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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. It has been proposed that
miRNAs play an important role in cancer development and progression. Their ability to affect multiple gene pathways by
targeting various mRNAs makes them an interesting class of regulators.

Methodology/Principal Findings: We have developed an algorithm, Classification based Analysis of Paired Expression data
of RNA (CAPE RNA), which is capable of identifying altered miRNA-mRNA regulation between tissues samples that assigns
interaction states to each sample without preexisting stratification of groups. The distribution of the assigned interaction
states compared to given experimental groups is used to assess the quality of a predicted interaction. We demonstrate the
applicability of our approach by analyzing urothelial carcinoma and normal bladder tissue samples derived from 24 patients.
Using our approach, normal and tumor tissue samples as well as different stages of tumor progression were successfully
stratified. Also, our results suggest interesting differentially regulated miRNA-mRNA interactions associated with bladder
tumor progression.

Conclusions/Significance: The need for tools that allow an integrative analysis of microRNA and mRNA expression data has
been addressed. With this study, we provide an algorithm that emphasizes on the distribution of samples to rank
differentially regulated miRNA-mRNA interactions. This is a new point of view compared to current approaches. From
bootstrapping analysis, our ranking yields features that build strong classifiers. Further analysis reveals genes identified as
differentially regulated by miRNAs to be enriched in cancer pathways, thus suggesting biologically interesting interactions.
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Introduction

Bladder cancer is the fourth most common cancer in

industrialized countries [1]. Muscle invasive bladder carcinoma

has still a high mortality, despite better therapies by improved

surgical techniques and aggressive treatments. Approximately

90% of all urothelial neoplasms are classified as urothelial cell

carcinoma (UCC), which can be divided by clinical and

morphologic parameters in two different subgroups [2,3]. The

majority of UCC belongs to the group of papillary non-invasive

tumors (stage pTa), in general these tumors are well differentiated,

tend to grow slowly without large spreading and have a good

clinical prognosis. The remaining one-third of UCC are invasive

tumors (stage pT1 and higher) with poorly differentiation, high

progression rates and the ability to form metastases. On the

molecular level, most non-invasive UCC are associated with

FGFR3 mutation and chromosome 9 loss [4,5] whereas the

inactivation of p53 and PTEN function plays an important role in

the progression of invasive UCC [6]. In several publications,

transcriptomic expression patterns have been linked to clinical

outcomes in urothelial carcinoma [7–10]. Furthermore, first

integrated analysis of both miRNA and mRNA data was

performed to get a more detailed insight into regulatory networks

and involved cancer signal transduction pathways that cause

bladder cancer [11,12]. However, the exact mechanisms involved

in the initiation and progression of bladder urothelial carcinoma

remain largely unclear. Further examination of gene expression

and miRNA expression data is crucial to detect those unknown

processes that lead to tumorgenesis. With the establishment of

microarray applications, several computational methods have

been developed to analyze gene expression data. Gene set analysis

and gene enrichment analysis are often used to identify

differentially expressed genes [13,14]. The most common tools
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and web services that apply the principles of gene enrichment

analysis are DAVID [15], GeneTrail [16], GOrilla [17],

GeneCodis [18] and GOEAST [19], for a general overview see

reference [20].

Apart from co-expressed genes, differentially regulated pairs of

miRNAs and mRNAs play an important role in several cellular

processes and diseases. To assess this issue, several methods have

been developed to predict interactions between miRNAs and

mRNAs based on their sequences. Most of the tools exploit the

seed complementary between miRNAs and the 39UTR of specific

mRNA, information about the sequence conservation of adjacent

bases and thermodynamic properties of miRNA-target mRNA

interactions. The different methods have been recently reviewed

[21]. Some of the most common tools are TargetScan [22–25],

PicTar [26–29], miRanda [30–32] and PITA [33]. Several web

resources provide validated or predicted miRNA-mRNA interac-

tions, e.g. TarBase [34], miRecords [35], miRGen [36] and

miRBase [37], miRGator offers miRNA and mRNA expression

profiles [38], starBase [39] and doRiNA [40] are databases that

integrate miRNA and ribonucleoprotein binding sites.

There is a need for methods which consider the specific nature

of miRNA induced regulation. miReduce [41] and Sylamer [42]

can be used to evaluate the correlation between seed motif

enrichments in 39UTRs of mRNAs for differentially regulated

genes in miRNA knockout experiments. DIANA-mirExTra

implements similar gene motif evaluation methods as a web

service [43]. Creighton et al developed a collection of Excel

macros to combine sets of enriched genes with miRNA-mRNA

interaction predictions [44]. Recently, methods and web-services

for the integrated analysis of miRNA and mRNA expression data

have been developed such as MAGIA [45,46], MMIA [47],

mirAct [48], miRConnX [49] and miRTrail [50]. GenMIR++
implements a Bayesian learning approach to identify differential

miRNA-mRNA regulation [51,52]. HOCTAR calculates negative

correlations between miRNA and mRNA expression [53]. Other

methods are based on regression analysis [54,55]. An approach

based on clustering miRNA and mRNA expression data in

combination with a t-test was developed by Jayaswal et al. [56].

Most of current tools have shortcomings such as using methods

that are error-prone to outliers or they do not allow identifying

differential regulation between two groups of samples.

In this study, we present a novel approach that evaluates

differential miRNA-mRNA regulation combined with the distri-

bution of samples for a single interaction. We hypothesize that

single miRNA-mRNA interactions are characteristic for a

particular state of tumorigenesis. We consider differential miRNA

induced gene regulation as a two class problem and use the

following assumption. Given an interaction between a miRNA and

mRNA which is characteristic for a difference between two groups

of samples, the miRNA is up-regulated and the mRNA down-

regulated in the first group with respect to the second group, or

reciprocal. Our approach classifies each predicted interaction for

each sample independently of group knowledge. By this way, one

can analyze individual differences inside a collective of samples for

a specific set of interactions. Furthermore given an interaction, we

can partition samples into expected groups which reflect the

miRNA induced gene regulation. The agreement between the

expected groups and the experimental ones yields a meaningful

ranking to distinguish potential interactions from those which are

unlikely to occur. In a final step, we incorporate information about

negative correlation between miRNA and mRNA expression to

eliminate false positives.

Identifying differentially regulated miRNA-mRNA interactions

is a basically a form of feature selection. To validate the different

steps of our approach, we have performed a principal component

analysis to analyze the separation of samples after assignment of

interaction states and evaluated the performance of our ranking to

build classifiers.

In particular, we have applied our approach to a collective of

healthy bladder tissue samples and bladder tumor samples at

different stages. In addition, we have examined the ability of our

approach to classify prostate cancer tumors and healthy tissue, as

well as colon cancer samples and healthy tissue using small sample

sizes [57]. The performance of our classifiers was compared to a

well established method for gene expression data, Prediction

Analysis of Microrarrays for R (pamr), which is an enhanced

nearest centroid classifier [58]. Furthermore, we calculated

pathway enrichment scores for genes involved in predicted

interactions and suggest interesting interactions for bladder cancer

tumor progression.

Materials and Methods

Patients and Tissue Samples
A selection of 24 urothelial samples from a collective of bladder

cancer patients described previously was used in this study [59].

Eight samples were extracted from nonmalignant bladder tissue (8

male patients; median age 69, range 47–80 years), 8 samples from

low-grade papillary urothelial carcinoma (8 male patients; median

age 72.5, range 59–79 years; 2x pTaG1 and 6x pTaG2)), and 8

samples from invasive tumors (6 male, 2 female patients; median

age 73, range 62–76 years; 1x pT1G1, 4x pT1G3 and 3x pT2G3).

The samples were collected immediately after surgery in liquid

nitrogen and stored at 280uC until further analysis. Tumor

staging was performed in conformity with the International Union

Against Cancer and histological grading in accordance with the

WHO/ISUP criteria of 2004 [60]. All bladder cancer patients

went through radical cystectomy or transurethral resection at the

University Hospital Charité in Berlin between 2008 and 2009 and

gave written informed consent for the use of representative tissue

specimens for research purposes. The study was approved by the

Ethic Committee of the University Hospital Charité (File: EA1/

153/07).

Isolation of RNA and Characterization of Quantity and
Quality
The analyzed tumor tissues samples contained more than 80%

tumor cells as previously described [59]. Approximately 20–30 mg

of wet weight tissue was treated with 350 ml of lysis buffer and total

RNA was isolated using the miRNeasy Mini Kit (Qiagen, Hilden,

Germany) according to the manufacturer’s protocol. An additional

DNase I digestion step on the RNA binding silica gel membrane

was performed. The quantity and quality of isolated RNA was

determined by a NanoDrop 1000 spectrophotometer (NanoDrop

Technologies, Wilmington, DE, USA) and a Bioanalyzer 2100

(Agilent Technologies, Santa Clara, CA, USA). Only samples with

RNA integrity number (RIN) values .5 were used. The RNA

samples isolated from nonmalignant as well as from non-invasive

and invasive tumor tissue samples showed comparable median

260/280 absorbance ratios (2.02, 2.03 and 2.03) and median RIN

values (7.3, 6.7, and 7.2; Kruskal-Wallis test, P = 0.486).

Microarray-based RNA Analysis
miRNA expression analysis was performed by one-color

hybridizations on human catalog 8-plex 15 K microRNA

microarrays (AMADID 019118) from Agilent (Agilent Technol-

ogies, Santa Clara, CA, USA) which enclosed 723 human and 76

viral microRNAs from the Sanger miRBase (release 10.1). All
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reaction steps were carried out as previously described in detail

[61]. After hybridization, microarrays were washed, scanned, and

processed according to the supplier’s protocol. The raw data were

normalized using Genespring GX11 Software (Agilent) with

default parameters (threshold raw signal to 1.0, percent shift to

90th percentile as normalization algorithm and no baseline

transformation). All microarray data has been deposited in the

NCBI GEO database with accession number GSE36121.

mRNA expression analysis was performed by one-color

hybridizations on whole human genome microarray 4644 K v2

(026652) from Agilent comprising probes for human 34184

mRNA transcripts. After hybridization, microarrays were washed,

scanned, and processed according to the supplier’s protocol. The

raw data were normalized using Genespring GX11 Software

(Agilent) with default parameters (percent shift to 75th percentile

as normalization algorithm and a median baseline transformation

of all samples). All microarray data has been deposited in the

NCBI GEO database with accession number GSE40355.

Classification of miRNA-mRNA interactions
miRNA-mRNA interaction data set. Validated human

miRNA-mRNA interactions were obtained from Tarbase 5.0

and miRecords (version 11-2010) [34,35,62]. Human target

mRNA predictions for miRNAs were extracted from TargetScan

5.2 and microRNA.org (version 8-2010) [22–25,63]. The micro-

RNA.org resource comprises predictions computed by the

miRanda algorithm [30,31]. In case of microRNA.org, the only

predictions that were considered, were those annotated as

‘conserved miRNA’ and ‘good mirSVR score‘. For the analysis,

the intersection between microRNA.org and TargetScan predic-

tions was added to the set of validated interactions. miRNA

families were extracted as defined in the TargetScan data set.

Algorithm for the classification of expression

values. The goal of the algorithm is to partition the expression

values corresponding to each probe into three sets: ‘‘high’’,

‘‘medium’’ and ‘‘low’’.

Let eorig[Eorig be the log-normalized expression value of a

specific probe for a given sample which either refers to a miRNA

or mRNA. Eorig is the corresponding set of expression values of

that probe over all samples. At first, the expression values are

exponentiated, i.e. E~ 2eorig Deorig[Eorig

� �
. This way, we avoid

some numeric issues. All values are larger than zero, because e[E
approaches zero as eorig[Eorig becomes more negative, i.e. when

eorig approaches {?, also, if eorig~0 then e~1. Clearly, there is

a dependence on how the initial data was normalized.

We define the absolute fold change as d(a,b)~max a
b
, b
a

� �
for

two values a,b[E . Please notice, that d(a,b)§1.

There are two preliminary considerations. The first assumption

is that two expression values are differentially expressed if their

absolute fold change d(a,b) is higher than a certain threshold hfold .

The second assumption is that values which absolute fold change is

in a certain range are similarly expressed, i.e. their absolute fold

change is lower than or equal to a threshold hneighborhood .

Given a[E and a nonempty set B where DBD is the cardinality of
set B, we define the absolute fold change between a and the mean

of set B as d(a,B)~max a

b
, b
a

n o
, where b~

P
b[B

b

DBD . Again,

d(a,B)§1 since B is nonempty, and d(a,B)~1 if and only if a~b.

We define that set A is the neighborhood of a if and only if

Vx[A : d(a,x)ƒhneighborhood where hneighborhood§1.

We define a as representative of a set A if and only if A is the

neighborhood of a. Please notice, that there can be more than one

representative for a set A, i.e. for two values a,b[E where A is

neighborhood of a and B is neighborhood of b, if a~b, but also if

a=b and A~B.

We define a scoring function on two elements, a and b and their

neighborhoods A and B as follows:

score(a,b)~
DAD

d(a,A)
z

DBD
d(b,B)

{DA\BD
� �

: DADzDBD{DA\BDð Þ
max DAD,DBDf g

We add following constraint to determine the final score, where

hfold§1 :

scorefinal(a,b)~
score(a,b) d(a,b)whfold

0 otherwise

�

The rationale behind this scoring function is to find two sets of

similarly expressed values which cover most of the data, thus also

which overlap little as possible, i.e. the data coverage term

DADzDBD{DA\BD. In addition, more equally sized sets are higher

scored, i.e. the size distribution term 1
max DAD,DBDf g. Otherwise one set

could contain a single member and the other set all other

members. Since, the data coverage should be more than linearly

weighted compared to the size distribution of the sets, we

introduced a quadratic relationship on the data coverage term.

The last sort of terms, i.e. the set representative penalty terms
1

d(a,A)
, penalize set representatives that are far from their

neighborhood. The set representative penalty terms should have

less influence than the data coverage term, thus these terms are

introduced into only one of the two data coverage terms.

To sum up the essential meaning of the scoring function, we

identify two different neighborhoods, i.e. values of similar

expression. These neighborhoods differ by at least a defined

absolute fold change, but then the absolute fold change can be

arbitrary large. The scoring function evaluates to what extend

these neighborhoods are useful to represent the data, based on

data coverage not absolute values.

Given the two resulting sets and their corresponding represen-

tatives which produce the highest final score, we denote the

representative with the lower value as clow and the representative

with the higher value as chigh. Based on clow and chigh, two

boundaries tlow and thigh are calculated as follows:

tlow~min clowhneighborhood ,
chigh

hneighborhood

� �

thigh~max clowhneighborhood ,
chigh

hneighborhood

� �

The rationale for this is as follows. The boundaries are defined

by the upper limit of the lower set, and lower limit of the upper set;

if the sets overlap, the boundaries are switched.

Finally, for each v[E the classification of v is defined by:

class(v)~

L vvtlow

H vwthigh

M otherwise

8><
>:
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This classification will be referred to as state in the following.

For the actual classification of expression values, the fold

threshold and neighborhood threshold is determined dynamically

from a list of predefined paired values, i.e. a pair

(hi,neighborhood ,hi,fold ) for the i-th element in the list. Separately

for each miRNA or mRNA probe, the fold threshold and

neighborhood threshold that yield the highest scorefinal(a,b) for

that particular set of expression values are used. For this study, we

defined Vi : hi,neighborhood~hi,fold .

Filtering and interaction states. Only those miRNA or

mRNA probes are considered that exceed a certain score higher

than a threshold hscore~tDED where t is an arbitrary real value and

the cardinality DED is the number of samples. Considering a single

sample, mRNA probes which are mapped to the same

EntrezGeneID are classified by the maximum occurring state.

On a tie, the preferences for the classification are low (L), high (H)

and then medium (M). Before interactions are classified, the

mRNA and miRNA probes are filtered by the ratio of M classified

samples, where hMclass is the corresponding threshold. For a

miRNA-mRNA interaction and for each sample the classification

of an interaction is the combination of the two states of the

miRNA and mRNA in that order, e.g. if a miRNA is classified as L

for a specific sample and the target mRNA is classified as H, then

the state of the interaction is LH. Hence, there are nine possible

states for an interaction: S = {LH, HL, LM, HM, MH, ML, HH,

LL, MM}.

We group these combinations by their biological meaning:

Down-regulated states ScompHL = {HL, ML, HM}; up-regulated

miRNA cause hypothetic down-regulation of mRNA.

Up-regulated states ScompLH = {LH, MH, LM};. Down-

regulated miRNA cause hypothetic up-regulation of mRNA.

Undefined states Sundef = {HH, LL, MM} which do not follow

the biological interpretation mentioned above.

Interactions with a frequency of undefined states P(Sundef )

higher than a threshold hundef were excluded from the set of

interactions. We will further refer to the set of interactions which

satisfies the filtering criteria mentioned above as the set of

regulated interactions.

Given two pre-defined groups A and B, it was defined that an

interaction is differentially regulated for A and B, if the state with

the maximum frequency of group A is an element of ScombLH and

the state with the maximum frequency of group B is an element of

ScombHL or reciprocal. For all data sets in this study, we set

hscore~1:3DED, hMclass~0:7 and hundef~0:4.
Jaccard-Index. For each interaction, a Jaccard-index is

calculated to evaluate the agreement between the predefined

experimental groups Dpredef and the expected groups based on the

assumption that an mRNA is down-regulated for one group and

up-regulated for the other group by a specific miRNA.

Therefore, a partition Dexp ected is computed where the samples

are grouped into the three groups GcombHL, GcombLH and Gundef .

Where GcombHL is the set of samples that have an interaction state

of either HL, HM, or ML, GcombLH is the set of samples that have

a interaction state of either LH, LM, or MH and Gundef is the set

of samples whose state is either HH, MM, or LL.

The Jaccard-Index is then the similarity between the two

partitions Dexp ected and Dpredef and assumes a value between 0 and

1 [64,65]. Figure 1 summarizes the steps that were performed to

identify differentially regulated interactions in this study.

Simple classification model. To evaluate the applicability

of our ranking by Jaccard-indexes, based on the set of selected

differentially regulated interactions a simple classification model is

constructed which predicts the first group of an ensemble of

samples, e.g. cancer samples from a collective of cancer and non-

cancer samples.

Such a model contains a set of states Si for each interaction i of

the set of selected interactions I, where Si~ScombLH or

Si~ScombHL. In addition, a set of undefined states Sundef is

defined. For each sample p[P, the sum of interactions classified as

the first group is given by ap for all interactions i where the state of

the sample sp,i[Si. bp refers to the sum of interactions classified as

the second group, i.e. all interactions i where the state of the

sample sp,i=[Si and sp,i=[Sundef . In other words for a sample, we

increment ap if the state of the sample indicates a regulation in the

same direction as defined in the model for the specific interaction,

we increment bp if the state of the sample corresponds to the

opposite regulation and nothing is incremented if the state of the

sample corresponds to an undefined interaction state. The

classification of the sample is then defined by the maximum of

ap and bp.

A model is generated from the highest ranked interactions

within a threshold value for the Jaccard-index of an interaction or

by a defined number of randomized interactions within a range of

Jaccard-indexes. The states Si are defined according to the state

with the highest frequency for the first group.
Bootstrapping analysis. The normalized expression values

were randomly divided into training and test sets where each

training set contains half of the samples of each group without

replacement. If the number of samples was odd for a group, the

trainings sets were assigned one sample more than the test sets for

that group. Concerning the bladder cancer data set, for the

collective of all samples, each training and each test set contains

eight samples from either the group of invasive or non-invasive

bladder cancer samples and four normal tissue samples. For the

collective of bladder cancer samples, each training and each test

set contains four invasive bladder cancer samples and four non-

invasive bladder cancer samples. For the two collectives, 100

different data sets of training and test sets were generated by

randomly dividing the samples under the constraints mentioned

above. miRNA-mRNA interactions were computed and classified

separately for each training and each test set. For each of the 100

data sets a model was computed based on the training set and

applied to the corresponding test set. Mean specificities, sensitiv-

ities and false positives rates were computed over all 100 data sets.

Similarly to the bladder cancer data set, a colon cancer and

prostate tumor data set that contain paired miRNA/mRNA micro

array expression data was used to estimate specificities and

sensitivities. Colon tissue samples and prostate tissue samples were

extracted from the data set provided by Lu et al. [57] and treated

as two separate data sets. In more detail, the colon tumor data set

comprises four healthy samples and seven tumor samples. The

prostate tumor data set contains six healthy and six tumor samples.

For both the colon cancer and the prostate tumor data set

separately, 50 randomized training sets and test sets were

generated, then mean specificities and sensitivities were calculated

in the same way as mentioned above.

In addition for the cancer tissue sample collective of the bladder

cancer data set, the whole procedure was performed with an

outlier removed and the same outlier re-assigned to the expected

group according to the results of our examination.

Prediction Analysis of Microarrays for R
To compare the results of our classifiers to another method,

Prediction Analysis of Microarrays for R (pamr) [58], was

performed using the same training and test sets as mentioned

above. Pamr comprises a k nearest shrunken centroid classifier. A

threshold value is used to define the extend of shrinkage for a

Bladder Cancer: miRNA-mRNA Interactions Analysis
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model, i.e. a lower threshold value will generate a larger model

and a higher threshold smaller model. Pamr was applied to each

set of log-normalized miRNA and mRNA expression data

separately. First we determined a range of thresholds separately

for the miRNA and mRNA data of each data set by using

‘pamr.plotcv’ for some instances of training sets. Next, we used

that range of thresholds to iterate over all randomized training sets

corresponding to a miRNA or mRNA of a data set, computed the

models and classified the corresponding test sets. ‘pamr.adapt-

thresh’ was used to rescale the model before classifying the

corresponding test set. Except for the threshold default parameters

were used for all functions of pamr.

Mean specificities and sensitivities were calculated in the same

way as mentioned above.

Correlation coefficients
For each of three experimental groups, i.e. invasive bladder

cancer samples, non-invasive bladder cancer samples and normal

tissue samples, Spearman correlation coefficients, r, were calcu-

lated between the miRNA and mRNA expression. The log-

normalized expression values were used as input data. Pairs of

miRNA-mRNAs were defined by the same set of interactions, as

mentioned above. The expression values were treated separately

for each of the three experimental groups. Spearman correlation

coefficients were calculated for each pair of miRNA-mRNA

interactions for each group.

Processing of the bladder cancer data set
We applied our approach to two different collectives, a

collective of all samples (8 non-invasive- and 8 invasive tumor

samples as well as 8 control persons) and a collective of tumor

samples with different tumor stages (8 non-invasive and 8 invasive

samples) without healthy persons. For both collectives, only

miRNAs and mRNAs expression values were processed showing

in at least 20% of the used samples a ‘‘present call’’, indicated by

the microarray normalization software Genespring GX. Next, we

applied our approach to identify differentially regulated interac-

tions. In a further step, we selected only interactions that show a

negative correlation, i.e. r#20.4, between normalized miRNA

and mRNA expression values for at least one experimental group.

For the collective of cancer tissue samples these groups are the

invasive bladder cancer samples and non-invasive bladder cancer

samples. For the collective of all samples the groups comprise both

bladder cancer sample groups and the group of normal tissue

samples, i.e. three different groups.

Figure 1. Flow chart for identifying differentially regulated interactions. Input data is depicted by orange rectangles. Output data is
indicated by red rectangles. The ellipse refers to the set of inferred interactions. This set is independent of the input data, though it can be changed.
Operations to manipulate data are depicted as diamonds.
doi:10.1371/journal.pone.0064543.g001
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Clustering
Based on the interaction states a principal component and

clustering analysis was performed. For this purpose, the interaction

states were substituted into real values as mentioned in Table 1. A

distance matrix was computed using the city block distance as a

metric. Afterwards, hierarchical clustering was performed using

Ward’s method as a distance measure [66]. Principal components

of the distance matrix were calculated where the distance matrix

was treated as a set of N N-dimensional vectors [67].

Functional annotation clustering
Genes which are involved in the differentially regulated

interactions between miRNA and mRNA were analysed using

the database for annotation, visualization and integrated discovery

(DAVID) [15] with standard classification stringency parameters.

Analysis of the bladder cancer data set using Magia2 and
TaLasso
For comparative analysis, we applied four additional approach-

es to analyze the two collectives of bladder cancer samples, the

collective of healthy and tumor samples and the collective of

invasive and non-invasive tumor tissue samples. The TaLasso web

server was used to identify miRNA-mRNA interactions with the

TaLasso method and GenMiR++ algorithm [55]. The union

between Tarbase, miRecoreds 2010 and the intersection of

miRandaXL, PicTar 4-way and Targetscan (miRGen) was

selected as set of putative miRNA-mRNA interactions.

In addition, Spearman correlations and a Meta analysis

approach using the Magia2 web server were used to analyze the

data sets [46]. For analysis with Magia2, the intersection between

predictions from TargetScan and microRNA.org (miRanda) was

defined as set of putative interactions. Concerning the analysis

using Spearman correlation, only interactions are considered that

exhibit a negative correlation, i.e. r ,0.

For all approaches and both collectives, only miRNAs and

mRNAs expression values were processed showing in at least 20%

of the used samples a ‘‘present call’’, indicated by the microarray

normalization software Genespring GX. Log-normalized expres-

sion values were used for analysis, as mentioned above. When

more than one probe was mapped to the same EntrezGeneID, for

each sample, the median of the log-normalized expression values

over the probes was calculated.

To determine the set of ‘‘best’’ interactions, interactions were

ranked by highest score when TaLasso or GenMiR++ was used,

by most negative correlation when Spearman correlations were

calculated and by lowest q-value when the Meta analysis approach

was used.

Availability
An implementation of our algorithm as package of command-

line tools is available at http://sourceforge.net/projects/caperna.

It can be used under the terms of the GNU General Public License

v3.0.

Results

Stratification of samples, PCA and hierarchical clustering
After classification and filtering, our algorithm identified 11562

interactions for the whole collective of bladder tissue samples and

9075 interactions for the collective of bladder tumor samples that

exhibit different states of regulation over the samples and assigned

interaction states. At this stage, no a priori group knowledge is

inferred. Distances between the samples were calculated using

interaction states. Comparing the spread of samples in the first two

principal components, one can clearly distinguish samples of the

control group from tumor samples (Figure 2A). However, there is

not a complete distinction between invasive and non-invasive

tumor tissue samples, when the whole collective is analyzed.

Figure 2B shows the spread of structures for the non-invasive

and invasive tumor tissue samples when they are analyzed

separately from the control group. There is a separation between

non-invasive and invasive tumor tissue samples, the group of non-

invasive tumor samples tends to cluster together except for one

outlier at the left side of the figure. For invasive tumor tissue

samples, two clusters can be observed, one which is isolated from

the group of non-invasive tumor tissue samples and a smaller

cluster which is closer to the cluster of non-invasive tumor tissue

samples.

A cluster analysis reveals similar results. Samples of the control

group form an isolated cluster that is far from the groups of tumor

samples (Figure 3). Concerning the collective of non-invasive and

invasive tumor tissue samples, the non-invasive tumor samples

form a single cluster, except for the outlier mentioned above

(Figure 2). A cluster of three invasive tumor samples is closer to the

cluster of non-invasive tumor samples while the larger cluster of

invasive tumor samples shows a bigger distance to the non-invasive

tumor samples. The outlier is part of the larger cluster of invasive

tumor samples.

Bootstrapping analysis
As identifying altered miRNA-mRNA interactions between two

groups of tissues is a form of feature selection we argue that a valid

ranking of putative miRNA-mRNA interactions should be

reflected by the selected features. The quality of selected features

can be measured by the performance of classifiers constructed

from these features. We have generated randomized non-

overlapping trainings and test sets for four different collectives, I.

healthy bladder cancer tissue and bladder tumor tissue, II. non-

invasive bladder tumor tissue and invasive bladder cancer tissue,

III. healthy colon tissue and colon tumor samples and IV. healthy

prostate tissue samples and prostate cancer samples. Next, we

created simple models based on the interactions with the highest

Jaccard-indexes using our method, CAPE RNA, and trained

models on the same sets, but separately for miRNAs and mRNAs,

using Prediction Analysis of Microarrays for R (pamr) [58]. For

this part of the analysis, when our method was used, we filtered

bladder cancer data by present call, but did not filter interactions

by negative correlation for any data set. Mean values for specifities

and sensitivies were calculated for both types of classifiers.

Table 1. Substitution of interaction states into real values.

State LH MH LM LL MM HH HM ML HL

Value 21.0 20.5 20.5 0 0 0 0.5 0.5 1

doi:10.1371/journal.pone.0064543.t001
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Figure 2. Spread of samples inside the bladder cancer data set. For the collective of all samples (A) and the collective of tumor samples (B).
The first two principal components (PC) of the distance matrix based on interaction states are shown. Circles refer to samples of the control group,
triangles are invasive tumor samples and crosses refer to samples of non-invasive tumors. The first two principal components explain 85.39% of the
total variance (PC1= 78.12% and PC2= 7.27%) for (A) and 48.35% of the total variance (PC1= 33.36% and PC2=14.99%) for (B).
doi:10.1371/journal.pone.0064543.g002

Figure 3. Hierarchical clustering of the bladder cancer data set based on interaction states. For the whole collective of samples (A) and
the collective of tumor samples (B) using interaction states computed by algorithm. ‘‘N’’ refers to samples of the control group. Tumor samples were
labeled by their pathological staging (non-invasive: pTa or invasive: pT1 and higher).
doi:10.1371/journal.pone.0064543.g003
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For collective I, our method exhibits mean specificities between

0.99–1 and mean sensitivities between 0.93–0.99 depending on the

lowest allowed Jaccard-index, thus the size of the model, Figure 4A,

4B. In comparison, models generated by pamr achieve specificities

up to 0.9–1, but in that range of thresholds sensitivities between

0.65–0.70, Figure 5A, 5C. Concerning collective II, we identified

an outlier performing PCA and using our approach. Figure 4C

shows the expected specificities and sensitivities including the

outlier, without the outlier and when the outlier is reassigned from

non-invasive cancer to invasive cancer. There is an increase in the

mean specificities up to 0.2 when the outlier is removed or

reassigned, also there is a relevant increase in the sensitivities. For

this reason we removed the outlier for the pamr analysis. Using

pamr, mean specificities lie between 0.72–0.86 and sensitivities

between 0.61–0.51 when using mRNA expression data. Mean

specificities increase up to 0.77 when miRNA expression data is

used, however there is a decrease in mean sensitivities, Figure 5C,

5D. In contrast, our approach exhibits mean specificities between

0.94–0.99 and mean sensitivities between 0.83–0.93.

For the colon and prostate collectives (III, IV), our method

shows mean specificities between 0.89–1 and mean sensitivities

between 0.87–0.97, Figure S3A,B. The pamr classifier exhibits

mean specificities up to 0.72–0.96 and mean sensitivities below 0.6

in that threshold region for the miRNA expression data of

collective IV, Figure S3D. Concerning collective III and IV, there

is no threshold where both mean specificities and mean

sensitivities are above 0.7 when pamr is used with either mRNA

or miRNA expression data, Figure S3C-F.

Differentially regulated interactions in bladder cancer
We have examined the miRNA-mRNA interactions inside the

bladder cancer data set more elaborately. The outlier which has

been identified by PCA was removed for analysis of the non-

invasive and invasive bladder tumor collective. After inferring a

priori knowledge of the groups and selecting interactions by

interaction states that indicate a differential regulation between the

two groups, the set of selected differentially regulated interactions

contains 9180 interactions for the collective of all samples and

5963 differentially regulated miRNA-mRNA interactions for the

collective of tumor samples. Next, the interactions were selected

that exhibit a negative correlation between miRNA and mRNA

expression. There were 5583 interactions for the collective of all

Figure 4. Mean specificities and sensitivities for the bladder cancer data set using our algorithm CAPE RNA. Models for the whole
collective (A) and only for tumor samples (C) were generated from training sets by selecting all interactions with a Jaccard-index equal to or higher
than a threshold. A and C illustrate the mean specificities and mean sensitivities for the models to classify an unknown test set. B (generated from the
whole collective) and D (only tumor samples) shows the average number of interactions included in a model.
doi:10.1371/journal.pone.0064543.g004
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samples and 2938 interactions for the collective of cancer samples

that satisfy these criteria. Compared to these numbers, there are

relatively few interactions which are suitable to partition the

samples into their pre-defined groups when used as single

interaction, i.e. interactions that exhibit a high Jaccard-index

(Figure 6).

For the collective of all samples, there are 29 interactions which

yield a perfect classification of the collective as single interaction,

Table 2. miR-429 and miR-200c are involved in all of these,

except for one interaction which includes miR-183. A common

feature of all the interactions is that the miRNAs are upregulated

in cancer tissue. These are merely likely examples of potential

interactions. The list of differential regulations can be extended by

several interactions with a less perfect Jaccard-index.

For the differences in regulation between the non-invasive and

invasive tumors, there are no interactions with a perfect Jaccard-

index of 1. However, there are twelve interactions with a Jaccard-

index higher than 0.70, see Table 3. These interactions include

miR-7, miR-24, miR-26b, miR-29b, miR-29c and miR-30b. A list

of all selected differentially regulated interactions and their

Jaccard-indexes for both collectives is available as supplementary

data, Table S1 and Table S2, as well as a list of the corresponding

Spearman correlation coefficients of interactions used for filtering,

Table S3 and Table S4.

Pathway based analysis of differentially regulated
interactions
By pathway enrichment analyses we could show that corre-

sponding genes of the detected miRNA-mRNA interactions were

strongly associated with different KEGG cancer pathways

including bladder cancer. The detailed list can be found in Table

S5.

In this section, we would like to analyze two selected pathways

in more detail. First, the growth factor receptor signaling pathway

in bladder cancer (FGFR3), as defined in the review by Fendler et.

al, is examined [12]. Second, important interactions in the bladder

cancer pathway, as defined by KEGG, are investigated [68].

For both pathways, we selected only interactions with a Jaccard-

index equal to or higher than 0.4 that were selected by negative

correlation between miRNA and mRNA expression. Based on

Figure 5. Mean specificities and sensitivities for the bladder cancer data set using pamr. Prediction Analysis of Microarrays for R was used
to train models for the collective of all samples based on miRNA expression (A) and mRNA expression (C), as well as for the collective of tumor
samples based on miRNA (B) and mRNA (D). Models were generated with different thresholds. A-D) illustrate the mean specificities and mean
sensitivities to classify unknown test sets.
doi:10.1371/journal.pone.0064543.g005
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these criteria, we have identified 13 differentially regulated

interactions in the FGFR3 pathway (Figure 7 and Table S6). In

bladder cancer, FGFR3 mRNA expression is hypothetically up-

regulated by miR-100 down-regulation. The alpha subunit of the

protein kinase C (PRKCA) is hypothetically down-regulated by

miR-200c. The miRNAs miR-200a and miR-182 down-regulate

the epsilon subunit of the protein kinase C (PRKCE) while

PRKCB is hypothetically down-regulated by miR-494. DAPK1 is

hypothetically up-regulated due to lower expression levels of miR-

26a and miR-340. In addition, our results suggest an up-regulation

of SOS1 by miR-27b, miR-132, miR-152 and miR-204.

For the KEGG bladder cancer pathway there are sixteen

interactions that satisfy the conditions (Figure 8 and Table S7). In

addition to the up-regulation of DAPK1 and FGFR3 in the cancer

tissue, our analysis suggests following interactions. Cyclin D1

(CCND1) is hypothetically up-regulated due to lower expression

levels of miR-497. Also several members of the E2F transcription

factor family are up-regulated due to lower expression levels of

miR-30a, miR-152, miR-195, miR-320a, miR497 (all target to

E2F3), miR495 (target to E2F2) and miR-136 (target to E2F1).

Furthermore, the oncogenes NRAS and ERBB2 are up-

regulated in bladder cancer, hypothetically, due to lower of

expression of miR-28-5p and miR-125b, respectively.

Discussion

On the validation of computational methods
In general to assess the validity of a prediction method, one

could evaluate its performance on a data set where the correct

result is known for every instance, then, for example, specificities

and sensitivities can be calculated. For miRNA-mRNA prediction

methods this proves very problematic because there is not such a

data set. In addition, even experimental results may have a bias

due to the researchers’ interpretation and may have a limited

reproducibility. Furthermore, it is almost impossible to create such

a data set in the first place, because it would, for instance, involve

knockout experiments for every predicted interaction and every

non-predicted interaction. Nonetheless, one can look at the

problem from a different point of view. We stated earlier in this

manuscript that predicting miRNA-mRNA interactions is a form

of feature selection and one can at least evaluate the validity of

selected features in the sense that they can generate strong

classifiers. This does not imply that these interactions do actually

occur in biological systems, but one may at least suggest that they

are more likely to have a biological meaning. An important aspect

is that one evaluates the performance to classify unknown

instances, i.e. training sets and test sets must be separated,

otherwise a classifier could be over-fitted and learn the data by

heart. We argue that the method for the evaluation of the

performance of a predictor for miRNA-mRNA interactions as

presented by this study is more general and may be more

reasonable than calculating statistics over a data set itself or

comparing a limited number of literature results.

Validation of our method and assumptions
For our approach, CAPE RNA, following observations may

indicate its validity. The validity of interaction states is reflected in

the results of the bootstrapping analysis since interaction states are

the foundation of further steps in our approach. In addition, the

results of the PCA and cluster analysis suggest they perform more

reasonable to discriminate between the different groups of samples

than the log-normalized expression data, Figure 2, Figure 3,

Figure S1 and Figure S2. In particular, evidence for this qualitative

interpretation is reflected in the bootstrapping analysis when the

outlier is removed or reassigned, Figure 4C.

The results of the bootstrapping analysis show that a simple

model based on our approach and assumptions outperforms a

standard method for gene expression as a classifier. Furthermore,

our method is applicable to very small sample sizes, i.e. for the

prostate cancer collective a training set contains three samples for

each group and for the colon cancer collective four tumor samples

and two healthy samples.

It was our assumption that the Jaccard-index can be used as a

ranking for interactions. To examine whether there is a

relationship between the performance of classifiers and Jaccard-

indexes independently of the size of the model, we generated

models by randomly selecting a defined number of interactions

within a range of Jaccard-indexes using the bladder cancer

Figure 6. Distribution of Jaccard-indexes for the bladder cancer data set. For the whole collective (normal and tumor samples) (A) and the
group of tumor samples (invasive and non-invasive tumors) (B). Jaccard-indexes were calculated using our approach. Only Jaccard-indexes
corresponding to interactions which show a negative correlation, i.e. r#20.4, for at least one experimerntal group between normalized miRNA and
mRNA expression values are depicted.
doi:10.1371/journal.pone.0064543.g006
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training and test sets (collective I and collective II) and evaluated

their performance. Figure S4 presents evidence for our assump-

tion.

Also, instead of randomly determining relationships between

miRNAs and mRNA we used a set of putative miRNA-mRNA

interactions which has a scientific basis. Furthermore, the genes

involved in predicted interactions are enriched in cancer

pathways.

General comments on our approach
In this study, we present an approach that introduces a high

level of abstraction by classifying expression data in three different

states. Consequently, there is a loss of information. However, our

method has several advantages. As gene expression data is very

noisy data in general, the classification of data into few discrete

states makes it much more feasible to analyze. The classification

closely follows a biological assumption that there exist two groups,

one group which exhibits a low expression level and another one

which exhibits a high expression level, thus reducing the

information content to a reasonable level of abstraction. It

provides a simple way to classify miRNA-mRNA interactions into

a small number of states that can be grouped by their biological

meaning in down-regulated, up-regulated and undefined interac-

tions as direct interpretation of siRNA mechanism. Using

interaction states, individual differences between samples can be

compared for a selected set of genes. There is no other approach

known to us which provides such intuitive classifications for

individual samples.

The scoring function for the classification depends on data

coverage. Hence, outliers have almost no influence on the

classification of the expression data of the other samples. Instead

of using predefined groups, our algorithm identifies two groups,

i.e. neighborhoods of similarly expressed values, by the data itself

and gives a score which describes how much the two groups

represent the expression values for a given probe. For other

purposes, this scoring function could be generalized to multi-class

problems, e.g.

score(a,b,c,::)~
DAD

d(a,A)
z

DBD
d(b,B)

z
DCD

d(c,C)
z:::{DA\B\C\:::D

� �

: DADzDBDzDCDz:::{DA\B\C\:::Dð Þ
max DAD,DBD,DCD,:::f g

However, we are uncertain whether it would perform as well as

for a two class problem. In addition, the combinatorial complexity

increases with the number of classes. Especially, for paired data the

number of interaction states increases quadratically and one would

compromise the simplistic interpretation of those states. For

differential regulation between two groups of samples, we are only

interested in a two class problem.

Compared to most approaches based on statistical tests, e.g. a t-

test, our method does not compare mean or median values of

groups which may underestimate the regulation of single samples

and also is error-prone to outliers. Our approach evaluates

miRNA-mRNA expression data on the level of interactions. While

the evaluation of miRNA and mRNA expression data as separate

sets needs not be meaningful, one can identify reasonable

differences in regulation by examining the combined set of

miRNA-mRNA interaction states.

The examination of differential expression levels alone may be

insufficient to identify direct interactions between miRNAs and

mRNAs. On the other hand, biological systems are very complex

systems. Several miRNAs may target the same mRNA and other

factors such as transcription factors may influence the expression

of a specific mRNA. Therefore, one needs not necessarily find a

strong negative correlation between the expression levels of a

miRNA and the target mRNA. However, the identification of

even low or moderate negative correlation between miRNA and

mRNA expression increases the certainty of a predicted interac-

tion.

The augmentation of our approach by testing for negative

correlation, is a reasonable choice not to over- or underestimate

differential expression levels and direct correlation between

miRNA and mRNA expression.

Comparison to other approaches
We have compared our approach, CAPE RNA, to four related

methods, TaLasso, GenMiR++, Spearman correlation and a Meta

Table 2. Differentially regulated interactions between
healthy and tumor samples for the bladder cancer data set.

miRNA
miRNA-
expression Gene Symbol geneID

Gene-
expression

miR-200c Up ABCC9 10060 Down

miR-429 Up ABCC9 10060 Down

miR-429 Up AKAP2 11217 Down

miR-200c Up DDIT4L 115265 Down

miR-429 Up DDIT4L 115265 Down

miR-200c Up DMD 1756 Down

miR-429 Up DMD 1756 Down

miR-429 Up ZCCHC24 219654 Down

miR-429 Up FOXF1 2294 Down

miR-429 Up FYN 2534 Down

miR-200c Up MYLK 4638 Down

miR-429 Up MYLK 4638 Down

miR-429 Up NCAM1 4684 Down

miR-200c Up ROR2 4920 Down

miR-429 Up ROR2 4920 Down

miR-200c Up RAB23 51715 Down

miR-200c Up PLCL1 5334 Down

miR-429 Up PLCL1 5334 Down

miR-183 Up SOBP 55084 Down

miR-429 Up ARHGAP20 57569 Down

miR-200c Up KIAA1462 57608 Down

miR-429 Up KIAA1462 57608 Down

miR-200c Up REEP1 65055 Down

miR-429 Up REEP1 65055 Down

miR-200c Up ZEB1 6935 Down

miR-429 Up ZEB1 6935 Down

miR-429 Up C7orf58 79974 Down

miR-429 Up RECK 8434 Down

miR-429 Up DIXDC1 85458 Down

Only, interactions were selected that exhibit a negative correlation, i.e. r#20.4,
between the normalized miRNA and mRNA expression values for at least one
experimental group. Interactions with a Jaccard-index equal to 1.0 are shown.
The regulation of a gene inside the group of the bladder cancer samples
compared to the normal tissue samples is indicated.
doi:10.1371/journal.pone.0064543.t002
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analysis approach. The TaLasso web server offers an implemen-

tation of both TaLasso and GenMiR++ [55]. TaLasso is a method

based on LASSO regression whereas GenMiR++ exploits a

Bayesian learning approach [51]. Spearman correlation coeffi-

cients and the Meta analysis approach were computed using the

Magia2 web server [46]. For TaLasso, GenMiR++ and Spearman

correlation paired data is analyzed, but no information about

different groups of samples, e.g. healthy tissue and disease samples,

can be specified. The Meta analysis approach as implemented in

Magia2, does not consider paired sample labels, but needs

information about the different groups which the samples belong

to. The Meta approach calculates significant differential expres-

sion between the given groups of samples separately for each

miRNA and mRNA using LIMMA [69] and identifies oppositely

expressed miRNA-mRNA pairs by a chi-square test. Other tools

for integrative analysis of miRNA/mRNA expression data include

miRConnX [49] which computes different correlation coefficients

and MMIA [47] which uses a similar method compared to the

Meta approach, mentioned above, based on a t-test. In addition,

Magia2 offers a mutual information based approach, but this

approach is limited to a sample size equal to or larger than 20,

thus, it could only have been applied to one of the two analyzed

collectives.

To compare the four different methods mentioned above and

our approach, we formulated a simple problem: given a data set of

paired miRNA/mRNA expression values and two known groups

of samples give us the 500 most promising candidates for

interesting miRNA-mRNA interactions. For this purpose, we

analyzed the collective of healthy tissue samples and bladder

tumor samples (collective I) and the collective of invasive and non-

invasive bladder cancer samples (collective II).

Although similar sets of potential interactions were used, the

results of this comparison are clearly biased since the set of

putative interactions differ for different approaches. The Meta

analysis and correlation based analysis were performed with the

same set of interactions. For TaLasso and GenMiR++ the same set

of interactions was used, but for our approach another set of

interactions was used. This is a general problem when different

tools for the identification of miRNA-mRNA interactions are

compared.

Our results suggest that there is little overlap between

predictions for the each best 500 interactions when different

approaches are applied (Figure 9, Figure S5 shows the intersec-

tions between all predicted interactions). TaLasso and GenMiR++
share 176 (35.2%) and 133 (26.6%) interactions in the top 500 for

collective I and collective II, respectively. Surprisingly, there are

only seven (1.4%) to nine (1.8%) interactions overlap between

interactions identified by correlation and TaLasso or GenMiR++.
Our approach has most interactions in common with those

identified by correlation, 102 (20.4%) and 58 (11.6%) interactions,

and by the Meta approach, 43 (8.6%) and 39 (7.8%) interactions,

but shares only five (1.0%) to twelve (2.4%) interactions with

TaLasso and GenMiR++ in the top 500 (the list of the shared

interactions is found in Table S8).

As for GenMiR++, TaLasso and Spearman correlation the

data set is analyzed as a whole, they do not take differential

expression between two groups into account. Therefore, we do

not expect them to exhibit the same results as a method that

considers differential expression does. Compared to our method,

the Meta approach considers differential expression between

groups, but does not analyze paired miRNA and mRNA

expression per sample. Since we apply correlation as a filtering

criterion and our method may show some similarities to

correlation in general, we expected an overlap between analysis

based on correlation and our approach. However, there are

several differences between both methods. We calculate

correlation for each experimental group separately and not

over the data set as a whole which may be more reasonable

when one considers a complex pattern of de-regulation and

perhaps also loss or gain of function. Obviously, the main

difference is our procedure in general. We consider differential

expression and evaluate to what extent the partition of samples

into expected classes resembles the defined groups. Concerning

the relationship between all samples, our approach is less strict

than correlation over a data set as a whole, but it emphasizes

on the distribution of each sample based on paired miRNA-

mRNA expression.

In conclusion, most approaches address similar problems, but

not a two class problem for differential miRNA induced

regulation, e.g. between healthy and disease tissue samples.

Table 3. Differentially regulated interactions for non-invasive and invasive bladder tumor tissue samples.

miRNA miRNA-expression Gene Symbol geneID Gene-expression Jaccard-index

miR-26b Down DEPDC1 55635 Up 0.76

miR-29c Down C20orf11 54994 Up 0.75

miR-29b Down DOLPP1 57171 Up 0.75

miR-26b Down GNPNAT1 64841 Up 0.75

miR-29b Down PXDN 7837 Up 0.75

miR-29c Down PXDN 7837 Up 0.75

miR-29b Down MEX3B 84206 Up 0.75

miR-29c Down MEX3B 84206 Up 0.75

miR-26b Down NUP153 9972 Up 0.75

miR-7 Up NRSN1 140767 Down 0.72

miR-30b Down RTKN2 219790 Up 0.72

miR-24 Down CDK1 983 Up 0.72

Only, interactions were selected that exhibit a negative correlation, i.e. r#20.4, between the normalized miRNA and mRNA expression values for at least one
experimental group. An outlier has been removed before this analysis. Interactions with a Jaccard-index .0.70 are shown (rounded to the second decimal). The
regulation of a gene inside the group of the invasive bladder cancer samples compared to the group of non-invasive cancer samples is indicated.
doi:10.1371/journal.pone.0064543.t003
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Even when methods are applied that address the same problem,

there is much less overlap between the top ranked interactions

than one might have expected. Although there is a bias

introduced by the set of potential interactions, this observation

remains valid, e.g. when TaLasso and GenMiR++ are

compared which share the same set of interactions. Correlation

analysis, TaLasso and GenMiR are interesting methods to

identify interactions in general or to analyze time series data

while methods like the Meta approach most likely do not put

enough emphasis on the regulation of individual samples. With

CAPE RNA, we present a method that combines both

differential expression and paired miRNA-mRNA regulation

per sample. None of the methods or tools yields an individual

classification of each sample similar to the interaction states

based on our approach. Our method to evaluate the

distribution of samples based on the agreement between

expected and predefined (experimental) groups is unique among

those approaches, as far as we know.

Important differentially regulated interactions in bladder
cancer
Among the highest ranked differentially regulated interactions

we found several genes which are known to be involved in bladder

tumor progression. For instance, the MMP repressor RECK (in

our analysis hypothetically down-regulated in cancer by miR-429),

which decrease was found associated with more invasive forms of

bladder cancer [4].

One family of miRNAs appears to be most important for the

differential regulation in bladder cancer, the family of miR-200b/c

and miR-429. Other highly ranked interactions (Jaccard-index

.0.8, 149 interactions in total), include miR-1,miR-143, miR-145,

miR-183, miR-19a, miR-19b, miR-200a, miR-200b, miR-200c,

miR-204,, miR-222, miR-23b, miR-33a, miR-425, miR-429.

There are 88 miRNAs involved in 2480 interactions with a

Jaccard-index equal to or higher than 0.4, and 25 miRNAs

involved in 252 interactions with a Jaccard-index of at least 0.7.

These numbers show us that there is a large network of

Figure 7. FGF3R pathway: detected miRNA-mRNA interactions in normal urothelium (N), non-invasive- (nT) and invasive (iT)
bladder tumor tissue samples. Interactions between miRNAs (triangles) and mRNAs (boxes), which have a Jaccard-index $0.4 that exhibit a
negative correlation, i.e. r#20.4, between the normalized miRNA and mRNA expression values for at least one experimental group, are shown (blue
edges). The black edges indicated the general signal cascade. Mean expression status of the analysed miRNA mRNAs interactions were indicated (red
indicates up regulation and green down regulation).
doi:10.1371/journal.pone.0064543.g007
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differentially regulated potential interactions of which several

different interactions may play in important role for tumorgenesis.

To distinguish invasive from non-invasive bladder cancer, 319

interactions with a Jaccard-index equal to or higher than 0.4

remain involving 34 miRNAs, but there are just twelve interac-

tions with a Jaccard-index equal to or higher than 0.7 that

comprise six miRNAs, namely miR-24, miR-26b, miR-29b, miR-

29c, miR-30b and miR-7. These six miRNA are the most

promising candidates to investigate tumor progression to invasive

bladder cancer based on our examination.

miRNA-mRNA interactions in selected pathway
miRNA-mRNA interactions in two selected pathways, were

analyzed in more detail. First the FGF3R pathway as defined in

the review by Fendler et. [12] and second the bladder cancer

pathway provided from KEGG [68]. In the FGF3R pathway,

DAPK1 mRNA coding a serine/threonine kinase whose expres-

sion is required for interferon-gamma-induced apoptosis. Al-

though, DAPK1 promoter hypermethylation was previously

described as an early alteration leading to bladder cancer [70],

but no correlation between promoter methylation and mRNA

expression was found [71]. In our dataset, DAPK1 mRNA was

found up regulated in the tumor tissues, which is also supported

from previous expression profiling in bladder cancer [72] (GEO-

data: GDS1479). Interestingly, the DAPK1 expression is strongly

regulated in our model by miR-26a and miR-340, respectively

(Figure 7). We suspect, that the postulated hypermethylation-

mediated reduction of DAPK1 mRNA expression in bladder

cancer is more than compensated by the mRNA-miRNA

interfering effect caused by the reduction of DAPK1 interfering

miRNAs. The role of DAPK1 as an inactivated tumor suppressor

gene in bladder cancer should be reconsidered. Another player in

the FGF3R pathway is protein kinase C, represented by several

different isoforms (Figure 7). In accordance to previous publica-

tions [73,74] we found PKRCA and PKRCB mRNA down

regulated in bladder cancer. We suppose that PKRCA mRNA

reduction was caused by miR200c and PKRCB mRNA reduction

by miR-494. Further, we found mRNA-miRNA interactions

between PKRCE and two different miRNAs (miR-182, miR-

200a).

Figure 8. KEGG bladder cancer pathway: calculated miRNA-mRNA interactions differences between normal urothelium (N) and
non-invasive- (nT) and invasive (iT) bladder tumor tissue samples. Interactions between miRNAs (triangles) and mRNAs (boxes), which have
a Jaccard-index $0.4 that exhibit a negative correlation, i.e. r#20.4, between the normalized miRNA and mRNA expression values for at least one
experimental group, are shown (blue edges). The black edges indicated the general signal cascade adopted from KEGG bladder cancer pathway.
Mean expression status of the analysed miRNA-mRNA interactions are indicated (red indicates up regulation and green down regulation).
doi:10.1371/journal.pone.0064543.g008
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In KEGG bladder cancer pathway, the oncogenes NRAS and

ERBB2 were found up-regulated, hypothetically, due to lower of

expression of miR-28-5p and miR-125b, respectively. The up-

regulation of cyclin D1, which is involved in cell cylcle progression,

is probably promoted by down regulation of miR-497. The Cyclin

D/CDK4 complex phosphorylates pRB allowing it to disassociate

from the transcription factor E2F. As previously reported [75], we

also detected E2F3 as over expressed in bladder cancer. In our

model miR-30a, miR-152, miR-195, miR320a and miR-497

promote the expression of E2F3, respectively (Figure 8).

Limitations
In this study, the identification of interactions is limited by the

used set of validated and predicted miRNA-mRNA interactions

and by our approach in the sense that we only consider probes

which exhibit two distinct expression levels based on our

definition. Also, the certainty of identified differentially regulated

interactions depends on the number of samples and the

distribution of samples over the two groups. Based on the

definition of our scoring function, this approach is unlikely to

perform well if the number of samples differs too much between

the two groups. Although we used negative correlation between

miRNA and mRNA expression as filtering criterion, one cannot

rule out the influence of other factors on gene expression such as

transcription factors.

While the identified interactions present many interesting

candidates for biomarkers, the underlying mechanisms can only

be understood partially by the examination of a limited of subset of

genes. The analysis of the FGF3R and bladder cancer pathway

indicates a few differentially regulated switches. A more elaborate

understanding is adjourned to future examinations.

Supporting Information

Figure S1 Spread of samples for the bladder cancer
data set using normalized expression values. The first two
principal components (PC) of the normalized data are shown for

the collective of all samples (A and C) and the collective of tumor

samples (B and D) using normalized miRNA (A and B) or mRNA

(C and D) expression data, respectively. Circles refer to samples of

the control group, triangles are samples revealed invasive tumors

and crosses refer to samples with non-invasive tumors.

(TIF)

Figure S2 Hierarchical clustering of the bladder cancer
data set using normalized expression values. Hierarchical

clustering of the normalized expression data was performed using

Ward’s method for the collective of all samples (A and C) and the

collective of tumor samples (B and D) using normalized miRNA (A

and B) or mRNA (C and D) expression data, respectively.

(TIF)

Figure S3 Mean specificities and sensitivities for the
colon and prostate cancer data. Models for the colon

collective (A) and prostate collective (B) based on our approach,

CAPE RNA, were generated from training sets by selecting all

interactions with a Jaccard-index equal to or higher than a

threshold. Prediction Analysis of Microarrays for R was used to

train models for the colon tissue samples based on miRNA (C) and

mRNA expression (D), as well as for the prostate collective based

on miRNA (E) and mRNA (F) expression. Models were generated

with different thresholds. A-F) illustrate the mean specificities and

mean sensitivities to classify unknown test sets.

(TIF)

Figure S4 Mean specificities and sensitivities for the
bladder cancer data set by randomized models. Models

were generated by randomly picking a defined of interactions

within a specific range of Jaccard-indexes using our approach,

CAPE RNA. The performance of different models was compared

to classify unknown test sets: a) specificities and b) sensitivities to

discriminate tumor samples from healthy tissue samples, c)

specificities and d) sensitivities to discriminate invasive tumor

samples from non-invasive tumor samples.

(TIF)

Figure 9. Venn diagram of predicted miRNA-mRNA interactions in bladder cancer derived from five different methods of
integrative analysis (TaLasso, GenMiR++, Spearman correlation, a Meta analysis approach and our new algorithm CAPE RNA). Two
different collectives were analysed: (A) the entire bladder cancer dataset of normal (n = 8) and tumor samples (n = 16) and (B) only the collective of
invasive (n = 8) and non-invasive (n = 8) bladder cancer tumor samples. The Venn diagram illustrates the intersection between the top 500 predicted
miRNA-mRNA interactions by each method.
doi:10.1371/journal.pone.0064543.g009
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Figure S5 Venn diagram of predicted miRNA-mRNA
interactions in bladder cancer derived from five differ-
ent methods for integrative analysis (TaLasso, Gen-
MiR++, Spearman correlation, a Meta analysis ap-
proach and our new algorithm CAPE RNA). Two

different collectives were analysed: (A) the entire bladder cancer

dataset of normal (n = 8) and tumor samples (n = 16) and (B) only

the collective of invasive (n = 8) and non-invasive (n = 8) bladder

cancer tumor samples. The number of all predicted miRNA-

mRNA interactions by each method were visualized in the Venn

diagram.

(TIF)

Table S1 List of all selected differentially regulated
interactions and their Jaccard-indexes for all samples
for the bladder cancer data set. Only, interactions were

selected that exhibit a negative correlation, i.e. r#20.4, between

the normalized miRNA and mRNA expression values for at least

one experimental group.

(CSV)

Table S2 List of all selected differentially regulated
interactions and their Jaccard-indexes for non-invasive
and invasive bladder tumor samples. Only, interactions

were selected that exhibit a negative correlation, i.e. r#20.4,

between the normalized miRNA and mRNA expression values for

at least one experimental group.

(CSV)

Table S3 Spearman correlation coefficients of all
interactions for all samples of the bladder cancer data
set. Only, interactions were selected that exhibit a negative

correlation, i.e. r#20.4, between the normalized miRNA and

mRNA expression values for at least one experimental group.

(CSV)

Table S4 Spearman correlation coefficients of allinter-
actions for non-invasive and invasive bladder cancer
tissue samples. Only, interactions were selected that exhibit a

negative correlation, i.e. r#20.4, between the normalized

miRNA and mRNA expression values for at least one experi-

mental group.

(CSV)

Table S5 Functional annotation clustering of selected
mRNAs using DAVID v6.7. Starting with the whole tissue

collective (8 normal and 16 tumor tissues) we obtained 2480

miRNA-mRNA interactions with a JI .=0.4. The corresponding

1459 mRNAs of these interaction pairs were analyzed by DAVID

software with standard classification stringency. 28.4% (414

mRNAs) of the analyzed mRNAs could be matched into the

Kegg pathways.

(PDF)

Table S6 Differentially regulated interactions for all
samples inside the FGF3R pathway. Only, interactions were

selected that exhibit a negative correlation, i.e. r#20.4, between

the normalized miRNA and mRNA expression values for at least

one experimental group. Interactions with a Jaccard-index $0.40

are shown. The regulation in bladder cancer tissue samples

compared to normal tissue samples is indicated.

(PDF)

Table S7 Differentially regulated interactions for all
samples inside the bladder cancer pathway. Only,

interactions are selected that exhibit a negative correlation, i.e.

r#20.4, between the normalized miRNA and mRNA expression

values for at least one experimental group. Interactions with a

Jaccard-index $0.40 are shown. The regulation in bladder cancer

tissue samples compared to normal tissue samples is indicated.

(PDF)

TableS8 List of the shared interactions between our
approach CAPE_RNA and each of the other used
prediction methods. Two different collectives were analysed:

the entire bladder cancer set of normal (n = 8) and tumor samples

(n = 16) and the collective of invasive (n = 8) and non-invasive

(n = 8) bladder cancer tumor samples without normal samples.

Each of the 500 best interactions were compared. A) Intersection

TaLasso - CAPE RNA; B) Intersection GenMiR++ - CAPE RNA;

C) Intersection Spearman correlation - CAPE RNA: D) a Meta

analysis approach – CAPE RNA.

(CSV)
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