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Protein functions associated with biological activity are precisely regulated by both tertiary structure and 
dynamic behavior. Thus, elucidating the high-resolution structures and quantitative information on in-solution 
dynamics is essential for understanding the molecular mechanisms. The main experimental approaches for 
determining tertiary structures include nuclear magnetic resonance (NMR), X-ray crystallography, and cryogenic 
electron microscopy (cryo-EM). Among these procedures, recent remarkable advances in the hardware and 
analytical techniques of cryo-EM have increasingly determined novel atomic structures of macromolecules, 
especially those with large molecular weights and complex assemblies. In addition to these experimental 
approaches, deep learning techniques, such as AlphaFold 2, accurately predict structures from amino acid 
sequences, accelerating structural biology research. Meanwhile, the quantitative analyses of the protein dynamics 
are conducted using experimental approaches, such as NMR and hydrogen-deuterium mass spectrometry, and 
computational approaches, such as molecular dynamics (MD) simulations. Although these procedures can 
quantitatively explore dynamic behavior at high resolution, the fundamental difficulties, such as signal crowding 
and high computational cost, greatly hinder their application to large and complex biological macromolecules. In 
recent years, machine learning techniques, especially deep learning techniques, have been actively applied to 
structural data to identify features that are difficult for humans to recognize from big data. Here, we review our 
approach to accurately estimate dynamic properties associated with local fluctuations from three-dimensional 
cryo-EM density data using a deep learning technique combined with MD simulations.  
 
Key words:  machine learning, 3D-CNN, single particle analysis, big data, allostery 
 
 
 
 
 
 
 
 
 
 

The experimentally derived structural data of the macromolecules reflect the conformational states found in the 
samples. Three-dimensional cryo-EM density data implicitly contain dynamics information of the target molecule 
as it is reconstructed from numerous particle images representing variable conformations attributed to the in-
solution dynamics properties. This indicates the potential of cryo-EM data for quantitative investigation of 
dynamics. A deep learning technique, three-dimensional convolutional neural network, combined with molecular 
dynamics simulations formulates the relationship between the density data and the quantitative dynamics 
information, allowing the extraction of the dynamics properties only from the cryo-EM density maps. 

◀ Significance ▶ 
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Introduction  

 
Protein function is precisely regulated by its three-dimensional (3D) structure and dynamic properties. Thus, it is 

important to elucidate both features at the atomic level to understand the molecular mechanisms of protein functions. 
High-resolution 3D structures are experimentally determined by X-ray crystallography, cryogenic electron microscopy 
(cryo-EM), and nuclear magnetic resonance (NMR). Meanwhile, quantitative analysis of in-solution dynamic behavior 
requires other experimental or computational approaches, such as NMR, hydrogen-deuterium exchange mass 
spectrometry (HDX-MS) [1], and molecular dynamics (MD) simulations [2]. Their complementary use uncovers detailed 
structural features associated with protein function (Fig. 1). Among the approaches for experimentally investigating 
structural properties and with recent developments in hardware and analysis techniques, cryo-EM has increasingly 
uncovered novel 3D structures at atomic or near-atomic resolution, particularly those of large and complex 
macromolecules, accelerating the development of structural biology [3–6]. Nevertheless, quantitative analysis of the 
dynamics behavior of such large and complex molecules through conventional experimental and computational 
approaches is substantially difficult owing to fundamental limitations, such as significant signal crowding and extremely 
high computational cost. Therefore, the quantitative analysis of the dynamics behavior of large and complex 
macromolecules targeted by cryo-EM is an important issue in current structural biology research. 

 

 

The structural data obtained by the experimental and computational approaches are collected and maintained in 
databases (Table 1). Protein Data Bank (PDB) contains structural models of biological macromolecules [7]. Electron 
Microscopy Public Image Archive (EMPIAR) [8] and Electron Microscopy Data Bank (EMDB) [9] contain cryo-EM 
image data and 3D density maps reconstructed from them, respectively. Biological Magnetic Resonance Bank (BMRB) 
is a database of NMR data for biological macromolecules [10]. Biological Structure Model Archive (BSM-Arc) is a 
recently developed database that publishes structural information obtained by computational methods, such as MD 
simulations and homology modeling methods [11]. These databases are publicly available and facilitate research in 
structural biology. 

Figure 1  Procedures for investigating protein functions. Protein function is investigated from both aspects of the tertiary 
structure and the dynamics.  

Table 1  Databases of structural data associated with biological macromolecules 

Database Contents URL Ref 
PDB Experimentally determined 3D structures https://www.rcsb.org/ [7] 

and computed models. 
EMDB Cryo-EM density maps and tomograms. https://www.ebi.ac.uk/emdb/ [8] 
EMPIAR Raw images in cryo-EM investigations. https://www.ebi.ac.uk/empiar/ [9] 
BMRB NMR data in investigations of biological  https://bmrb.io/ [10] 

macromolecules and metabolites. 
BSM-Arc Structural data obtained by computational  https://bsma.pdbj.org/ [11] 

works. 
AlphaFold DB Atomic models predicted by AI system https://alphafold.ebi.ac.uk/ [12,13] 
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Structural studies using machine learning (ML) techniques, particularly deep learning (DL) techniques, have been made 
possible with the availability of the accumulated structural data, and many structural studies combined with these 
techniques have been reported in recent years. Among these studies, AlphaFold2 [12,13] is one of the most impressive. 
By applying DL techniques to the structural data in PDB and the primary sequence information, AlphaFold2 has achieved 
highly accurate predictions of 3D protein structures. DL techniques have also been intensively applied to cryo-EM data, 
which have increasingly accumulated due to recent technical breakthroughs. cryoDRGN [14] with an image encoder–
volume–decoder architecture reconstructs heterogeneous cryo-EM maps from single-particle images. Topaz-Denoise 
[15] is a noise reduction method that uses an ML framework, Noise2Noise [16], and has been shown to improve the SNR 
of raw images by approximately 100 times. Emap2sec [17] successfully estimated secondary structure information from 
intermediate-resolution 3D cryo-EM maps using a 3D-convolutional neural network (CNN) [18–20], which shows high 
performance in object detection and classification in 3D images [21–23]. These studies and other DL techniques [24] 
indicate that ML approaches for finding features hidden in big structural data have become a powerful tool in structural 
biology research.  

Here, we introduce our recently developed DL-based approach, Dynamics Extraction From cryo-EM Map (DEFMap), 
for predicting dynamic information only from cryo-EM 3D density maps [25]. This paper is an extended version of a 
Japanese review [26]. 
 
Dynamic Properties Hidden in Cryo-EM 
 

In cryo-EM single-particle analysis (SPA) [3,27,28], a 3D density map is reconstructed using a large number of single-
particle images of biological macromolecules found in the micrograph (Fig. 2). Because the specimen is prepared by 
rapidly freezing protein solutions, single-particle images represent various conformational states found in the solution. 
Therefore, the reconstructed 3D density maps are reflected by the dynamics behavior, in other words, the dynamics 
information is hidden in the density maps; that is, while the density map intensities of the rigid regions (e.g., protein 
interior forming the hydrophobic core) are strong, the intensities of flexible regions (e.g., loop regions exposed on the 
molecular surface) tend to be weak because the various conformational states are averaged (Fig. 2). It is generally 
recognized that such a relationship exists between map intensities and protein dynamics. However, it is difficult to 
quantitatively estimate the dynamics properties only from the map intensities as these intensities are affected by several 
factors other than dynamics, such as local denaturation during sample preparation and preferred particle orientation. In 
fact, the correlation between the dynamics properties determined by MD simulations and the raw map intensities at the 
corresponding regions was relatively poor (Fig. 3A, left panels). Thus, other methods, such as HDX-MS and MD 
simulations, have been additionally applied for the quantitative analysis of protein dynamics. 

 
 
 

 

Figure 2  Overall workflow to reconstruct 3D cryo-EM maps. In the single particle analysis, 3D cryo-EM maps are 
reconstructed from a vast number of particle images representing biological macromolecules. The specimens are 
prepared by rabidly freezing the protein sample solution.  
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Developing a 3D CNN Model to Extract Dynamics Properties from Cryo-EM Maps 
 

DEFMap formulates the relationship between the density data of the cryo-EM map and the corresponding protein 
dynamics properties with a supervised learning framework utilizing a 3D CNN. To achieve this, many datasets are 
required for the model training. The 3D cryo-EM maps used as explanatory variables are available in EMDB. However, 
the database containing the corresponding dynamics information used as objective variables is not available. In this study, 
dynamics data were generated using MD simulations with the program GROMACS [29]. The initial structures for the 
simulations were prepared utilizing the experimentally determined atomic coordinates deposited in PDB [7]. The 
disordered regions containing less than 7 residues were modeled and other non-natural termini were capped with acetyl 
or formyl groups. As target proteins used for the training, we selected 25 proteins based on the following criteria: (1) 
proteins with relatively small molecular weights and soluble nature for convenience of the MD simulations; and (2) 
proteins whose 3D density maps were determined with a resolution better than 4.5 Å. 

Based on the idea of predicting the local dynamics properties in DEFMap, the local density data centered on the position 
of the existing heavy atoms in the corresponding atomic model were extracted from the overall 3D maps as subvoxels 
with grid lengths of 15 Å. As a preprocessing to efficiently train the model, a 5 Å low-pass filter and unification of the 
grid width (1.5 Å/grid) were applied to the downloaded cryo-EM maps (Fig. 4). After performing data augmentation by 
rotating the subvoxels by 90 ° in the xy, xz, and yz planes, 4,249,300 input datasets were prepared. The logarithm of the 
root-mean square fluctuation (RMSF), which represents the atomic fluctuations from the averaged positions in the MD 
trajectories with a length of 30 nsec, was used as the dynamics information (Fig. 4). The 3D CNN model trained using 
the prepared datasets quantitatively predicts the local dynamics properties in a regression manner only from the 3D cryo-
EM map. 

The performance of the constructed model was evaluated by a leave-one-out cross-validation method, in which one of 
the 25 proteins was used as a test dataset and the remaining 24 were used as training datasets. The correlations between 
the predicted values and the dynamics were evidently improved compared with those calculated from the raw map 

Figure 3  Correlation of MD-derived dynamics (DynamicsMD) with raw map intensities, the derived local resolution 
estimates, and the values predicted by DEFMap (DynamicsDEFMap). (A) Improvement of the correlations of raw map 
intensities with DynamicsMD using DEFMap. Correlation plots for raw map intensities (left panels) and DynamicsDEFMap 
(right panels) with DynamicsMD are shown along with their corresponding regression lines (orange). Each point 
represents the residue-specific values which are calculated by averaging the values over each residue. r denotes the 
correlation coefficients. (B) Comprehensive comparison of the correlation coefficients for DynamicsDEFMap with those 
for raw map intensities and the derived local resolution estimates. The correlation coefficients are calculated against 
DynamicsMD. Each point represents the individual cryo-EM maps used in the evaluations and the relationships with raw 
map intensities and the local resolution estimates are colored by orange and navy, respectively. Regarding local 
resolution estimates, 10 out of 25 datasets were excluded from the plots because they exhibited inverse correlations. The 
y = x line is represented by a black dashed line. 
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intensities (Fig. 3A). The mean (± variance) of the correlation coefficient r obtained in the 25-fold cross validation was 
0.665 (± 0.124), whereas that calculated from the raw map intensities and the local resolution estimates, which are 
conventionally used as indices of the dynamics in cryo-EM analyses [30,31], was 0.459 (± 0.179) and 0.510 (± 0.091), 
respectively (Fig. 3B). This indicates that DEFMap successfully extracted the patterns associated with the dynamics 
properties from the cryo-EM density data. While the present DL-based method should provide similar information as 
local resolution estimates, DEFMap was found to capture the dynamics-associated features better than local resolution 
estimates on the current datasets. This advantage may be attributed to the supervised learning framework, which enables 
the model to learn a large amount of density data derived from multiple proteins, i.e., big data. 

 

 

Performance of DEFMap Against External Datasets 
 

Because DEFMap learns a large scale of the local features found in cryo-EM maps, the constructed model is expected 
to show high generalization performance for external data not used in the training. To confirm the performance against 
the external datasets, we predicted the dynamics for three newly selected cryo-EM data (EMD-4241/6FE8 [32], EMD-
7113/6BLY [33], and EMD-20308/6PCV [34]). The predicted values for all cases agreed well with the MD-derived 
dynamics values with correlation coefficients r of 0.727, 0.748, and 0.711, respectively, indicating that DEFMap can 
make accurate predictions in external datasets (Fig. 5A, left panels). Mapping the predicted values onto the 3D structures 
showed that DEFMap could successfully capture the general structural features, such as the rigidity of the protein interiors 
and the flexibilities of the regions exposed to the bulk solvent, as well as the MD simulations (Fig. 5A, right panels). It 
should be noted that the prediction performances gradually declined as the overall resolution of the density maps worsened, 
and DEFMap was applicable to maps with a resolution of up to approximately 6–7 Å (Fig. 5B). This can be explained by 
the loss of detailed local structural information as the resolution decreases. Because the local resolutions of cryo-EM 
maps are known to vary widely across the molecule, the prediction results for regions with extremely low local resolution 
should be carefully interpreted.  

It is important to verify the predicted values with the experimentally determined dynamics properties because DEFMap 
learns computationally calculated dynamics information. It is therefore favorable, the dynamic data determined by HDX-
MS are publicly available for one of the external datasets used in the evaluation: EMD-20308/6PCV [34]. We compared 

Figure 4  Schematic diagram of dataset preparation and learning in DEFMap. The dynamics information, the logarithm 
of RMSF, are generated by MD simulations, of which initial structures were modeled from the atomic coordinates 
downloaded from PDB (the upper workflow). The preprocessed cryo-EM density data obtained from EMDB are used 
as inputs of the neural network composed of three 3D convolutional layers with Leaky ReLU activation, max pooling 
and dropout and two dense layers (the lower workflow). Different filter sizes (64, 128, and 256) are applied to the three 
3D convolutional layers. 
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the predicted and MD-derived dynamics values with the experimentally determined values and found that both correlated 
well with the experimental data with correlation coefficients r of 0.743 and 0.791, respectively (Fig. 5C). These evaluation 
results using external datasets emphasize that predictions using DEFMap can provide insights equivalent to those obtained 
by experimental approaches from the 3D cryo-EM maps that the user determined themselves. Thus, we further explored 
the impact of DEFMap in structural biology research, and the findings are introduced in the following section. 

 
 
 

 

 
 

Figure 5  DEFMap-predicted results for cryo-EM maps not included in the training datasets. (A) Comparison of the 
dynamics values derived from MD simulations and DEFMap prediction for three kinds of the external datasets (EMD-
4241, EMD-7113, and EMD-20308). The dynamics profiles of as a function of residue IDs and the mapping onto the 3D 
atomic models with different colors as indicated in the color bar are shown in left and right panels, respectively. The 
residue IDs in the profiles of the dynamics are numbered in accordance with their order in the corresponding PDB file; r 
denotes the correlation coefficient. The atomic models are derived from PDB [PDB ID: 6fe8, 6bly, and 6pcv]. (B) 
DEFMap performances on variable map resolution. The cryo-EM maps used for training dataset are low-pass-filtered to 
the target overall resolutions, and the resulting maps are used for the model training. (C) Comparison of the computed 
values with the experimentally derived dynamics data. The predicted values with DEFMap, those derived from MD 
simulations and the experimentally determined values are denoted as DynamicsDEFMap, DynamicsMD, and DynamicsHDX-

MS. The experimental data is derived from Ref. [34]. DynamicsDEFMap and DynamicsMD are converted to fragment-specific 
values by averaging the values over residues in each fragment detected by the experiments. r denotes a correlation 
coefficient. 
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Impact of DEFMap on Structural Biology Research 
 

Biological phenomena are supported by numerous molecular interactions. When a ligand interacts with a biological 
macromolecule, the dynamics of the binding sites are generally suppressed by conformational stabilization. We attempted 
to detect ligand-induced modulation of the dynamics properties at the binding sites using DEFMap. For this purpose, 
three macromolecules, for which cryo-EM maps of both the unbound (apo form) and bound (holo form) states have been 
determined, were selected (apo, holo: EMD-20080, EMD-20081 [35]; EMD-9616, EMD-9622 [36]; EMD-3957, EMD-
3956 [37]), and their dynamic properties were analyzed using DEFMap and MD simulations. As expected, significant 
suppression of the dynamics at the ligand-binding site was detected in both DEFMap and MD simulations (Fig. 6A). 

DEFMap predicts the overall dynamic properties of a molecule. Mapping the difference in dynamics between the apo 
and holo forms on the 3D map visualizes the overall ligand-induced dynamics changes. Interestingly, for a protein 
associated with DNA methylation (Fig. 6B), Arabidopsis defective in meristem silencing 3 (DMS3)-RNA-directed DNA 
methylation 1 (RDM1) complex as an apo form and its complex with the ligand-defective RNA-directed DNA 
methylation 1 (DRD1) peptide as a holo form (apo, holo: EMD-20080, EMD-20081), additional suppression of the 
dynamics was observed in a region distant from the ligand-binding site, including the RDM1-DMS3 interaction interface 
and the hinge region of DMS3 involved in DRD1 peptide recognition (Fig. 6C). This suggests that DRD1 peptide binding 
stabilizes the RDM1-DMS3 complex formation and the conformation of the DMS3 hinge region. It should be noted that 
between the experimentally constructed atomic models of the apo and holo forms, no significant structural differences 
were found in these regions showing conformational stabilization (Fig. 6C). This observation indicates that we cannot 
find out the dynamic changes only from experimental data, emphasizing the usefulness of DEFMap in structural biology 
research. 

Other advantages of dynamics analysis with DEFMap are that it is not limited by molecular size and does not require 
an atomic model. Conventional experimental approaches for extremely large molecules, such as viral particles, are 
significantly hampered by signal crowding. In addition, MD simulations of such molecules require high computational 
costs and high-resolution atomic models to capture reliable behavior. DEFMap can easily provide their dynamics 
properties if cryo-EM maps are available [38–41] (Fig. 6D). 

 
Limitation in Prediction Using DEFMap 

 
Prediction using a supervised learning technique for data not included in the training dataset generally performs poorly. 

DEFMap achieves high generalization performance because it learns a vast amount of local density data. Nevertheless, 
the prediction performances were relatively poor for the maps with extremely low resolutions. Furthermore, for unusual 
density data, such as those found in the transmembrane regions and those derived from post-translational modifications, 
the prediction performance is not expected because their data were not included in the current training datasets in 
consideration of the convenience of performing MD simulations. Expanding the training datasets of the flexible domain 
data and the unusual density data is a simple solution to these limitations, although it requires high computational costs. 
Development of an environment to use supercomputers, including the state-of-the-art Fugaku, will strongly support for 
this solution. 

 
Conclusion 

 
Here, we demonstrated the potential of cryo-EM data for quantitatively analyzing protein dynamics by developing a 

framework, DEFMap, using an integrated approach of an experimental technique, an MD simulation, and a DL technique. 
This study advances cryo-EM-based analysis techniques in the field of structural biology. The DEFMap code and the 
trained models are available in the GitHub repository (https://github.com/clinfo/DEFMap). It can be used by preparing 
an environment with TensorFlow, Keras, HTMD [42], and EMAN2 [43], all of which are freely available for academic 
use. However, it may not be easy for some users to construct a computational environment. We have recently developed 
and released ColabDEFMap, which can be run on Google Colaboratory, a Python programming and execution 
environment provided by Google (Fig. 7, accessible from the GitHub repository of DEFMap). This will allow more 
researchers to easily obtain the prediction results from DEFMap without the need for complex environment construction 
or programming. We hope that the widespread use of DEFMap will accelerate research in structural biology.  
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Figure 6  Case studies using DEFMap in structural biology research. (A) Comparisons of the dynamics for apo (red) 
and holo forms (black) at the ligand binding sites. The residues located at the ligand binding sites are identified by 5 Å 
cutoff from the ligands, and their averaged values are compared.  The error bars indicate standard deviations (*p  < 
 0.01). (B) Schematic image of the protein assembly of RDM1-DMS3-DRD1 peptide complex. The regions indicated 
by black dashed rectangle with the labels, 1 and 2, corresponds to the expanded region in (C). (C) Mapping of the 
differences in the DEFMap-predicted dynamics of RDM1-DMS3 complex between apo and holo forms onto the atomic 
models. The mapped values are calculated by subtracting the values of the apo form from those of the holo forms. The 
resulting values are colored with different colors as indicated in the color bar, and lower values denote ligand-induced 
suppression of the dynamics. DRD1 peptide and disordered regions in apo form are colored by green and dark gray, 
respectively. The cryo-EM map is represented by light gray color. The expanded images of the regions indicated the 
black dashed rectangles in the overall image of the complex are shown. The atomic models are derived from PDB [PDB 
ID: 6ois and 6oit]. (D) Prediction of the dynamics for extremely large macromolecules using DEFMap. The predicted 
values are mapped onto the 3D cryo-EM maps with different colors as indicated in the color bar. The color range is 
defined by minimum and maximum values in the individual prediction. The scale bar represents 50 Å and is indicated 
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