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Re-FIT-ting Colorectal Cancer Screening During and
Beyond COVID
See “Noninvasive colorectal cancer screening
tests help close screening gaps during
coronavirus disease 2019 pandemic,” by Myint A,
Roh L, Yang L, et al, on page 712.
ehind the tragic global crisis caused by the response
Bto COVID-19, there lies another, silent, health crisis:
that of the undiagnosed cancers and unattended chronic
diseases. Around the world, routine ambulatory care and
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screening have been put on the back burner, or into ever-
expanding backlogs which are expected to linger for
several years to come.

While it is impossible to fully measure the impact of the
pandemic response on cancer burden at this time, several
modeling studies indicate that even short-term in-
terruptions of screening may have significant consequences.
In the United Kingdom, a national population-based
modeling study estimated that the delay in colorectal can-
cer (CRC) diagnosis induced by a 12-month disruption in
screening and usual care could give rise to up to 16.6%
more CRC-related deaths at 5 years.1 Another modeling
study of organized fecal immunochemical test (FIT)–based
screening predicted that much of the excess mortality they
found could be avoided if interventions to “catch up” on
missed screening are undertaken in the near future,2 which
would require additional FIT and colonoscopy resources.

With every day of this pandemic, every wave, and every
return to lockdown, the tension between this overt COVID
crisis and the growing, silent, pandemic of unattended care
and unaddressed diagnoses grows. Confronted with these
pressures, the need to find efficiencies within the system is
imperative. Solutions are required imminently, but it is
predicable that the effects of the COVID-19 response will
remain with us for a long time and that we may not ever
return to the pre-COVID status quo. In other words, the
delivery of GI care will have to adapt to a new normal.

In the United States, the National Cancer Institute’s
Population-Based Research to Optimize the Screening Pro-
cess (PROSPR) consortium estimated that CRC screening
rates dropped by 82% in 2020.3 How have health organi-
zations reacted to the abrupt and drastic disruption, and are
there examples of adaptability and innovation that we can
learn from?

In the United States Veterans Affairs (VA) hospitals,
multilevel interventions were performed to help alleviate
the consequences of the March 2020 directive to cease all
elective and nonurgent procedures.4 Guidances to primary
care and endoscopy services were promptly released to
encourage the use of FIT instead of colonoscopy for CRC
screening and on the prioritization of endoscopic proced-
ures. Preexisting IT tools were also adapted to default to FIT
instead of colonoscopy as first-line CRC screening test and
to assign a priority level to each postponed or incoming
request for procedure; the system was also able to measure
the backlog and categorize it by indication and priority level.

This month’s issue of Gastroenterology features another
example of prompt service adaptation. Myint et al demon-
strate how purposefully encouraging the use of stool-based
CRC screening modalities among patients and providers of
the University of California Los Angeles (UCLA) health sys-
tem allowed screening to continue despite the temporary
cessation of elective endoscopies.5 In the months following
resumption of elective endoscopy, the authors also observed
a dramatic increase in overall screening test utilization, with
a predominant rise in utilization of noninvasive screening
modalities (ie, FIT and stool DNA) whereas the use of co-
lonoscopy approached but did not match pre-pandemic
volumes.
These examples highlight that, in this new reality
imposed by the COVID pandemic, the ideal CRC screening
test is one that does not require a procedure or a visit to a
health facility, that is easy to use, and that is accessible and
yet effective, such as FIT. In fact, in response to the COVID
pandemic, the PROSPR consortium recommended
increasing the use of established methods of remote testing,
such as mailed FIT kits, to improve outcomes of screening
and decrease disparities.3

Not only could FIT allow screening to continue during
the pandemic, it also represents an effective strategy to
debulk the endoscopy backlog. Tinmouth et al have shown
that redirecting requests for either average-risk colonos-
copy or surveillance in people with low-risk adenoma to FIT
can substantially reduce the colonoscopy backlog and its
recovery time.6 To achieve a similar effect, colonoscopy
capacity would need to exceed mean historical volumes by
as much as 45%. This approach effectively “converts” pro-
cedures with a low yield for advanced colorectal neoplasia
(such as average-risk colonoscopy) into “high-yield” ones, as
about one-third of colonoscopies performed in FIT-positive
individuals will reveal advanced colorectal neoplasia,
including CRC in about 1 in every 19 such colonoscopies.7

In many parts of the world, the pandemic has strained
health care systems which were already saturated, pushing
innovation and rapid changes. It has also exposed blatant
flaws and inefficiencies that may have been tolerated in the
past and which may no longer be considered acceptable. It
behooves us to critically appraise the effectiveness of the
millions of procedures performed each year.8 The realiza-
tion that CRC screening through a FIT-based model is a
safer, more accessible, more equitable evidence-based
model than a colonoscopy-based model, as made obvious
during the pandemic, is likely to drive permanent changes in
the delivery of GI care. One can expect that the nature of
colonoscopy will evolve to become primarily a diagnostic
and interventional procedure, rather than a screening
modality.8,9

The ease and rapidity by which this change occurs
within a health care system will likely depend on its level of
organization, integration, and the adequacy of its IT infra-
structure, as illustrated by the examples from the VA hos-
pitals and UCLA health system, which were both able to
swiftly and effectively implement changes to reduce the
impact of endoscopy closures.4,5

Opportunities abound to create centralized processes for
evidence-based triage, prioritization, and procedure booking
with the use of a single queue.10 In such models, the con-
version of referrals for screening colonoscopy may easily be
redirected to an FIT test, and referring physicians may be
educated about the benefits of this new strategy. This pro-
motes equity and reduces the use of scarce endoscopy re-
sources for procedures of questionable benefit, or
procedures that could safely be avoided and substituted for
noninvasive tests, such as FIT for CRC screening.

CATHERINE DUBÉ
Prevention and Cancer Control, Ontario Health (Cancer Care
Ontario), Toronto, Ontario, Canada and
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More Testosterone, Less Aggression.At Least in the Stomach
See “Glucocorticoids and androgens protect
from gastric metaplasia by suppressing group 2
innate lymphoid cell activation,” by Busada JT,
Peterson KN, Khadka S, et al, on page 637.

hronic inflammation contributes to the development
Cof several types of cancer, including gastric cancer.
Gastric cancer is the fifth most common neoplasm and
fourth leading cause of cancer-associated deaths.1 Although
many people develop chronic gastritis as a result of infec-
tion with Helicobacter pylori and autoimmune gastritis, only
a subset of those affected will develop gastric cancer.2 In-
dividuals who develop atrophy and metaplasia have a
much higher risk of developing gastric cancer than those
with mild gastritis. In the stomach, at least 2 types of
metaplasia develop, spasmolytic polypeptide-expressing
metaplasia and intestinal metaplasia, and both may be
precursors of gastric cancer.3,4 There are many risk factors
that influence the progression from gastritis to gastric
cancer, including infection with pathogenic strains of H
pylori, genetics, environment, and chronic inflammation.5,6
The article by Busada et al7 featured in this issue of
Gastroenterology investigates the role of androgens and
glucocorticoids in the development of gastritis and gastric
metaplasia.7

The fact that sex hormones influence immune cell
function and inflammation may account for differences in
inflammatory diseases that develop in males and females.
For example, it is well-established that the incidence of
many autoimmune diseases is much higher in females than
males.8,9 Glucocorticoids and androgens are reported to
have anti-inflammatory effects, so differences in the levels of
either or both may contribute to inflammatory diseases.9–12

Busada et al7 studied the role of an androgen (testosterone)
in protecting from the development of gastritis and gastric
metaplasia. To induce disease, cohorts of male and female
mice were adrenalectomized (ADX) to remove endogenous
glucocorticoids, leading to gastritis. By 2 months of age,
females developed gastritis and gastric metaplasia,
whereas male mice remained normal. To investigate
whether testosterone was responsible for protecting male
mice from disease, male mice underwent ADX and a
subset were castrated to remove sex hormones. ADX and
castrated males developed gastritis that appeared identical
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