine interaction network. We present a novel method to

extract a minimal, weighted network from cytokine interaction data. Existing biological

network inference methods typically consider the correlation structure of the underlying

dataset and/or make further assumptions of the dataset such as the existence of a small

core of regulators. This can make them poorly suited for highly connected, non-linear

cytokine interaction data. We validated our method using synthetic data and applied our

method to a dataset on the regulation of IL23, a cytokine implicated in IBD pathogenesis.

Predictions of the extracted IL23 network were validated using additional experimental

data and were used to support the view of the cytokines IL1 and IL23 as promising targets

for those patients that fail to respond to TNFα inhibition, the current golden standard in

IBD treatment.

This is a PLOS Computational Biology Methods paper.

Introduction

Inflammatory processes are tightly controlled by complex networks of cytokines. Immune

cells and other cell types produce and secrete cytokines in response to a range of stimuli, such

as pathogen-derived factors or cellular stress. Cytokines can act as stimuli themselves, either

up-, or down-regulating further cytokine secretion. The dysregulation of cytokines is common

to the wide array of immune mediated inflammatory diseases (IMIDS) such as inflammatory

bowel disease (IBD), rheumatoid arthritis (RA), atherosclerosis, and Alzheimer’s disease. Inhi-

bition of the pro-inflammatory cytokine TNFα has proven to be a very successful strategy in

the treatment of RA, IBD, and other IMIDs. The success of TNFα inhibition has inspired the

development of several other anti-cytokine therapies, such as anti-IL6(R) and anti-p40, the

common subunit of IL12 and IL23 [1–4]. The success of cytokine therapy is disease specific.

The inhibition of IL17A for instance aggravated Crohn’s disease, although it was effective in

psoriasis and ankylosing spondylitis [5–8]. Further, various distinct mechanisms could be

driving the pathogenesis of a particular IMID, requiring disease subtype specific treatment

options. Around 10–30% of Crohn’s disease patients for instance do not respond to anti-

TNFα therapy, and 23–46% of patients lose response over time [9]. These patients might bene-

fit from the targeting of a different cytokine. In short, improving our understanding of the

interactions of cytokines in various immunological contexts is critical for identifying new cyto-

kine targets, and improving current treatment options in a disease (subtype) specific way.

Such improvements in our understanding of cytokines also has extensive potential benefit in

the rational development of cytokine representations within the large field of modelling
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inflammation processes, as exemplified by studies of tuberculosis infection [10], wound

inflammation [11], neuroinflammation [12] and myocardial infarction [13].

To proceed, we define a cytokine interaction as the impact of one cytokine on the cytokine

secretion rate of either itself or another cytokine. Identifying cytokine interactions, including

key drivers of inflammation within the larger cytokine network, is an experimentally challeng-

ing task [14]. The blockage or addition of a cytokine can have both positive and negative effects

on the secretion rate of other cytokines. However, only considering these pairwise interactions

can be misleading, as cytokine networks are typically highly connected. Addition of one cyto-

kine, “A”, could for instance up-regulate the secretion rate of another cytokine, “B”, whilst an

increased cytokine B concentration down-regulates the secretion rate of a third cytokine, “C”.

One might therefore conclude that an increased cytokine A concentration has a direct down-

regulatory effect on cytokine C secretion, whilst this effect is completely dependent on its regu-

lation of cytokine B secretion (Fig 1A).

Fig 1. Example network motif and corresponding synthetic dataset. A: Addition of cytokine A up-regulates cytokine B secretion,

whilst an increased concentration of cytokine B down-regulates cytokine C secretion. An increase in cytokine A concentration does

not directly regulate cytokine C secretion (dotted edge), but only indirectly, via its effect on cytokine B secretion. B: Example

synthetic dataset corresponding to the network motif shown in A. The dataset contains log-normally distributed synthetic cytokine

secretion data from 15 ‘donors’ at a known moment in time, under the control condition (i.e. stimulus only, in blue), and in the

presence of inhibitors of the cytokines of interest. For each of the four experimental conditions, cytokine secretion data for each of

the three cytokines A, B and C is available. Full details on the construction of this dataset can be found in Section “Validation”. Using

a two sample t-test, we test the hypothesis that the presence of inhibitor induces a change relative to the control:$$$p� 0.001, false

discovery rate (fdr) corrected.

https://doi.org/10.1371/journal.pcbi.1010112.g001
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We develop a method to extract a network of cytokine interactions from experimental data

containing information on the effects of the blockade or addition of individual cytokines. Our

method allows us to (1) distinguish between direct effects (e.g. cytokine A to cytokine B and

cytokine B to cytokine C from the above example), and indirect effects (e.g. cytokine A to cyto-

kine C), (2) quantify the size of the effects of cytokine inhibition, and (3) predict the effects of

untested (combinations of) cytokine inhibitors. We use a simple coupled ODE system to rep-

resent cytokine interactions. We describe an algorithm to compute the optimal subset of net-

work edges for each given number of edges. We use the Akaike information criterion (AIC)

for model selection to identify the optimal network configuration [15, 16]. We have chosen an

ODE approach over a discrete Boolean model, as an ODE model allows a quantification of

cytokine input levels and secretion rates on a continuous scale [14, 17, 18]. Furthermore, this

type of model could be extended to incorporate more complicated (non-linear) interactions

than currently considered, and can be used to analyse data at various points in time. Our

method requires data on the effects of the blockage of single cytokines on the system (interven-

tional data). If such data is not available (i.e. if only observational data is available), other net-

work inference methods may be used, such as Graphical Gaussian models or Bayesian

networks [14, 19–23]. Approaches for network inference with other biological datasets, such as

those associated with gene regulation or protein interactions, typically consider the correlation

structure of the underlying dataset [22, 24] and/or make further assumptions of the dataset,

such as the existence of a small core of regulators [25] or small numbers of pair-wise interac-

tions [26], or a mutual exclusion of regulated and regulating entities [26, 27] that entails these

studies and their techniques can be poorly suited for highly connected cytokine interaction

data. As an example, such data ubiquitously has the exemplar scenario where one cytokine“A”

(e.g. non-inflammatory IL10) might down-regulate cytokine“B” (e.g. pro-inflammatory IL1)

secretion (negative correlation), but cytokine B might simultaneously upregulate cytokine A

secretion (positive correlation), while both positive and negative self-edges cannot be identi-

fied by correlation based methods or methods where the regulators are distinct from the entity

being regulated.

The study is structured as follows. After a Method section, we have a Section entitled “Vali-

dation” where the model is validated before being applied in Section “Application to a dataset

on IL23 regulation”) to an experimental IL-23 dataset in the context of inflammatory bowel

disease, with an experimental validation of the model predictions. We end with a discussion.

Method

Based on a current experimental framework, as described in the Section on the “Application to

a dataset on IL23 regulation”, our method requires an experimental dataset of cytokine secre-

tion by in vitro stimulated immune cells in the presence and absence of various cytokine

(receptor) inhibitors. We define an experimental condition as a specific combination of stimu-

lus and cytokine (receptor) inhibitor. For each condition, a measurement j should contain sin-

gle values for the secretion rate of each cytokine of interest at a known moment in time. We

further assume we have multiple measurements for each condition, for instance corresponding

to measurements obtained from cells from different donors, and the measurements for each

condition and each cytokine, after a suitable scaling and taking its base 10 logarithm, follow a

normal distribution, giving the form of the likelihood function, as we illustrate below.

This also raises the question of how to deal with a measurement dataset for a cytokine and

experimental condition that does not successfully test as log-normally distributed even after

scaling. In the example application to datasets from IL-23 regulation presented in Section

(“Application to a dataset on IL-23 regulation”) the raw datasets for cytokine secretion under a
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given experimental condition are not generally log-normally distributed. Nonetheless, a

donor-dependent scaling can rescale the datasets prior to taking base 10 logarithms to produce

a log-normal distribution in all cases, as confirmed by statistical testing, enabling the use of the

method below. More generally, in applying this method one must have sufficient experimental

data to test and confirm the distribution of the dataset, or a scaling thereof. If the distribution

is not log-normal the likelihood function used below is changed accordingly, with the rest of

the method inherited. However, we restrict the synthetic data examples to log-normality, since

log-normality is tested and confirmed for all the scaled experimental datasets that we have

examined.

Proceeding, we assume the immune cells produce cytokines in response to the stimulatory

agent used, such as the bacterial cell-wall component lipopolysaccharide (LPS), or the bacterial

superantigen Staphylococcus enterotoxin B (SEB). We further assume that the secretion rate of

certain cytokines is dependent on the concentration of other cytokines. In the simple example

network motif discussed before (shown in Fig 1A), the secretion rate of cytokine B is depen-

dent on the concentration of cytokine A, and the secretion rate of cytokine C is dependent on

the concentration of cytokine B. In Fig 1B, we show an example dataset, corresponding to the

example network motif shown in Fig 1A. This synthetic dataset contains log-normally distrib-

uted data from 15 ‘donors’, under the control condition (i.e. stimulus only), and in the pres-

ence of inhibitors of the cytokines of interest. Full details on the construction of this dataset

will be presented in Section “Validation”.

We can represent all cytokines and their interactions by a network. Each node in this net-

work represents a cytokine and each directed edge an up- or down-regulatory effect from one

cytokine on another. Given a number of cytokine nodes, the aim of our method is to identify

the network configuration, represented by a specific combination of directed edges, that opti-

mally balances model complexity and fit. In particular, we aim to distinguish between direct

and indirect interactions.

Definition 1 (direct interaction). We define a direct cytokine interaction as a down- or

upregulatory effect of the concentration of one cytokine (e.g. A) on the cytokine secretion rate

of another cytokine (e.g. B), that is independent of the effects of the concentrations of other

cytokines part of the studied network.

Definition 2 (indirect interaction). We define an indirect cytokine interaction as a down-

or upregulatory effect of the concentration of a cytokine (e.g. A) on the cytokine secretion rate

of another cytokine (e.g. C), that is dependent of the effects of the concentrations of other cyto-

kines part of the studied network.

We note that direct effects might be dependent on cytokines not present in the network. E.

g. Cytokine A might upregulate cytokine Z that in turn upregulates cytokine B. If the secretion

rate of cytokine Z is not measured and cytokine Z is therefore not represented by a node in the

network, the effect of A on B (via Z) is direct, according to above definition. Cytokine Z might

for instance be produced by lymphocytes, while only monocyte produced cytokines were mea-

sured. Conversely, if cytokine Z is part of the network, the cytokine Z-dependent effect of A

on B is indirect. We introduce our model equations:

dxi
dt
¼ yiðtÞ ¼ si

Y

u

1þ au;ixuðtÞ
� �Y

v

1

1þ bv;ixvðtÞ

 !

; i; u; v ¼ 1; . . . ; ð1Þ

xið0Þ ¼ 0; i ¼ 1; . . . ; ð2Þ

with xi(t) and yi(t) the time dependent concentration and secretion rate of cytokine i, si the

size of the effect of the stimulatory agent, and αu,i� 0 (βv,i� 0) the size of the positive (nega-

tive) effect of cytokine u (v) on the secretion rate of cytokine i. Similarly, xu(t) and xv(t) are the
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concentrations of cytokine u, v. We take the unit of time t in hours. No cytokines are present

at t = 0h, i.e. xi(0) = 0. For a given number of cytokines, our model Eq (1) can represent a spe-

cific network configuration, by fixing all αu,i, βv,i that do not correspond to an edge in this con-

figuration to zero. The network edges correspond to all non-zero αu,i and βv,i. We assume a

cytokine w cannot simultaneously have a positive and negative effect on cytokine i, i.e. when

αw,i> 0, we have βw,i = 0, and when βw,i> 0, we have αw,i = 0. The weight of an edge is defined

as the value of αu,i or βv,i. Note that whilst the secretion rate of a particular cytokine might

decrease over time due to increasing inhibition, the simulated cytokine concentrations them-

selves are monotonously increasing as we did not include degradation or absorption terms in

Eq (1). Based on the motivating experimental protocol, we assume the secretion rate of the

cytokines is so much higher than the degradation and absorption rates, that the latter can be

ignored in our in vitro setting and for our timescale of interest. In particular, this assumption

is supported by in vitro peripheral blood mononuclear cells’ (PBMC) cytokine concentration

time courses of up to 80 hours after LPS stimulation, which indicate that cytokine concentra-

tions are either still gradually increasing by 72 hours or, to within experimental resolution,

have plateaued [28]. We note that in an in vivo setting, cytokine clearance should not be

ignored, as the half-lifes of cytokines in vivo can be in the order of minutes, due to diffusion

and other processes [29]. The experimental cytokine secretion data of cytokine i for measure-

ment j is given by ŷi;j. Each j has been obtained from a single donor and under a single stimula-

tory condition. For each network configuration, we can fit the right hand-side of the system of

Eq (1) to an experimental dataset by log-likelihood minimization, once log-normality has been

tested for and confirmed. We minimise � 2 logðLðθÞÞ over our parameter vector θ, where θ
contains the model parameters si, and all αu,i, βv,i that are not fixed to zero for the network con-

figuration of interest, and LðθÞ is the likelihood function:

LðθÞ ¼
Y

i

Y

j

1
ffiffiffiffiffiffiffiffiffiffi
2ps2

i

p exp �
ðlog

10
ðyi;jÞ � log

10
ðŷi;jÞÞ

2

2s2
i

 !

; ð3Þ

with yi,j and ŷi;j the value of the simulated and experimentally measured secretion rate of cyto-

kine i for data point j, and σi the standard deviation of the log transformed measured secretion

rate of cytokine i [30]. We assume a fixed standard deviation σi for each cytokine, that should

be determined from the data. We note that when a dataset with multiple time-points would be

available, a time-dependent σi could be tested for and used if appropriate.

In order to identify the network configuration with an optimal balance between edge num-

ber and model fit, we use the Akaike information criterion (AIC) for model selection. The AIC

value of a network configuration can be computed as

AIC ¼ Dþ 2p; ð4Þ

with D ¼ min
θ
� 2 logðLðθÞÞ, LðθÞ the likelihood function as defined in Eq (3), and p the

number of model parameters. We recall that each network edge is represented by one model

parameter (αu,i or βv,i). Setting an edge to zero corresponds to the removal of a parameter from

the model. We can rank network configurations by comparing their relative AIC values.

In theory, one could calculate the AIC value of each possible network configuration for a

dataset and select the network configuration with the lowest AIC value as the one that opti-

mally balances model complexity and model fit. However, for a growing number of cytokines,

this approach quickly becomes infeasible, as the number of possible network configurations is

given by 3K
2

, with K the number of cytokines, i.e. a positive, a negative, or no edge from cyto-

kine i to cytokine j for every cytokine, including the case i = j. We will therefore constrain the
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collection of possible edges and corresponding network configurations as follows. We recall

each dataset contains control data and data in the presence of the blocking antibody of a spe-

cific cytokine(receptor). Using a 2 sample t-test (p� 0.05, false discovery rate (fdr, [31]) cor-

rected), we determine whether a statistically significant difference exists in the secretion of the

different cytokines, between the control data and the data in the presence of each blocking

antibody. We will only consider network configurations consisting of subsets of edges corre-

sponding to these statistically significant effects of one cytokine on another. The identification

of the set of statistically significant effects is Step 1 of our method.

To illustrate this approach, we return to our example network motif and dataset (Fig 1).

The total number of possible edges for this three node network is 18: a positive and negative

edge to each of the network nodes for each cytokine. The ‘true’ number of edges, i.e. the num-

ber of edges of the model simulated to generate this synthetic dataset, is two: a negative effect

from cytokine A to B, and a positive effect from cytokine B to C. For the shown synthetic data-

set, the secretion rate of cytokines B and C is significantly higher in the presence of a cytokine

A blocking antibody, and the secretion rate of cytokine C is significantly lower in the presence

of a cytokine B blocking antibody, while no significant effect on any of the cytokine secretion

rates is observed after addition of a cytokine C blocking antibody (Fig 1B). For our method we

therefore consider the three network edges as shown in Fig 1A (i.e. A! B, B a C, and A a C),

but not the 15 other possible network edges. Starting from the three edges, eight possible net-

work configurations exist for this example, i.e. one configuration with zero edges, three config-

urations with one edge, three configurations with two edges, and one configuration with all

three edges. We can select the one with the lowest AIC, given the data (see Fig 2, in red).

Now, we will describe how we can determine the network configuration with the lowest

AIC, from all possible configurations of the set of statistically significant edges, without having

to consider each of the possible sub-configurations individually. This is important, as the num-

ber of possible network configurations quickly becomes prohibitively large when the number

of edges increases, even when only considering statistically significant edges. Let O be the set

of N statistically significant edges. We denote network configurations by subsets Sn � O, with

n the number of edges contained in the subset. We recall that each network configuration Sn

corresponds to a model. The model size n corresponds to the number of edges contained in Sn.
Further, recall that the distance to the data for a given network configuration is defined by

D ¼ min
θ
� 2 logðLðθÞÞ, with the likelihood function LðθÞ defined in Eq (3). We will refer to

the distance to the data D for a network configuration Sn as D(Sn).
Definition 3 (Optimal n-sized model Snopt). We define the optimal model Snopt for a given net-

work size n as the model with the lowest distance D to the data, out of all n-sized sub-configu-

rations of O, the set of N statistically significant edges.

Remark 1. When a smaller model is nested in a larger model, the distance between the

experimental and simulated data of the smaller model has to be larger than or equal to the dis-

tance of the larger model, i.e. if Si� Sj, then D(Si)� D(Sj). This is the case because we can

construct Sj by adding edges to Si. Each edge is represented by an edge parameter αu,v� 0 or

βu,v� 0 in the model. Removal of an edge is equivalent to the fixation of the corresponding

edge parameter to zero. When searching for a minimal D(Sj) over all model parameters, this

includes the case where the value of the edge parameters contained in Sj but not in Si are all

zero. The search space over all model parameters for a minimal D(Si) is therefore contained in

the search space over all model parameters for a minimal D(Sj). Therefore, D(Si)� D(Sj).
To find the network configuration with the lowest AIC, we will start from a network with

all N statistically significant edges. We fit this network’s parameter values to the data and rank

the edges monotonically in the value of the edge weight parameters for the N-edge graph. For
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instance with the simple test model we considered in Fig 2, the first ranked edge is the one con-

necting nodes 1 and 2, that is from A to B, since α12 = 0.545 for the N = 3 edge graph. This is

then followed by the edge connecting nodes 2 and 3, that is from B to C, since β23 = 0.543, fol-

lowed by the edge connecting nodes 1 and 3, that is from A to C since β13 = 0.024. With this

ranking, we then generate a list of initial configurations Sninit for every network size n = 1, . . .,

N, where each Sninit consists of the n edges corresponding to the n highest ranked fitted edge

weight parameter values of the N-sized model. Thus, for the simple test model of Fig 2, the ini-

tial list would have the one edge, n = 1, network consisting of the edge connecting nodes 1 and

2, that is from A to B, since α12 = 0.545 is the largest fitted edge weight parameter, and hence

S1
init ¼ fa12g. Similarly, the two edge, n = 2, network consists of the edge connecting nodes 1

and 2, that is from A to B since α12 = 0.545 is the largest fitted edge weight parameter together

with the edge connecting nodes 2 and 3, that is from B to C since β23 = 0.543, is the second

largest fitted edge weight parameter, so that S2
init ¼ fa12; b23}. Similarly S3

init ¼ fa12; b23; b13g.

Fig 2. For each network configuration we list the model edges, the fitted edge parameter values, and the relative D
and AIC when compared to their minimal found values, with D ¼ min

θ
� 2 logðLðθÞÞ, LðθÞ the likelihood

function defined in Eq (3), and AIC defined in Eq (4). Whilst the three edge network (in blue) has the smallest

relative D, the AIC selects the two edge network that was used to generate the synthetic dataset (in red). The edge

parameter values used to generate this synthetic dataset are α12 = β23 = 0.5 and β13 = 0.

https://doi.org/10.1371/journal.pcbi.1010112.g002
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We determine DðSninitÞ for every model configuration in the list. The generation of this initial

list of network configurations is Step 2 of our method.

We note that apart from the N-edge network, for each n-sized model in the list, there might

exist a different combination of edges resulting in a better fit to the data. Let AIC(Sn) be the

AIC value of model configuration Sn, with n the number of edges. Recall that the AIC intro-

duces a penalty of twice the number of added edges, i.e. when a model Sn of size n has a smaller

AIC than a model Sm of size m, we have

AICðSnÞ � AICðSmÞ ¼ DðSnÞ þ 2n � DðSmÞ � 2m < 0: ð5Þ

We define Sselected as the model configuration with the smallest AIC value out of all model

configurations S for which we have determined D(S). At the start of Step 3 of our method, we

have Sselected ¼ Snoinit, with no ¼ argminn½AICðS
n
initÞ�. For the simple test model we considered in

Fig 2, we have Sselected ¼ S2
init at the start of Step 3. For every model size n, we define

Dn
threshold ¼ DðSselectedÞ þ 2ðns � nÞ; ð6Þ

with ns the number of edges of Sselected. We note that

Remark 2. If an n−sized model configuration Sn exists, with a lower or equal AIC than AIC

(Sselected), it follows that

AICðSselectedÞ � AICðSnÞ ¼ DðSselectedÞ þ 2ns � DðSnÞ � 2n ¼ Dn
threshold � DðS

nÞ � 0;

i.e. DðSnÞ � Dn
threshold.

We describe a procedure (Procedure O) that we will use to update Sselected until Sselected
equals the network configuration with the lowest AIC amongst all possible configurations of

O, the set of N statistically significant edges. Procedure O takes input Sselected and a given

model size n. For a given model size n and Sselected, Procedure O identifies Snopt, but only if

DðSnoptÞ � Dn
threshold, i.e. if AICðSnoptÞ � AICðSselectedÞ. When DðSnoptÞ � Dn

threshold, Procedure O

returns an updated model configuration Sselected ¼ Snopt. If it is found by Procedure O that no n-

sized model configuration Sn exists, such that DðSnÞ � Dn
threshold, it follows that DðSnoptÞ >

Dn
threshold and Sselected is not updated by Procedure O. Hence, after having run Procedure O for

models of size n, we know that no n-sized models exist, with a smaller AIC than AIC(Sselected).
After having run Procedure O for model of all sizes n = 1, . . ., N − 1, we know that no models

exist, with a smaller AIC than AIC(Sselected). We call attention to the special case when Proce-

dure O is run for models of size ns, with ns the number of edges of Sselected. Then, DðSnoptÞ �
DðSselectedÞ ¼ Dn

threshold by Definition 3 and therefore Procedure O will always return the optimal

model configuration Snsopt for models of size ns.
Before stating Procedure O, we first introduce the concept of an essential (combination of)

edge(s):

Definition 4 (Essential combination of edges). We call a non-empty subset of the initial

configuration S0 � Sninit essential if DðO n S0Þ � Dn
threshold, where O n S0 is the model with all N

statistically significant edges, except the edges contained in S0.
Further, we note that any n-sized model configuration Sn can be written in the form

Sn ¼ R [ ðSninit n S
0Þ, with S0 � Sninit any subset of the initial configuration and R � ðO n SninitÞ a

combination with the same number of edges as S0 (i.e. |S0| = |R|). To clarify, this means that

any n-sized model consists of l edges that are part of Sninit , and n − l edges that are not part of

Sninit , l = 0, 1, . . ., n. Therefore,
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Remark 3. If there exists an n-sized model Sn such that DðSnÞ < Dn
threshold, it has to be of

the form Sn ¼ R [ ðSninit n S
0Þ, with S0 � Sninit any subset of the initial configuration and

R � ðO n SninitÞ a combination with the same number of edges as S0 (i.e. |S0| = |R|).

Also,

Lemma 1. If a combination of edges S0 is essential, no network configuration W � ðO n S0Þ
exists such that DðWÞ < Dn

threshold.

Proof. Let S0 be essential. It follows from the definition of an essential combination of edges

that DðO n S0Þ � Dn
threshold. It then follows from Remark 1 that DðWÞ � DðO n S0Þ � Dn

threshold,

with W � ðO n S0Þ.
Lemma 2. If a combination of edges S0 � Sninit is essential, any combination of edges S

00 � Sninit
such that S0 � S0 0 is also essential.

Proof. Let S0 � Sninit � O be essential and let S00 � Sninit � O such that S0 � S0 0. Then,

ðO n S00Þ � ðO n S0Þ. It follows from Remark 1 that DðO n S00Þ � DðO n S0Þ. It then follows

from the definition of an essential combination of edges that DðO n S00Þ � DðO n S0Þ � Dn
threshold.

In Fig 3 we give a graphical overview of the key steps of Procedure O, for n = 4, and with

N = 16 statistically significant edges. For simplicity, we consider the special case where

Sselected ¼ Sninit, i.e. the case where the model with the smallest AIC currently identified has size

n. Procedure O then identifies the optimal model configuration Snopt out of all model configura-

tions of size n. In the general case, Dn
threshold can be smaller than DðSninitÞ, but the principle is the

same. Note that Lemmas 1,2 are used extensively within Procedure O to reduce the number of

networks that have to be explicitly considered, since the impact of Lemmas 1 and 2 is that any

network that has the potential to generate an AIC improvement cannot exclude all the edges of

an essential set of edges. In particular with a given fixed n, if S0 � Sninit is an essential set of

edges, then excluding the edges of S0 from O, the set of N statistically significantly edges, entails

by definition that the resulting distance from the data DðO=S0Þ is greater than the threshold

needed to improve the AIC score for any network constructed from the edges in O=S0; includ-

ing any of size n. In essence, we do not need to explicitly calculate the distance for any n-sized

network with any set of essential edges excluded. Furthermore, for n fixed, any superset of a

set of essential edges contained within Sninit is also essential by Lemma 2 (since more edges are

excluded). Thus one need only perform the computationally relatively costly nested loop

between steps 5–10 within Procedure O for subsets of edges that do not exclude all the edges of

any essential set. Hence, the number of networks that need not be considered within steps

5–10 of Procedure O is extensive and thus there is a marked reduction in the computational

demands required to identify the optimal network, as further detailed in the discussion.

We now state an overview of our method. Our method requires log-normally distributed

interventional cytokine secretion data that can be used to determine the value of

D ¼ � 2 logðLÞ, with the likelihood L defined in Eq (3)), for each network configuration of

interest. When the measurement data is not log-normally distributed, a donor-dependent scal-

ing might in some cases be used to rescale the dataset (e.g. see Section “Application to a dataset

on IL23 regulation”), proceeding once log-normality is confirmed to within suitable tolerance.

We first (Step 1) perform a statistical analysis on the data to obtain a set of N statistically signif-

icant edges (2-sample t-test, p� 0.05, fdr corrected). We then (Step 2) compute a list of initial

configurations Sninit for each network size n 2 {1, 2, . . ., N}. We fit the N-edge network to the

data and let Sninit consists of the n edges corresponding to the n largest fitted edge parameter val-

ues of the N-sized model. We compute DðSninitÞ for each n 2 {1, 2, . . ., N}. We define Sselected as

the model configuration with the smallest AIC value currently identified. At the start of Step 3,

we have Sselected ¼ Snoinit , with no ¼ argminn½AICðS
n
initÞ�. To identify the optimal no-sized model

configuration Snoopt, we run Procedure O for models of size no, with output Sselected ¼ Snoopt (Step 3).
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Additional comments for Procedure Ω:
Step 1: note that when Sninit = Sselected, we have D

n
threshold = D(S

n
init) and Procedure

Ω will always identify Snopt.
Step 2: we want to determine if an n-sized combination exists with a smaller D than

Dn
threshold. It follows from Remark 2 that we can write all n-sized combinations

in the form R[(SninitnS0), with R μ (OnSninit), with jS0j = jRj, and S0 μ Sninit.
Therefore, we need to check whether any subset of edges that are part of the
initial model configuration S0 μ Sninit can be replaced by another combination
of edges R μ (O nSninit) (i.e. not part of the initial model configuration), with
jS0j = jRj, such that D(R [ (Sninit n S0)) < Dn

threshold. If none of the S
0 can

be replaced is such a way, it follows that D(Sn) > Dn
threshold for all n-sized

model configurations Sn, and therefore D(Snopt) > D
n
threshold.

Step 4: we will replace S0 by other combinations R μ (O n S0), with jRj = jS0j. For
all such R, we have to check whether D(R [ (Sninit n S0)) < Dn

threshold. If this
is the case, we have found a model of size n with a smaller AIC than Sselected.

Step 13: if none of the non-essential subsets S0 μ Sninit can be replaced by another
combination of edges, such that we find a model of size n with a smaller AIC
than Sselected, it follows from Remark 3 that no n-sized model configuration
exists with a smaller AIC than Sselected.

Procedure Ω, to identify Snopt for a given model size n, when AIC(Snopt) ∙
AIC(Sselected), with Sselected the model configuration with the lowest AIC currently
found. Sselected is updated when AIC(S

n
opt) ∙ AIC(Sselected).

1: We start with the initial n-sized configuration Sninit and with Sselected, the model
configuration with the lowest AIC currently found. We set Dn

threshold = D(Sselected)+
2(ns ¡ n), with ns the number of edges of D(Sselected).

2: for all S0 μ Sninit do
3: We check whether S0 contains an essential (combination of) edges. If S0 contains
an essential (combination of) edges, S0 is essential by Lemma 2. If S0 is essential, it
follows from Lemma 1 that no network configuration W μ (O n S0) of size n exists
such that D(W ) < Dn

threshold. In particular, no (R [ (Sninit n S0)) μ (O n S0) exists,
with R μ (O n Sninit), with jS0j = jRj, such that D(R [ (Sninit n S0)) < Dn

threshold.
4: if S0 is not essential then
5: for all R μ (O n Sninit), with jRj = jS0j do
6: Consider all already computed values D(Z) for edge configurations (R [
(Sninit n S0)) μ Z. If any of these D(Z) is larger than Dn

threshold, then D(R [
(Sninit n S0)) ¸ D(Z) ¸ Dn

threshold and we therefore do not have to compute the
value of D(R [ (Sninit n S0)). Conversely, if we have not computed D(Z) for a
Z ¶ (R [ (Sninit n S0)) such that D(Z) > Dn

threshold, we compute the value of
D(R [ (Sninit n S0)).

7: if D(R [ (Sninit n S0)) < Dn
threshold then

8: We have found a model of size n with a smaller AIC than Sselected.
We set Sselected = (R [ (Sninit n S0)) and Sninit = Sselected and repeat the algorithm.

9: end if
10: end for
11: end if
12: end for
13: Return Sselected.
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Fig 3. For the case Sselected ¼ Sninit , an overview of ProcedureO to identify the optimal model, with the lowest distance D to the data, for a given

model size n out of N statistically significant edges (SSEs). We show an example with initial configuration S4
init of size 4 and 16 SSEs. Circles represent

edges in S4
init and squares represent edges that are not in S4

init . We assume the model with the lowest AIC currently identified is S4
init , i.e. Sselected ¼ S4

init ,

such that D4
threshold ¼ DðS4

initÞ ¼ 10. We apply Procedure O to determine if a 4-sized model exists with a smaller D than DðS4
initÞ. If there exists a model W

of size 4 that fits the data better than the initial configuration (i.e. D(W)<Dthreshold), this model can be constructed by replacing a set S0 of one or more of

the initially selected edges (circles) by an equal number of other edges (squares). The brown fill colouring indicates edges included and the white fill

correspond to edges excluded in the configuration under inspection. (A) We determine which of the 15 possible combinations of the 4 edges that are

part of the initial configuration of size 4 are essential. We remove any combination S0 of the 4 selected edges from O, the set of all SSEs. When

DðO n S0Þ � D4
threshold, S0 is essential (Definition 4), which we indicate with a blue or green cross. Blue crosses correspond to configurations O n S0 for

which we have to determine the value of DðO n S0Þ explicitly. Green crosses correspond to configurations O n S0, where S0 can be immediately deduced

to be essential because S0 0 contains an essential subconfiguration S0 0 (Lemma 2). To clarify, consider a configuration of fifteen edges, excluding only a

single edge from the initially selected model. When this configuration of 15 edges has a worse fit to the data than the initially selected model, removing

further edges from this configuration will only reduce the quality of the fit and we thus do not have to determine their fit to the data explicitly (Remark
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We run Procedure O for models of size n = 1, 2, . . ., N − 1. Procedure O sets Sselected ¼ Snopt
when AICðSnoptÞ < AICðSselectedÞ. After N runs of Procedure O, we have that Sselected has the

smallest AIC of all possible subconfigurations of the set of statistically significant edges and

corresponds to the model that best balances model complexity and fit (Fig 4).

Results

Validation

Four network motifs consisting of three cytokines. We validate our method using syn-

thetic data. We will first consider four network motifs consisting of three nodes and two

directed edges (Fig 5). We will later explore a larger five node, ten edge network (Section “Test

model consisting of five cytokines”). Each of the four motifs consists of two edges, and a third,

spurious edge that might arise when a network is constructed based on statistical analysis (Fig

1). (B) We observe that if a subconfiguration S0 of edges that is part of the initial configuration Sninit is essential, then this subconfiguration S0 cannot be

replaced in the initial configuration Sninit by any other combination of edges, e.g. R, with |R| = |S0|, in such a way that the resulting configurationW ¼
R [ ðSninit n S0Þ fits the data better than the initial configuration Sinit (grey insert). (C) If a subconfiguration S0 is not essential, we check if there exists

another combination of edges, e.g. R, with |R| = |S0|, such that R [ ðSninit n S
0Þ fits the data better than Sninit .

https://doi.org/10.1371/journal.pcbi.1010112.g003

Fig 4. Overview of the key steps of our method. Our method requires log-normally distributed interventional cytokine secretion data that can be used

to determine the value of D ¼ � 2 logðLÞ, with the likelihood L defined in Eq (3)), for each network configuration of interest. When the measurement

data is not log-normally distributed, a donor-dependent scaling might in some cases be used to render the dataset to be log-normal (e.g. see Section

“Application to a dataset on IL23 regulation”). We first (Step 1) perform a statistical analysis on the data to obtain a set of N statistically significant edges

(2-sample t-test, p� 0.05, fdr corrected). We then (Step 2) compute a list of initial configurations Sninit for each network size n 2 {1, 2, . . ., N}. We fit the

N-edge network to the data and let Sninit consists of the n edges corresponding to the n largest fitted edge parameter values of the N-sized model. We

compute DðSninitÞ for each n 2 {1, 2, . . ., N}. We define Sselected as the model configuration with the smallest AIC value currently identified. At the start of

Step 3, we have Sselected ¼ Snoinit , with no ¼ argminn½AICðS
n
initÞ�. To identify the optimal no-sized model configuration Snoopt , we run Procedure O for models

of size no, with output Sselected ¼ Snoopt (Step 3). We run Procedure O for models of size n = 1, 2, . . ., N − 1. Procedure O sets Sselected ¼ Snopt when

AICðSnoptÞ � AICðSselectedÞ. After N runs of ProcedureO, we have that Sselected has the smallest AIC of all possible subconfigurations of the set of

statistically significant edges and corresponds to the model that best balances model complexity and fit.

https://doi.org/10.1371/journal.pcbi.1010112.g004
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5, solid and dotted lines for the real and spurious edges respectively). We use our method to

distinguish between real and spurious edges. For each of the four motifs, we generate synthetic

datasets of cytokine secretion measurements for cytokine A, B, and C at a single point in time.

We generate synthetic data by simulating Eq (1). We assume our measurements are taken

at t = 16h, and assume the stimulus si = 1 for all i 2 {A, B, C}. We further assume we have mea-

surements for the stimulus alone, and the stimulus in the presence of a cytokine receptor

blocker for each of the three cytokines. When no up- or down-regulatory edge between two

cytokines exists in our constructed network, we set the corresponding parameter αu,i or βv,i to

zero; in particular if cytokine p is subject to its corresponding blocker then αp,i = βp,i = 0 for all

i. Otherwise, we set αu,i or βv,i to 0.5. We assume we have 15 measurements for each experi-

mental condition, for instance corresponding to measurements obtained from 15 individual

donors. We add normally-distributed noise with a standard deviation of 0.25 to all log10-

transformed synthetic data points. This level of noise is similar to the noise observed in the

experimental IL23 dataset. We statistically analyse our synthetic data set. For each added cyto-

kine blocker and each cytokine, we test whether the change is significant using a 2-sample t-

test (p� 0.05, fdr corrected). We will consider a network edge from cytokine i to cytokine j
statistically significant, when the change in secretion of cytokine j after the blockade of the

cytokine i receptor is statistically significant. The dataset presented in Fig 1B was generated in

the way described, with αA,B = βB,C = 0.5 and all other αu,i and βv,i set to zero (corresponding to

the network motif shown in Figs 1A and 5IV). We show the three network nodes, and the

three identified significant edges in Fig 6A. Note this network includes both real edges, and a

Fig 5. The four validation network motifs. Each motif consists of three cytokines and two directed edges. Inhibition of cytokine A has a negative (I

and III) or positive (II and IV) effect on the secretion rate of cytokine C. However, this effect is indirect (via cytokine B), and the dotted edges between

A and C do not exist.

https://doi.org/10.1371/journal.pcbi.1010112.g005
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spurious edge. As we have seen before, the AIC selects the model that was used to generate this

synthetic dataset, balancing model complexity and fit (Figs 2 and 6B).

We note that when we compute D for a network configuration, we work with a known stan-

dard deviation σi, of the log-transformed data for each cytokine i. We determine σi from the

data as follows. We compute the difference between each measurement and the mean of all

measurements for that experimental condition and cytokine, where each measurement corre-

sponds to the log10 transformed secretion rate of one cytokine, experimental condition, and

donor. We compute the variance by normalizing the square of these differences by one minus

from the sample size for each cytokine and compute the standard deviation as the square root

of the variance.

We generated 100 synthetic datasets for each of the four motifs shown in Fig 5. For each of

the 400 datasets, the two edges used to generate the data were statistically significant (p� 0.05,

fdr corrected). In 100%, 99%, 99%, and 100% of cases, the third, spurious edge was statistically

significant as well for each of the four network motifs respectively (p� 0.05, fdr corrected).

Further, in 32 of the 400 cases, one or more of the remaining fifteen edges (not including the

three edges considered) was found to be statistically significant (p� 0.05, fdr corrected).

When we increase the value of the two ‘true’ edge parameters αu,i and/or βv,i from 0.5 to 0.75,

in all 400 cases the third, spurious edge was found to be significant (p� 0.05, fdr corrected).

Conversely, when we decrease the value of the ‘true’ edge parameters from 0.5 to 0.1, both

‘true’ edges are significant in only 93%, 70%, 59% and 93% of cases. In 28%, 14%, 13% and

29% of the 400 cases a spurious third edge was found to be significant in this case (p� 0.05,

fdr corrected). All spurious results are anticipated to be small number effects, though such

numbers of samplings reflect current experimental protocols. In the following, we will only

proceed to consider the case where the value of αu,i and/or βv,i is set to the intermediate value

of 0.5 for edges that are present. This is motivated in particular by the context of the experi-

mental study whose datasets we use, namely the identifcation of prospective cytokine targets

and thus cytokines that have at least an intermediate impact on cytokine regulation, rather

than a weak impact.

For each of the four motifs, we estimate the model fit to each of the synthetic datasets (100

datasets per motif). We compute the model fit for the network extracted by statistical analysis

Fig 6. Starting with a set of statistically significant edges (left), we use the AIC to select an optimal model that balances model complexity and fit

(right). A: Network extracted using statistical analysis of the synthetic data presented in Fig 1B, corresponding to the toy model shown in Figs 1A and

5IV. Two sample t-test:$$$p� 0.001, fdr corrected. B: The two-edge network configuration selected by the AIC (see Fig 2), again based on the

synthetic dataset presented in Fig 1B. Note the AIC has selected the network configuration that was used to generate the synthetic data set. Edge widths

are proportional to the value of the corresponding edge parameter αu,i and βv,i that minimized D for the shown network configuration. Edges are

coloured proportional to the increase in D when they are removed from the shown network configuration.

https://doi.org/10.1371/journal.pcbi.1010112.g006

PLOS COMPUTATIONAL BIOLOGY A method for the inference of cytokine interaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010112 June 22, 2022 15 / 31

https://doi.org/10.1371/journal.pcbi.1010112.g006
https://doi.org/10.1371/journal.pcbi.1010112


and all sub-networks (by minimizing the log likelihood, with D ¼ � 2 logðLÞ and the likeli-

hood L defined in Eq (3)). We then apply the AIC for model selection. In 86%, 84%, 83%, and

88% of cases for each of the four motifs did the AIC select the ‘true’, 2-edge model and in 8%,

9%, 12%, and 8% of cases a model including the spurious edge from Cytokine A to Cytokine

C, i.e. A! C (test motifs I and III) or A a C (test motifs II and IV). We recall that in 32 of the

400 cases, spurious edges, other than the one from Cytokine A to Cytokine C were found to be

significant. For these datasets, all sub-configurations including such significant edges were

considered. Of these, in 25 cases, a model was selected by the AIC including one or more of

such spurious edges. The weighting of the spurious edges included in selected model configu-

rations was small (average edge weight < 0.05) compared to an average of 0.5 for the ‘real’

edges, highlighting that spurious edges are still subdominant in the predicted interactions. We

did not observe any false negatives, i.e. both ‘true’ edges used to generate the synthetic data

were selected in all 400 cases.

Test model consisting of five cytokines. We repeated the procedure for a more extended

test network (Fig 7A). We consider five cytokines: A, B, C, D, and E. We constructed the net-

work such that all four previously explored motifs are present in the larger network. We also

included a positive and negative self-edge. We again generated synthetic data by simulating Eq

(1). We assume we have 15 measurements for each experimental condition at t = 16h and

added noise with a standard deviation of 0.25 to the log-transformed synthetic data set. We

again assume si = 1 for all cytokines i 2 {A, B, C, D, E} and αu,i = βv,i = 0.5 for all existing edges,

with zero values for non-existing edges including those removed by a cytokine blocker, as pre-

viously described for the three cytokine synthetic model. We confirmed using one hundred

synthetic datasets that all ‘real’ edges are always statistically significant for these values of αu,i

and βv,i. On average, 11.4 additional, spurious edges were found to be statistically significant.

We show the network extracted by statistical analysis for one of these datasets in Fig 7B. In

addition to the ten ‘true’ edges, ten additional edges were detected in this case (Fig 7B). The

AIC selects the ‘true’ model, i.e. the model used to generate the synthetic dataset, as the

optimal model in this case, removing all ten spurious edges (Fig 7C). In total, we computed

the D for 120 network configurations to select this network, approximately 0.01% of
P20

k¼1
20

k

� �
¼ 220 � 1 > 106, the total number of possible network configurations using 20 dif-

ferent edges. Because of the computational requirements of running the selection algorithm

(approximately 6.1h per synthetic dataset on a Macbook Pro laptop with a 2.3 GHz Intel Core

i5 processor), we did not apply our method to all one hundred synthetic datasets. For each of

the one hundred synthetic datasets, we compared the AIC of the true ten edge model with the

AIC of all eleven edge models constructed by adding one of the identified spurious edges to

the set of true edges at a time. In 53 cases, the addition of none of the spurious edges (11.4 per

dataset on average) did improve the AIC of the true 10 edge model. The weighting of the spuri-

ous edges in the 53 configurations that improved the AIC in comparison to the AIC of the true

ten edge model was small (average edge weight < 0.003). The average of the ten ‘real’ edges

was 0.5 for these configurations. The addition of one of the spurious edges did not improve

the model fit in 1048 out of 1137 edges. Hence, in 92.2% of cases, the addition of a false nega-

tive edge identified by the statistical analysis to the true model configuration did not improve

the AIC.

Parameter identifiability. We consider local identifiability of the edge parameters

using the Profile Likelihood Approach [32] (Section “S2 Appendix”). To compute the

profile likelihood based confidence intervals we varied the value of each model parameter

θm 2 θ over a broad range of values and for each value computed the increase in

DPLðymÞ ¼ min
~θm
� 2 logðLðθÞÞ, with LðθÞ the likelihood function as defined in Eq (3), and
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Fig 7. The validation test model consisting of five cytokines and ten edges. A: The test model. To construct this model configuration, we included the

four network motifs we considered before (eight edges, Fig 5), and added two self-edges. B: Network extracted using statistical analysis from the

example synthetic data set (Section “Validation”). Two sample t-test:$$$p� 0.001, fdr corrected. Ten of the shown edges are part of the test model

and were used to generate the synthetic dataset. The other edges are spurious. C: The ten-edge network configuration selected by the AIC, applied to

our example synthetic dataset. Edge widths are proportional to the value of the corresponding edge parameter αu,i and βv,i that minimized D for the

shown network configuration. Edges are coloured proportional to the increase in D when they are removed from the shown network configuration.

https://doi.org/10.1371/journal.pcbi.1010112.g007
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~θm ¼ fy1; . . . ; ym� 1; ymþ1; . . . ; yNg. Hence for each fixed value of θm we find the minimal

DPL(θm) by fitting all other parameters to the data. This allows us to compute likelihood based

parameter value confidence intervals for each parameter with threshold value z, the z quantile

of the w2
1

distribution. The true value of θm will lie within the z level confidence interval with

probability z [32]. Infinite confidence intervals in the parameter value space correspond to

parameter non-identifiability. We calculated 99% parameter confidence intervals for each of

the edge parameters for the selected 10-edge model shown in Fig 7C (Fig 8). We recall that the

log10-transformed values of the ten edge parameters used to generate the synthetic data are

log100.5 = −0.301. These values are contained in the 99% confidence intervals of all ten original

edge parameters (Fig 8). We validated the coverage of the confidence intervals by calculating

DPLðy
�

mÞ � DPLðŷmÞ, for every edge parameter θm for 1000 independent datasets, with y
�

m the

Fig 8. Profile likelihood plots for the ten edge parameters of the selected 10-edge 5 cytokine test model. The parameter θm 2 θ was varied

over a broad range of values and for each fixed value of θm, the increase in DPLðymÞ ¼ min
~θm
� 2 logðLðθÞÞ was computed, with LðθÞ the

likelihood function as defined in Eq (3), and ~θm ¼ fy1; . . . ; ym� 1; ymþ1; yNg. The 99% confidence interval threshold is shown as a red dashed

line. The parameter values used to generate the synthetic dataset are shown as red dots. The parameter values resulting in the minimalD ¼

min
θ
� 2 logðLðθÞÞ are shown as grey stars. This figure has been generated using the Matlab environment ‘Data2Dynamics’ [32, 33].

https://doi.org/10.1371/journal.pcbi.1010112.g008
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true value of the parameter and ŷm its estimated value. We show the histograms of DPLðy
�

mÞ �

DPLðŷmÞ and confirm they approximate a χ2(z, 1) distribution (Figs 9 and 10). We note that

DPLðŷmÞ ¼ � 2 logðLðθ̂ÞÞ.
Model predictions. Using the shown model selected by the AIC (Fig 7C), we can generate

predictions of (untested) combinations of cytokine receptor blockades. We show predictions

Fig 9. Validation of the coverage of the confidence intervals. The χ2 distribution with one degree of freedom (blue)

and, for a 1000 independent datasets, and for five edge parameters θm 2 θ of the 10-edge 5 cytokine test model, a

histogram of the values of DPLðy
�

mÞ � DPLðŷmÞ, with DPLðymÞ ¼ min
~θm
� 2 logðLðθÞÞ, ~θm ¼ fy1; . . . ; ym� 1; ymþ1; . . . ; yNg.

Here, y
�

m ¼ 0:5 is the true value of θm and ŷ its estimated value by log-likelihood minimization. In 99% of all cases, the

value of DPLðy
�

mÞ � DPLðŷmÞ is smaller than χ2(0.99, 1) (vertical grey line).

https://doi.org/10.1371/journal.pcbi.1010112.g009
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for the mean Cytokine A secretion rate by the model as selected by AIC (white diamonds),

predictions using the N = 20-edge model containing all statistically significant edges (white

squares), and the ‘true’ mean values obtained by setting si = 1 and αu,i = βv,i = 0.5 for all ten

existing edges (black dots, Fig 11). For the 10-edge and 20-edge model simulations, we have

Fig 10. Validation of the coverage of the confidence intervals. The χ2 distribution with one degree of freedom

(blue) and, for a 1000 independent datasets, and for the remaining five edge parameters θm 2 θ of the 10-edge 5

cytokine test model, a histogram of the values of DPLðy
�

mÞ � DPLðŷmÞ, with DPLðymÞ ¼ min
~θm
� 2 logðLðθÞÞ,

~θm ¼ fy1; . . . ; ym� 1; ymþ1; . . . ; yNg. Here, y
�

m ¼ 0:5 is the true value of θm and ŷ its estimated value by log-likelihood

minimization. In 99% of all cases, the value of DPLðy
�

mÞ � DPLðŷmÞ is smaller than χ2(0.99, 1) (vertical grey line).

https://doi.org/10.1371/journal.pcbi.1010112.g010

PLOS COMPUTATIONAL BIOLOGY A method for the inference of cytokine interaction networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010112 June 22, 2022 20 / 31

https://doi.org/10.1371/journal.pcbi.1010112.g010
https://doi.org/10.1371/journal.pcbi.1010112


fitted the 10- and 20-edge parameter values respectively to the synthetic dataset (coloured

dots). We note that the predictions by the selected 10-edge model match the ‘true’ values

closely. The larger, 20-edge model does not perform well. We note that the secretion rate of

Cytokine A in the presence of a receptor blocker of both cytokine A and D, both B and D, and

of both D and E is overestimated by the 20-edge model simulations. Although the 20-edge

model more closely fits the data than the 10-edge model, the predicted cytokine secretion rate

of Cytokine A in the presence of a receptor blocker of both cytokine D and E is 1070 times

higher than under control conditions. This clearly is a biologically implausible prediction,

resulting from a very large estimated value of the parameter sA = 101.2 = 14 for the 20-edge

model. We note that the 99% profile likelihood confidence interval for parameter sA for the

20-edge model ranges from 10−0.2 = 0.6 to 102.1 = 115, while the true value, used to generate

the synthetic data set is sA = 100 = 1 (Fig 12). In contrast, the 99% profile likelihood confidence

interval for parameter sA for the 10-edge model ranges from 10−0.3 = 0.5 to 100.1 = 1.4 (Fig 8).

Using the selected, 10-edge model reduces overfitting of the data and results in more accurate

model predictions.

To obtain confidence intervals for our model predictions, we follow the Prediction Profile

likelihood approach by Kreutz et al. [34]. In a way analogous to the Profile likelihood

Fig 11. The synthetic dataset for Cytokine A (coloured dots). Model simulations for the mean cytokine secretion of Cytokine A with the edge weights

set to the values used to generate the example synthetic dataset (black dots) and model simulations with the edge weights fitted to the synthetic dataset,

both for the model configuration containing all significant edges (white, squares), and the selected ten edge model (white, diamonds). The Log10

transformed values 12.4 and 69.5, corresponding to the ‘Anti cytokine BD’ and ‘Anti cytokine DE’ simulations of the model configuration containing all

significant edges are not shown for visibility reasons. In 99% of cases, we expect an experimental datapoint (grey lines, validation profile likelihood

confidence intervals), or the true mean cytokine secretion rate (black lines, prediction profile likelihood confidence intervals) to lie within the shown

intervals for our ten edge test model predictions.

https://doi.org/10.1371/journal.pcbi.1010112.g011
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Fig 12. Profile likelihood plot for sA for the 20-edge 5 cytokine test model. The parameter θm = sA 2 θ was varied

over a broad range of values and for each fixed value of θm, the increase in DPLðymÞ ¼ min
~θm
� 2 logðLðθÞÞ was

computed, with LðθÞ the likelihood function as defined in Eq (3), and ~θm ¼ fy1; . . . ; ym� 1; ymþ1; yNg. The 99%

confidence interval threshold is shown as a red dashed line and corresponds to a two order of magnitude interval for

sA. The parameter value used to generate the synthetic dataset is shown as a red dot. The parameter value resulting in

the minimalD ¼ min
θ
� 2 logðLðθÞÞ is shown as a grey star. This figure has been generated using the Matlab

environment ‘Data2Dynamics’ [32, 33].

https://doi.org/10.1371/journal.pcbi.1010112.g012
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approach, we define for each model simulation yi,j = z, for cytokine i and experimental condi-

tion j: DPPLðzÞ ¼ min
�θ
� 2 logðLðθÞÞ, where the parameter values �θ are constrained such that

the model simulation yi,j takes on the value z. Hence for each fixed value of yi,j = z we find the

minimal DPPL(z) by fitting all parameters to the data, subject to the constraint yi,j = z. This

allows us to compute likelihood based prediction confidence intervals for each model simula-

tion yi,j with threshold value z, the z quantile of the w2
1

distribution. Our model simulations yi,j
are estimates of the mean cytokine secretion rate. The true mean cytokine secretion rate will

lie within the z level confidence interval with probability z. We calculated 99% confidence

intervals for each of the model simulations of the selected 10-edge model, using the Prediction

profile likelihood approach (Section “S2 Appendix”). We confirm that all true mean cytokine

secretion rates (black dots) are contained in the 99% confidence intervals for our ten edge test

model predictions (black lines, Fig 11). We also calculated 99% Validation confidence intervals

for each of the model simulations of the selected 10-edge model, using the Validation profile

likelihood approach (Section “S2 Appendix”). In 99% of cases, we expect an experimental data-

point to lie within the Validation profile confidence intervals of the model simulations. We

observe that only one data-point (left purple dot) is not contained in the 99% Validation confi-

dence intervals of the 10-edge model simulations.

Application to a dataset on IL23 regulation. We apply our method to an experimental

dataset of stimulated peripheral blood mononuclear cells (PBMCs) to study the regulation of

the cytokine IL23, a key cytokine in IBD pathogenesis. The application of our method to an

extended version of this dataset was published before [35]. In contrast to the study presented

in [35], here we will validate several of our model predictions against experimental data that

was not used for model fitting to demonstrate the predictive capability of this modelling

framework. The dataset we used for model fitting contains data on the secretion of six relevant

cytokines (TNFα, IL1α, IL1β, IL6, IL10, and IL23) by monocytes (live CD14+ cells) at t = 16h

after stimulation with the bacterial cell-wall component LPS (n = 17 healthy donors). Cytokine

secretion was measured by flow cytometry in the presence of LPS and aTNF, aIL6R, aIL10R,

aIL1α, aIL1β and aIL1R, where aIL1R blocks both the IL1α and IL1β receptor, a� anti, and

R� receptor.

Further, the effects of the exogenous addition of LPS and the cytokine IFNγ were measured

and, in the model network developed below from monocyte cytokine secretion measurements,

the impact of IFNγ is treated analogously to the LPS stimulus, as we briefly motivate. In partic-

ular, IFNγ is a cytokine that is only produced by a distinct subset of immune cells, for instance

memory CD4+ αβT cells (in particular Th1 and Th1/17 subsets), with a well-established role in

promoting IL-12 and IL-23 synthesis in myeloid lineage cells, including monocytes. The latter

express IFNGR1 and IFNGR2 (Interferon gamma receptors 1,2) but do not produce IFNγ
themselves [36–38]. This is further evidenced by the RNA-sequencing-based analysis of sorted

immune cell subsets from peripheral blood mononuclear cells (which include monocytes),

such as the Monaco dataset [39], demonstrating expression of the receptors IFNGR1 and

IFNGR2 but not IFNγ. In addition, the experimental study specifically aimed to analyse the

cytokine network involved in monocyte IL-23 synthesis, including stimulation with recombi-

nant human IFNγ as a benchmark IL-23 synthesis promoting factor for the set of stimulation

conditions of interest [35]. Our analysis confirmed that recombinant human IFNγ does indeed

upregulate monocyte IL-23 synthesis when added to LPS-stimulated and LPS+aIL-10R stimu-

lated cultures and that blocking IFNγ signalling in the context of LPS and LPS+aIL-10R stimu-

lation does not affect IL-23 synthesis [35]. In contrast, IL-1 signalling is a prerequisite for

monocyte IL-23 production as evidenced by the fact blocking the receptor IL-1R1 does impair
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IL-23 production in both LPS and LPS+aIL-10R stimulations [35]. These latter data further

suggest that the level of IFNγ produced by LPS and LPS+aIL-10R in the short ex-vivo stimula-

tion of the experiment is not sufficient to drive IL-23 expression [35]. Hence while exogenous

IFNγ is introduced in amounts that can be influential, there is substantial evidence to support

the modelling assumption that the cells in the experiment do not produce IFNγ even though

they are influenced by exogenous IFNγ.

To construct suitable datasets we first multiplied the percentage of monocytes expressing

a cytokine with the mean fluorescence intensity (MFI) of the monocytes expressing that

cytokine to obtain a measure (PMFI, arbitrary units) of the amount of cytokine present

within the monocytes. We assume each produced cytokine is secreted after a fixed, small

amount of time and our measure of cytokines present within the monocytes (PMFI) there-

fore correlates with the cytokine secretion rate. For a large proportion of the studied experi-

mental conditions, the logarithm of the PMFI data significantly deviated from a normal

distribution (false discovery rate (fdr) corrected Lilliefors test for normality, p<0.05). We

therefore attempted to remove the lack of log-normality by rescaling the data. Ideally, we

would have liked to rescale by dividing each sample by the sum of all studied experimental

conditions, so as not bias any one experimental condition in the rescaling. However, as not

every experimental condition was measured for each donor, we chose to rescale by the sum

of two completely measured experimental conditions (i.e. conditions that were measured for

each donor). In particular, we chose the ‘LPS’ and ‘LPS + aIL10R’ conditions for rescaling as

they were both measured for all 17 donors. To clarify, for each donor, we rescaled the sample

PMFI value for each experimental condition by dividing by the sum of the sample PMFI val-

ues of the ‘LPS’ and ‘LPS + aIL10R’ conditions for that particular donor. In particular the

use of two datasets is motivated by the fact that if only dataset was used, say ‘LPS’, the

rescaled LPS data would be unity with zero standard deviation and would have to excluded

from the likelihood, Eq (3).

After this rescaling the residuals (i.e. the difference from the group mean) of the ‘LPS’ sam-

ples, the residuals of the ‘LPS + aIL10R’ samples, and the residuals of all other conditions com-

bined did indeed not significantly deviate from a log-normal distribution (fdr corrected

Lilliefors test for normality on the log of the rescaled data, p<0.05). We determined the fixed

cytokine specific standard deviation σi for each cytokine i as before, but without the datapoints

corresponding to the ‘LPS’ and ‘LPS + aIL10R’ conditions that were used for rescaling. We

determined two separate, experimental condition and cytokine specific, standard deviations

σLPS,i and σaIL10R,i of the log transformed data for the ‘LPS’ and ‘LPS + aIL10R’ samples that

were used for the rescaling.

We applied our method to the rescaled dataset. In the log-likelihood function (Eq (3)),

we replaced σi by σLPS,i or σaIL10R,i for data points associated with the experimental condi-

tions ‘LPS’ and ‘LPS+aIL10R’, respectively. We implemented the addition of IFNγ by multi-

plying the cytokine secretion rate yi(t) (Eq (1)) with an additional term (1+ αIFNγ,i), where

the value of αIFNγ,i corresponds to the edge width of the effect of IFNγ on cytokine i secre-

tion. We show the set of statistically significant edges (Fig 13A), and selected model (Fig

13B), consisting of 18 edges. We observe that IL23 is directly regulated by IL10, IL1β and

IFNγ, but not by TNFα. Using the selected model, we predicted the effects of pairwise inhi-

bition of IL10 and TNF, IL1α/β, and IL6, and the effects of inhibiting IL10 and adding

IFNγ. These model predictions were experimentally validated. In particular all predictions,

white diamonds in Fig 14 in the lower four rows of data presented in Fig 14, are close to the

mean of the experimental data and well within the 99% confidence intervals of the data

(black lines).
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Fig 13. The IL23 model. A: Network extracted from the flow cytometry data set using statistical analysis (Section

“Application to a dataset on IL23 regulation”) [35]. Using a two sample t-test, we test the hypothesis that the presence

of inhibitor induces a change relative to the control:$p� 0.05,$$p� 0.01,$$$p� 0.001, fdr corrected. B:

The eighteen-edge network configuration selected by the AIC. Edge widths are proportional to the value of the

corresponding edge parameter αu,i and βv,i that minimized D for the shown network configuration. Edges are coloured

proportional to the increase in D when they are removed from the shown network configuration.

https://doi.org/10.1371/journal.pcbi.1010112.g013
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Discussion

We present a novel method to analyse the effects of the blockage of single cytokines on the

secretion rate of other cytokines of interest. We use ordinary differential equation (ODE)

based models and the Akaike information criterion (AIC) to identify a cytokine interaction

network and associated edge weights that best fits the available data. Our method depends on

the global minimization of a log-likelihood function and a deterministic trust-region approach

was used combined with a multi-start strategy, as implemented in the Matlab-based modelling

environment ‘Data2Dynamics’ [33].

We validated our method using synthetic datasets. We first considered four test motifs,

each consisting of three cytokines and two edges (Fig 5). We observed that in 15% of the 400

synthetic datasets we studied, the models selected by the AIC contained one or more edges

that were not part of the network configuration used to generate the synthetic datasets, though

always with very low relative edge weights. The edges used to generate the synthetic datasets

were always part of the selected models. We conclude that our method tends to select network

configurations that are equal or slightly larger than the ‘real’ network configurations with only

very weakly interacting additional edges. We also explored a larger five cytokine test model for

model validation. The AIC selected all ten edges used to generate the synthetic dataset. The

five cytokine test model predictions generated by the model configuration selected by the AIC

were more accurate than the model predictions using the model configuration containing all

Fig 14. Model predictions by the selected, eighteen edge model for IL23 (white, diamonds) for various experimental conditions. We show the

cytokine secretion dataset used for fitting (coloured dots, top eight rows) and the validation dataset (black dots, bottom four rows). We note that

cytokine secretion data for all six cytokines (TNFα, IL1α, IL1β, IL6, IL10, IL23) was used for fitting, but only the IL23 data is shown in this figure. In

99% of cases, we expect an experimental data-point (grey lines, validation profile likelihood confidence intervals), or the true mean cytokine secretion

rate (black lines, prediction profile likelihood confidence intervals) to lie within the shown intervals for our selected eighteen edge model predictions.

https://doi.org/10.1371/journal.pcbi.1010112.g014
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twenty statistically significant edges. This shows the value of using the AIC in reducing over-

fitting of the data, instead of considering all statistically significant edges. We confirmed all

parameters were locally identifiable using a profile likelihood approach.

The algorithm O introduced to identify optimal subsets from the set of statistically signifi-

cant edges reduces the number of network configurations for which the distance to the data D
has to be computed while performing this task. For the five cytokine test model containing 20

edges, we only had to compute the D for approximately 0.01% of
P20

k¼1
20

k

� �
¼ 220 � 1 > 106,

the total number of possible network configurations. We note that this percentage is depen-

dent on the number and relative strength of the various interactions, and in particular on the

number of essential edges. These are edges that are part of a specific model configuration of

interest which impact the model fit, such that a model configuration of any size without the

essential edge fits the data worse than the original model configuration of interest. A large

number of (configurations of) essential edges will greatly reduce the number of configurations

for which D needs to be determined. The exact dependence of the efficiency of the algorithm

on the relative strength of the various interactions could be explored in future work. The

described algorithm calculates an optimal subset from a given set of feasible possibilities. We

note that the algorithm is not dependent on a network structure and could have more general

applications beyond the identification of cytokine interactions.

We applied our method to an experimental dataset to study the regulation of IL23 in the

context of inflammatory bowel disease. The IL23 driven Th17 pathway has been identified as

an important therapeutic target, but is still poorly understood at a mechanistic level [35, 40]. A

specific application of our method to an extended version of this dataset was published before

in Aschenbrenner and Quaranta et al. [35]. In line with the previously published results, we

observe that the selected network indicates that in this inflammatory context, IL23 is driven by

IL1, and to a lesser extent by IFNγ, but not by TNFα (Figs 13 and 14). This supports the view

of IL1 and IL23 as a promising target for those patients that fail to respond to TNFα inhibition,

the standard of care for many severe inflammatory mediated diseases, including inflammatory

bowel disease (IBD). Targeting IL23, primarily via its subunit p40, is increasingly recognized to

be an effective treatment of IBD, including for patients with anti-TNF resistance [1, 4]. Fur-

ther, IL-1 receptor blockade might be effective in certain sub-types of IBD [3]. IL-1 receptor

antagonist has been shown to ameliorate colitis in a Mendelian type of IBD, driven by muta-

tions in the mevalonate kinase pathway [41]. Another regulator of interest is IL10. As the

experimental data indicates that IL10 downregulates both IL23 and IL1β, and IL1β in turn

upregulates IL23, one might hypothesize that the observed downregulatory effect of IL10 on

IL23 is IL1β dependent: i.e. IL10 might not have a direct effect on IL23. However, the network

predictions clearly indicate that the downregulation by IL10 of IL23 is largely IL1 independent

(compare ‘Stimulus + aIL1R’ and ‘Stimulus + aIL1R + aIL10R’ in Fig 14). We note that the

observed direct downregulation by IL10 of IL23 could be mediated directly through transcrip-

tional regulation independently of additional intermediate cytokines, or may be dependent on

one or more cytokines whose secretion rate was not measured and that were hence not

included in the network (see the definition of a direct interaction, Definition 1). We subse-

quently validated several model predictions using experimental data that was not used for

model fitting (datapoints in black in Fig 14). As predicted by the model, the experimentally

observed up-regulation of IL23 by IFNγ is not pre-dominantly driven by the down-regulation

of IL10 by IFNγ. Thus, IL23 is regulated by both IL10 (negative effect), and IL1 and to a lesser

extent IFNγ. The possibility of such modelling predictions, as well as the explicit examples pre-

sented here did not feature in Aschenbrenner and Quaranta et al. [35]. We note that apart

from the biological findings, the accuracy of the model predictions also validates the chosen
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form of our equations, e.g. the multiplicative, instead of for instance additive effects of the vari-

ous cytokines on each other’s secretion rates (Eq (1)).

In summary, we have developed a method to extract a minimal, weighted network from

cytokine interaction data using ordinary differential equations and the Akaike information cri-

terion (AIC). This method enables us to distinguish direct from indirect effects of cytokine

concentration on the secretion rate of other cytokines, to determine the strength of the differ-

ent cytokine interactions, and to predict the effects of untested (combinations of) cytokine

inhibitors. In contrast to directed acyclic graphs (DAGs), our model equations can accommo-

date self-edges and 2-cycles, such as the negative effect of IL10 on IL1 and the positive effect of

IL1 on IL10 observed in the experimental IL23 dataset [22]. We validated our method using

synthetic datasets and applied our method to an experimental dataset on the regulation of

IL23. In addition to the extracted network, as first presented in Aschenbrenner and Quaranta

et al. [35], here we have presented a validation framework and explicitly tested and confirmed

numerous model predictions using experimental data. In future work, our method could be

applied to other cytokine interaction data sets that include data on cytokine (receptor) block-

ades. Our type of model, i.e. a system of ODEs, allows for an easy extension to incorporate fea-

tures that are currently often ignored, such as extensive longitudinal data, maximum cytokine

secretion rates, or the interaction between cytokine responses of different cell types, such as T

cells and monocytes. Together with the Akaike information criterion, we have used minimisa-

tion of the negative log-likelihood to obtain our model parameters, though future work could

explore the prospect of extracting and using parameter posterior distributions. A limitation

associated with the use of ODEs is the risk of model misspecification, though the validation of

modelling predictions presented here a posteriori justifies the choices made for this study. In

future work, the dependency of the selected network on the model equations and chosen error

model could be explored. A further limitation is the requirement to minimize the log-likeli-

hood for each model fit. Because the optimization of the log-likelihood function becomes com-

putationally resource intensive for a growing number of equations and parameters, and

because the number of possible network configurations quickly increases for a growing num-

ber of edges, a limitation of our method is the limited number of cytokines that can be studied

at a time, though it can accommodate current experimental data generation. In particular, our

method is intended to explore the interactions of a relatively small number of cytokines, such

as currently typically found in intracellular cytokine staining datasets. When the use of spectral

flow cytometers becomes more widely adopted, datasets with measurements of>30 different

cytokines will become increasingly common. In such cases, the feasibility of the application of

our method will depend on the amount of computational power available, and on the structure

of the data, including the number of statistically significant interactions that need to be

considered.
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