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Abstract: Background: Angiogenesis is primarily attributed to the excessive proliferation and migra-
tion of endothelial cells. Targeting the vascular endothelial growth factor (VEGF) is therefore signifi-
cant in anti-angiogenic therapy. Although these treatments have not reached clinical expectations, the
upregulation of alternative angiogenic pathways (endoglin/Smad1) may play a critical role in drug
(VEGF-neutralizing agents) resistance. Enhanced endoglin expression following a VEGF-neutralizing
therapy (semaxanib®) was noted in patients. Treatment with an endoglin-targeting antibody aug-
mented VEGF expression in human umbilical vein endothelial cells (HUVECs). Therefore, approaches
that inhibit both the androgen and VEGF pathways enhance the HUVECs cytotoxicity and reverse
semaxanib resistance. The purpose of this study was to find natural-occurring compounds that
inhibited the endoglin-targeting pathway. Methods: Curcuminoids targeting endoglin were recog-
nized from two thousand compounds in the Traditional Chinese Medicine Database@Taiwan (TCM
Database@Taiwan) using Discovery Studio 4.5. Results: Our results, obtained using cytotoxicity,
migration/invasion, and flow cytometry assays, showed that curcumin (Cur) and demethoxycur-
cumin (DMC) reduced angiogenesis. In addition, Cur and DMC downregulated endoglin/pSmad1
phosphorylation. Conclusions: The study first showed that Cur and DMC demonstrated antiangio-
genic activity via the inhibition of endoglin/Smad1 signaling. Synergistic effects of curcuminoids
(i.e., curcumin and DMC) and semaxanib on HUVECs were found. This might be attributed to
endoglin/pSmad1 downregulation in HUVECs. Combination treatment with curcuminoids and a
semaxanib is therefore expected to reverse semaxanib resistance.

Keywords: angiogenesis; curcuminoids; endoglin; Smad1; VEGF

1. Introduction

Tumor angiogenesis is a key process mainly found in tumors that develop to be larger
than 1–2 mm in diameter, which will generally stimulate tumor metastasis. Thus, tumor
angiogenesis has been suggested as a useful target whose appearance can be used as a tool
to fight all solid cancers [1]. Targeting the vascular endothelial growth factor (VEGF) is the
principal therapy for angiogenesis. However, these treatments do not show satisfactory
clinical outcomes; the reason may be the upregulation of endoglin/Smad1 alternative angio-
genic signaling. Evidence shows that enhanced endoglin (CD105) expression following a
VEGF-neutralizing therapy (semaxanib®) was noticed in patients [2]. Semaxanib® (SU5416)
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is a small molecule exhibiting potent and selective inhibition of VEGF receptor-2 tyrosine
kinase [3]. In addition, one study suggests that endoglin-neutralizing antibody significantly
augments VEGF expression in HUVECs [2]. The upregulation of TGFβ1/endoglin, an
angiogenesis promoter, was found after treatment with bevacizumab. Elevated endoglin
caused the activation of Smad1/5, which plays a role in the inflammation path and the
endothelial–mesenchymal transition. The migration capability of HUVECs was augmented
by bevacizumab treatment [4].

Endoglin, a co-receptor for tumor growth factor-β (TGF-β) in HUVECs, plays an
important role in tumor angiogenesis [5]. Endoglin controls angiogenesis through the
regulation of phosphorylation Smad1, causing cell migration and adhesion by changing the
structure of focal adhesion complexes. Abnormal functions of endoglin are important for
various cellular processes implicated in cancer [6]. In addition, tumor-related angiogenesis
may be caused by endoglin dysregulation [7]. The overexpression of endoglin is detected
in angiogenesis, progression, and metastasis of tumors [8]. The inhibition of endoglin may
be beneficial for cancer treatment [9]. The TRC105 antibody (Carotuximab®) demonstrates
a high affinity for endoglin and may overcome therapeutic resistance when combined
with bevacizumab [10]. Recently, many clinical trials have supported the possibility that
endoglin-targeting potentiates anti-VEGF therapies [11–13].

Curcuminoids, derived from Curcuma longa Linn, comprise curcumin (Cur; 77%),
demethoxycurcumin (DMC; 17%), and bisdemethoxycurcumin (bDMC; 3%) [14]. Curcumin
has been suggested to suppress tumor initiation, promotion, metastasis [15–17], and VEGF
inhibition [18]. Curcumin was shown to reduce human lung cancer migration and invasion
by MMP-2/MMP-9 inhibition and VEGF suppression [19]. Our research has shown that
co-administration with curcuminoids boosts cisplatin’s cytotoxicity in lung cancer [20,21].
DMC exhibited the strongest efficacy to inhibit vascular smooth muscle cell migration and
neointima formation induced by a balloon injury [22]. Additionally, curcuminoids showed
the inhibition of p-glycoprotein and the reversal of multidrug resistance [23]. Unlike
curcumin, little of which is absorbed after oral consumption, DMC demonstrated better
stability and aqueous solubility at physiological pH [24]. A previous study indicated that
DMC significantly repressed the capillary network formation in the aorta of rats [25] and
inhibited ex vivo neovascularization of chick chorioallantoic membrane (CAM). Other stud-
ies have revealed that MMP-9 participated in inhibiting angiogenesis by DMC. MMP-9 has
been shown to play a key role in the progress of angiogenesis [26,27]. Studies have verified
that DMC markedly represses the migration and invasion of HUVECs. However, it remains
elusive whether curcuminoids have the capacity to inhibit the endoglin overexpression
after the VEGF-neutralizing agent.

Accordingly, the inhibition of both endoglin and VEGF signaling increases HUVEC cy-
totoxicity and may reverse semaxanib resistance. The purpose of this study was to identify
which of the naturally-occurring compounds inhibit the endoglin-targeting pathway. We ex-
pect that these natural compounds could be further used together with VEGF-neutralizing
agents to treat cancer patients.

2. Results
2.1. Binding to Endoglin by Curcuminoids Was Recognized by Discovery Studio 4.5 (D.S. 4.5)

D.S. 4.5 was applied to the virtual screening of many compounds to target the endoglin.
Structures of all two thousand of these compounds from the TCM Database @Taiwan were
employed for the screening process. Among these eight hundred more active endoglin-
targeting compounds, curcuminoids (i.e., curcumin, DMC, and bDMC) exhibited good
scores for -CDOCKER ENERGY and -CDOCKER INTERACTION ENERGY (Table 1).
The -CDOCKER energy includes all the interaction energy between the curcuminoids
(i.e., Curcumin, DMC, and bDMC), the corresponding receptor, and their internal ligands.
However, the -CDOCKER interaction energy explains the interaction energy between the
ligand and the endoglin protein in simple terms. Curcuminoids (i.e., curcumin, DMC,
and bDMC) were assessed for their binding affinity with endoglin, and their values of
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GI50 are recorded in Table 1. Using D.S. 4.5, curcumin, DMC, and bDMC were confirmed
to comparatively bind to endoglin (Figure 1A–C and Table 1). In line with the docking
analysis, curcumin was shown to exhibit higher binding affinity to endoglin as regulated
by hydrogen bonds with ARG121, TRP117, ARG399, LYS97, LYS70, and Glu100 and Pi
interacting with GLU99 (Figure 1A). Additionally, DMC showed higher binding affinity to
endoglin as mediated by specific hydrogen bonds with GLU100, TYR210, ASN67, LYS7,
and GLU166 and Pi interacting with ARG121 and ARG399 (Figure 1B). These bonds are
critical for the interaction between the endoglin and curcumin and DMC, respectively.
Our results showed that the -CDOCKER energies of curcumin, DMC, and bDMC were
−55.3049 kcal/mol, −55.2537 kcal/mol, and 48.5405 kcal/mol, respectively. These data
show that curcuminoids (i.e., curcumin, DMC, and bDMC) bind to the endoglin.

Table 1. The screening of curcuminoids (i.e., curcumin, DMC, and bDMC) by D.S. 4.5 and values
of GI50.

PubChem CID Name Structure -CDOCKER
Energy

-CDOCKER
InTeraction Energy GI50 (µM)

969516 Curcumin (Cur)
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2.2. Inhibitory Effect of Curcuminoids (Curcumin, DMC, and bDMC) Alone and in Combination
Treatment with Semaxanib (SU5416) on Cytotoxicity of HUVECs

The cytotoxic effect of curcuminoids on HUVECs was examined. Our results demon-
strate that curcumin (Figure 2A) and DMC (Figure 2B) significantly increased the HUVEC
cytotoxicity after 72 h of treatment. In this study, curcuminoids significantly inhibited
the cell viability in a dose-dependent manner, and the GI50 values of curcumin, DMC,
and bDMC on HUVECs were about 11.11, 18.03, and >100 µM, respectively (Figure 2A–C).
Other than bDMC, lower concentrations of curcumin (0.625–1.25 µM) and DMC
(0.625–1.25 µM) were then applied to determine their biological activity. Our results suggest
that curcumin (0.625–1.25 µM) synergistically increased the anti-angiogenesis of semaxanib
(25 µM) in endothelial cells (Figure 2E). In addition, DMC (0.625–1.25 µM) improved the
anti-angiogenesis of semaxanib (25 µM) in endothelial cells (Figure 2F, Table 2). The coeffi-
cient of drug interaction (CDI) was calculated with the equation CDI = AB/(A × B) (AB,
relative cell viability treated with the combination (i.e., curcumin/DMC and semaxanib); A
or B, the relative cell viability of the groups treated with the single agents). CDI < 1 reveals
a synergistic effect, CDI = 1 reveals an additive effect, and CDI > 1 reveals an antagonistic
effect. (Tables 2 and 3).
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Figure 1. Binding mode of the interactions between curcuminoids (i.e., curcumin, DMC, and bDMC)
and the endoglin residues. (A) Left panel: interaction between curcumin and endoglin (2D visualiza-
tion). Right panel: interaction between curcumin and endoglin adduct (3D visualization). (B) Left
panel: interaction between DMC and endoglin (2D visualization). Right panel: interaction between
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DMC and endoglin adduct (3D visualization). (C) Left panel: interaction between bDMC and endoglin
(2D visualization). Right panel: interaction between bDMC and endoglin adduct (3D visualization).

Figure 2. Inhibitory effects of curcuminoids (i.e., curcumin, DMC, and bDMC) alone and combined
with semaxanib on HUVECs. (A–C) Cell-cytotoxic effects of curcumin, DMC, and bDMC on HUVECs
according to SRB assay. (D) Cell-cytotoxic effects of semaxanib on HUVECs. (E) Combination
treatment with curcumin and semaxanib demonstrated significant inhibitory effects on HUVECs
compared with the semaxanib-treated group. (F) Combination treatment with DMC and semaxanib
showed considerable inhibitory effects on HUVECs compared to the semaxanib-treated group.
* p < 0.05, ** p < 0.01, and *** p < 0.001 compared to the control group (treated with 10% FBS alone).
# p < 0.05, ## p < 0.01, and ### p < 0.001 compared to the semaxanib-treated group.

Table 2. DMC and semaxanib show synergistic effects on HUVECs cell viability.

Semaxanib
(25 µM)

DMC (µM)
Cell Viability (%)

Semaxanib
(25µM) DMC (µM) Semaxanib +

DMC CDI

0 0 100 ± 0.08 100 ± 0.12 100 ± 1.81

+ 0.625 89.89 ± 2.50 103.58 ± 9.30 74.02 ± 2.08 0.79

+ 1.25 79.78 ± 1.35 118.59 ± 5.51 65.32 ± 0.13 0.69

+ 2.5 71.92 ± 1.80 119.27 ± 11.64 65.83 ± 2.94 0.77

+ 5.0 69.65 ± 6.79 117.59 ± 2.31 60.64 ± 5.45 0.74

+ 10.0 70.15 ± 0.33 107.56 ± 4.19 58.97 ± 3.70 0.78

+ 20.0 61.70 ± 3.47 80.41 ± 7.66 40.79 ± 6.33 0.82
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Table 3. Curcumin and semaxanib show synergistic effects on HUVECs’ cell viability.

Semaxanib
(25 µM)

Cur (µM)
Cell Viability (%)

Semaxanib
(25µM) Cur (µM) Semaxanib +

Cur CDI

0 0 100 ± 0.08 100 ± 0.12 100 ± 0.15

+ 0.625 89.89 ± 2.50 90.56 ± 1.79 71.60 ± 3.89 0.88

+ 1.25 79.78 ± 1.35 90.71 ± 12.82 45.07 ± 0.43 0.62

+ 2.5 71.92 ± 1.80 92.57 ± 2.05 47.80 ± 0.14 0.72

+ 5.0 69.65 ± 6.79 89.74 ±2.29 54.44 ± 2.12 0.87

+ 10.0 70.15 ± 0.33 80.98 ± 1.20 45.52 ± 0.80 0.80

+ 20.0 61.70 ± 3.47 84.95 ± 9.76 39.36 ± 0.75 0.75

2.3. Inhibitory Effect of Curcuminoids (Cur, DMC, and bDMC) on the Cell-Cycle Distribution of
Endothelial Cells

The arrest of the cell cycle could regulate cell growth. To examine the inhibitory effect
of curcuminoids on the growth of endothelial cells, flow cytometry was used for the study.
HUVECs were administered with curcumin (0.625, 1.25, 2.5, 5.0, 10.0, and 20.0 µM), and
DMC (0.625, 1.25, 2.5, 5.0, 10.0, and 20.0 µM) for 72 h, and then their DNA content was
examined for 10,000 events. The rise of the sub-G1 peak and the buildup of endothelial
cells in the G0/G1 phase showed a dose-dependent decline in the S phase (Figure 3A,B).

2.4. Curcuminoids Reduced the In Vitro Angiogenic Activity of Endothelial Cells
2.4.1. Curcumin Hinders the Migration and Invasion of Endothelial Cells

The activities of endothelial migration and invasion represent the early stage in the de-
velopment of neo-peritumoral blood vessels through angiogenesis. However, higher doses
(5–20 µM) of curcumin significantly decreased the migration and invasion of HUVECs.
Our results show that low doses of curcumin (0.625–2.5 µM) significantly diminished the
migration of HUVECs treated with 10% FBS (Figure 4A). In addition, the results showed
that low-dose curcumin (0.625–2.5 µM) meaningfully reduced the invasion of HUVECs
treated with 10% FBS (Figure 4B).

2.4.2. DMC Reduces the Migration and Invasion of Endothelial Cells

The migration and invasion of endothelial cells are necessary for angiogenesis and are
critical in the early stage of the peritumoral blood vessel formation during angiogenesis.
However, higher doses (5–20 µM) of DMC substantially decreased the migration and
invasion of HUVECs. The current study confirmed that low doses of DMC (0.625–2.5 µM)
considerably decreased the migration of HUVECs treated with 10% FBS (Figure 4C). In
addition, the results showed that low doses of DMC (0.625–2.5 µM) considerably reduced
the invasion of HUVECs treated with 10% FBS (Figure 4D).

2.5. Curcuminoids Decreased Endoglin and Smad1 Phosphorylation in HUVECs

The effects of curcumin and DMC on endoglin and phosphorylation Smad1 protein ex-
pressions were explored in HUVECs. Endoglin is believed to be involved in the formation
of neo-vessels, and VEGF is critical to initiate the vessel formation. Consequently, our re-
search aimed to find out if low doses of curcumin (0.625–5.0 µM) and DMC (0.625–5.0 µM)
could modulate the endoglin and phosphorylation Smad1 levels in HUVECs. Our re-
sults demonstrate that long-term exposure (72 h) to curcumin and DMC considerably
decreased the endoglin levels and phosphorylation of Smad1 in HUVECs. In particular,
the endoglin/pSmad1 protein expression was normalized by GAPDH and found to be
significantly decreased (Figure 5A,B).
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Figure 3. Effect of curcuminoids (i.e., curcumin and DMC) on the cell cycle distribution of HUVECs.
(A) The cell-cycle distributions were analyzed in the HUVECs treated with curcumin. The cells
were treated with several concentrations (0, 0.625, 1.25, 2.5, 5, and 10 µM) of curcumin for 72 h, and
flow cytometry was used to analyze cell cycle distributions. (B) The cell cycle distributions were
assessed in the HUVECs administered with DMC. The cells were administered with several different
concentrations (0, 0.625, 1.25, 2.5, 5, 10, and 20 µM) of DMC for 72 h, and cell cycle distributions were
analyzed by flow cytometry.
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Figure 4. Inhibitory effects of curcuminoids (i.e., curcumin and DMC) on migration and invasion
of endothelial cells. Transwell migration and Matrigel invasion assays were applied for analyzing
the behavior of migration and invasion, respectively, of HUVECs administered with curcuminoids
(i.e., curcumin and DMC). (A) The migration assay indicates that curcumin significantly inhibited
the HUVECs migration. The left panel displays the image captured by a microscope at 100×
magnification. The right panel displays the statistical study. (B) Matrigel invasion assays showed that
curcumin significantly inhibited the HUVECs invasion. The left panel shows the image acquired with
a microscope at 100× magnification. The right panel shows the statistical analysis. (C) The migration
assay indicates that DMC significantly inhibited the HUVECs migration. The left panel shows the
image acquired with a microscope at 100× magnification. (D) The Matrigel invasion assay indicates
that DMC significantly inhibited the HUVECs migration. The left panel displays the image taken
with a microscope at 100× magnification. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared to the
control group (treated with 10% FBS alone). All the scale bars indicate a length of 200 µM.
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results demonstrate that long-term exposure (72 h) to curcumin and DMC considerably 
decreased the endoglin levels and phosphorylation of Smad1 in HUVECs. In particular, 
the endoglin/pSmad1 protein expression was normalized by GAPDH and found to be 
significantly decreased (Figure 5A,B). 

 
Figure 5. The inhibitory effects of curcuminoids (i.e., curcumin and DMC) on endoglin and phospho-
rylation Smad1 in HUVECs in the long term (72 h.) (A)Treatment with curcumin (0.625, 1.25, 2.5, and
5.0 µM) and (B) DMC (0.625, 1.25, 2.5, and 5.0 µM) substantially decreased endoglin expression and
pSMAD1 phosphorylation. Endoglin expression and pSMAD1 phosphorylation were tested using
Western blotting assays. * p < 0.05 and ** p < 0.01 compared to the control group (treated with 10%
FBS alone).

3. Discussion

The vascular development of tumors is necessary for tumor metastasis and is, there-
fore, a major target of anti-angiogenic therapy [1,28]. Therefore, targeting VEGF is used
for anti-angiogenic therapy. However, VEGF-neutralizing treatment cannot attain clinical
outcomes, and the upregulation of endoglin/Smad1 signaling may play an important
role in VEGF-neutralizing agents’ resistance. Increased endoglin expression following a
VEGF-neutralizing therapy (semaxanib®) was found in vivo. Additionally, an endoglin-



Int. J. Mol. Sci. 2022, 23, 3889 14 of 19

targeting antibody enhanced VEGF expression in HUVECs [2]. Thus, combination treat-
ment with an endoglin antagonist and with VEGF-neutralizing agents may strengthen
anti-angiogenic therapy.

Although endoglin plays an important role in regulating angiogenesis, the present
study demonstrated that overexpression of endoglin does not improve angiogenesis.
Nevertheless, it prevents blood vessels from maturing and stabilizing during angiogenesis.
Contrary to what was postulated, endoglin overexpression does not cause an increase in
tumor vascularization that expedites the intravasation and metastasis of tumor cells [29].
However, most studies believe that endoglin is overexpressed in angiogenic endothelial
cells. Research has indicated that endoglin knockout mice could develop embryonic lethal-
ity in an animal study. Therefore, endoglin is essential for angiogenesis in the development
phase [30]. Previous preclinical research and clinical trials indicate that endoglin is an
important biomarker of angiogenesis. Additionally, the overexpression of endoglin has
been detected in the angiogenic vasculature [31], which unambiguously shows that en-
doglin serves as a positive regulator of the angiogenic pathway in HUVECs [32]. Before
phosphorylation of Smad1, endoglin activates its intracellular signaling cascade, transmits
the signals into the nucleus, and transcribes a variety of genes [33]. According to the
data from a genetic analysis, BMP-9 is essential for the development of vessels in HU-
VECs. Research indicates that TGF-β promotes both ALK1 and ALK5 type I receptors in
endothelial cells; nevertheless, BMP-9 only binds to ALK1. This is because BMP-9 shows a
higher affinity for ALK1 than for TGF-β. Smads 1/5/8 and Smads 2/3 are phosphorylated
specifically by ALK1 and ALK5. Subsequently, Smads 1/5/8 are translocated into the
nucleus and later modulate the expression of genes related to cell motility, proliferation,
adhesion, apoptosis, and angiogenesis [34,35]. Consequently, endoglin/Smad1 signaling
influences the angiogenesis of HUVECs. Clinically, many ALK1 inhibitors are used for
renal and ovarian carcinomas. Together with VEGF signaling obstruction, ALK1 inhibitors
meaningfully prevent tumor progression by angiogenesis [36]. Endoglin has been found
to be overexpressed in tumor-associated angiogenic vessels compared with normal ves-
sels [37,38]. TRC105, an IgG1 endoglin monoclonal antibody (MAb), has been found to
diminish tumor metastasis by inhibiting endoglin-modulated angiogenesis [4].

VEGF signaling is crucial for tumor angiogenesis. Clinically, bevacizumab exhibits
limited impacts caused by the development of acquired resistance [2]. According to
a previous report, TRC105 (Carotuximab®)-treated patients demonstrated major down-
regulation of VEGF. Overexpression of endoglin was also noticed in patients following
VEGF-neutralizing treatment [37]. Therefore, endoglin/Smad1 signaling may be correlated
with the development of drug resistance [2,38]. Combination treatment with an endoglin
antagonist and VEGF antagonist enhances the inhibition of HUVEC angiogenesis, which
overcomes drug resistance to VEGF-neutralizing agents. Combination therapy with TRC105
and decitabine provides a sustained anti-leukemic impact in acute myeloid leukemia (AML)
xenografts compared to decitabine alone [39]. TRC105 enhanced the inhibitory effect of
sunitinib on VEGF-VEGFR2-Akt-Creb signaling, indicating a molecular collaboration be-
tween TRC105 and Sunitinib [40]. Although TRC105 failed to improve progression-free
survival (PFS) when added to bevacizumab [12,41], other studies showed promising clin-
ical outcomes. In several recent clinical studies, combination therapy with TRC105 and
VEGF-neutralizing agents has been demonstrated. Together with TRC105, bevacizumab
showed significant clinical outcomes in a VEGF-inhibitor-refractory population [42]. When
administered TRC105 and sorafenib, patients showed good toleration of both drugs at
the suggested single-agent doses in a phase I and a preliminary phase II study [43]. In
the phase Ib trial, patients treated with both TRC105 and bevacizumab showed improved
clinical outcomes [44]. In the combination therapy with TRC105 and pazopanib, patients
exhibited stable complete responses and inspired progression-free survival [11]. A random-
ized Phase II trial test showed that VEGF-inhibitor-refractory renal-cell-carcinoma patients
given TRC105 and axitinib together showed a stable condition [13].
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Although protein drugs have shown promising outcomes for antagonizing tumor
angiogenesis, there are several drawbacks, including a higher cost, stability, and severe
immune-related adverse effects. Therefore, small molecules used to modulate the en-
doglin/Smad1 signaling must be established, along with combination treatment with
a VEGF antagonist to decrease drug resistance. Our results demonstrate that combina-
tion therapy with curcuminoids (i.e., curcumin and DMC) with semaxanib creates anti-
angiogenic effects (Tables 2 and 3). These results were verified by previous research. One
study suggested that toxicarioside A could hinder tumor development via endoglin [45,46].
Our study indicates that the combined use of EGCG and semaxanib could solve the drug
resistance to VEGF-neutralizing agents [27,47]. Nevertheless, the pharmacological effect of
angiogenic activity by curcuminoids has not yet been studied. In this study, we aimed to
explore naturally occurring compounds that could inhibit this alternative proangiogenic
pathway. These results demonstrate that lower-dose curcumin and DMC may inhibit
endothelial cell viability (Figure 2A,B). In addition, curcumin- and DMC-treated HUVECs
showed an increase in Sub-G1 peak, the accumulation of endothelial cells in the G0/G1
phase, and the reduction in the S phase (Figure 3A,B). Our results show that lower doses of
curcuminoids (i.e., curcumin and DMC) substantially inhibit the migration/invasion of
endothelial cells (Figure 4). Furthermore, curcuminoids synergistically enhance the angio-
genesis of semaxanib in endothelial cells (Tables 2 and 3). In particular, our results showed
that both curcumin and DMA significantly reduce endoglin/pSmad1 protein expression
(Figure 5A,B). According to a previous study, the redundancy between endoglin and VEGF
pathways in angiogenesis and the effects of targeting both pathways [2], as well as endoglin-
targeted inhibition, could enhance the angiogenic activity of VEGF-neutralizing agents.
This research strengthens our understanding that the combination of endoglin-antagonists
and VEGF-neutralizing agents could enhance the anti-angiogenic effects of therapy.

4. Materials and Methods
4.1. Chemicals and Reagents

The major cell culture media, Medium 199 (M199), phosphate-buffered saline (PBS),
trypsin-EDTA, and fetal bovine serum (FBS), were acquired from GIBCO (Gaithersburg,
MD, USA). Semaxanib® was obtained from Surgen Inc. (Redwood City, CA, USA). Tris
base, heparin, trichloroacetic acid (TCA), and a bovine serum albumin (BSA) protein assay
kit were purchased from Sigma-Aldrich (St. Louis, MO, USA). Curcumin, demethoxycur-
cumin, and bisdemethoxycurcumin were acquired from Sigma-Aldrich (St. Louis, MO,
USA). Penicillin and streptomycin were acquired from Lonza (P/S; Walkersville, MD,
USA). Endothelial cell growth supplements (ECGS) and polyvinylidene fluoride (PVDF)
membranes were obtained from Millipore (Billerica, MA, USA). Matrigel® basement mem-
brane matrix (#356237) was acquired from Corning (Bedford, MA, USA). The primary
anti-endoglin antibody was obtained from BioLegend (San Diego, CA, USA), the mouse
monoclonal GAPDH antibody was purchased from Proteintech (Rosemont, IL, USA). The
phospho-SMAD1/SMAD5 (pSer463 + pSer465) antibody was acquired from Thermo Scien-
tific (Rochester, NY, USA). The goat anti-mouse IgG and goat anti-rabbit IgG secondary
antibodies were obtained from Jackson ImmunoResearch Laboratories (West Grove, PA,
USA). Semaxanib was purchased from Medchem Express (Monmouth Junction, NJ, USA).
ThinCerts™ Cell Culture Inserts with an 8 µM pore size, #662638 were obtained from
Greiner Bio-One Inc., (Monroe, NC, USA). Curcumin and DMC were solubilized in DMSO
and had stock concentrations of 100 mM.

4.2. Cell Culture

The human umbilical vein endothelial cells (HUVEC; BCRC no. H-UV001) were
obtained from the Bioresource Collection and Research Center (BCRC; Hsinchu, Taiwan).
Firstly, the gelatin-coated culture dishes were prepared, the HUVECs were seeded on
those dishes and grown in medium 199 containing 25 U/mL heparin (Louis, MO, USA),
100 U/mL penicillin/streptomycin (P/S; Walkersville, MD, USA), 10% FBS, and 30 mg/L
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ECGS. Only passages 3–5 were allowed for the experiments. The cells were incubated in a
humidified 5% CO2 atmosphere at 37 ◦C. The culture medium was changed every two to
three days.

4.3. Sulforhodamine B (SRB) Assay

The SRB assay was performed to measure the cytotoxicity of curcuminoids on HUVECs
following our former study [27]. Firstly, gelatin-coated 96-well plates were used to grow the
HUVECs for 30 min. Next, HUVECs were incubated with several different concentrations
of curcumin alone (3.125, 6.25, 12.5, 25, 50, and 100 µM), DMC (3.125, 6.25, 12.5, 25, 50,
and 100 µM), or BDMC (3.125, 6.25, 12.5, 25, 50, and 100 µM) or combined with semaxanib
(25 µM), and then they were incubated in a humidified 5% CO2 atmosphere at 37 ◦C for
72 h. Only curcumin and DMC were used to treat with semaxanib (25 µM) in this research
setting. Twenty-five microliters (50% TCA) were added to each well, incubated for 30 min,
and then washed twice with deionized distilled water (ddH2O). Next, the plates were
air-dried and stained with 50 µL (0.04% SRB) for 30 min. Next, they were washed twice
with 1% acetic acid to remove the unbound stain. Finally, the absorbance of each well was
measured at 515 nm using an ELISA reader.

4.4. Western Blotting Analysis

The experiments were performed as previously described [27]. HUVECs were seeded
on a 6 cm dish and incubated with various dosages (0.625, 1.25, 2.5, 5, and 10 µM) of
curcumin and DMC for 72 h. A BSA protein assay kit was used to determine the pro-
tein concentration. Then, cell lysates including 20 µg of protein were separated on 10%
SDS-polyacrylamide gels (SDS-PAGE) and electrophoretically transferred to PVDF mem-
branes. The membranes were incubated with the human endoglin antibody (1:1000 dilu-
tion), mouse monoclonal GAPDH antibody (1:5000 dilution), or phosphor-smad1/smad5
(pSer463 + pSer465) antibody (1:250 dilution) at 4 ◦C overnight. Then, the membranes were
incubated with horseradish peroxidase-conjugated goat anti-mouse IgG (1:5000 dilution)
or goat anti-rabbit IgG (1:5000 dilution) secondary antibodies for 1 h. Lastly, membranes
were washed with PBST buffer and visualized using Amersham ECL Advance Western
Blotting Detection Reagents (Millipore, Bedford, MA, USA). The luminescence signal was
acquired using an LAS-4000 system (Fujifilm, Valhalla, NY, USA), and protein levels were
detected using an enzymatic chemiluminescence kit.

4.5. Cell Migration and Invasion Assays

The experiments were performed following our previous study [27]. To evaluate the
migration of HUVECs, HUVECs (2 × 105 cells/well) were seeded in the upper chamber
and placed in the lower chamber. To study the invasion, HUVECs (3 × 105 cells/well)
were pre-mixed with the same volume of thawed Matrigel and immediately seeded in the
upper chamber. In the experimental setting, curcumin (0.625, 1.25, 2.5, 5, and 10 µM) or
DMC (0.625, 1.25, 2.5, 5, and 10 µM) was added to the upper chambers, and 10% FBS at
the lower chamber could stimulate migration and invasion of endothelial cells. After six
hours, the culture medium (or Matrigel) was scratched from the upper chamber, and 99%
methanol was used to fix the migrated or invaded cells attached to the outer surface of the
upper chamber for twenty min at room temperature. Then, these fixed cells were stained
with Giemsa stain. We randomly chose five regions to count the cell number using a light
microscope at 100× magnification. The cell number of the control group (treated with 10%
FBS alone) was set to 100%.

4.6. Cell Cycle Analysis

The research was conducted following our previous study [27]. Briefly, various
concentrations of curcumin (0.625, 1.25, 2.5, 5.0, 10.0, and 12.0 µM) and DMC (0.625, 1.25,
2.5, 5.0, 10.0, and 12.0 µM) were given to the HUVECs (5 × 105) for 72 h in the treated and
normal samples. Then, cells were washed twice with PBS, and staining was conducted by
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incubating the HUVECs with 500 µL of 4 mg/mL DAPI for 15 min in the darkroom. Then,
the distribution of the cell cycle was recognized by flow cytometry using the FACSCanto
system (BD Biosciences, San Jose, CA, USA). Their DNA content of 10,000 events was
examined. Data analysis was performed using ModFit LT software (Verify Software House,
Topsham, ME, USA). All the experiments were performed three times.

4.7. Molecular Docking Studies Were Conducted to Investigate the Binding Mode of Curcuminoids

The perfect crystal structure of the endoglin from humans (PDB ID: 5HZW_A),
obtained from the NCBI databases (https://www.ncbi.nlm.nih.gov/protein/ (accessed
on 30 May 2017), was applied for the molecular docking analysis employed utilizing the
Discovery Studio (version 4.5). A setting of more than two thousand compounds from the
TCM Database@Taiwan, which includes 61,000 compounds, was utilized to make ligands
and create 3D conformations. All hydrogen atoms were added to the protein using D.S.
4.5. The CHARMm was designated, and the active site was described. Next, using the
CDOCKER protocol, the optimized ligands were docked with the endoglin protein. Lastly,
compounds curcumin, DMC, and bDMC gained from the virtual screen then carried out
their angiogenic activity in vitro.

4.8. Statistical Analysis

The statistical analysis was performed using the SPSS Statistics software (vers. 19;
IBM, Armonk, NY, USA). All the independent values are represented as means ± standard
deviations (SD). In the multiple-group tests, a one-way analysis of variance (ANOVA)
followed by a post hoc test (Dunnett’s test) was run to verify the statistical significance. A
p-value < 0.05 was believed to be statistically significant, * and # for p < 0.05, ** and ## for
p < 0.01, and *** and ### for p < 0.001.

5. Conclusions

Endoglin overexpression in HUVECs following semaxanib treatment was found to
explain drug resistance. The results showed that curcumin and DMC may target en-
doglin and then show the ability to inhibit HUVECs angiogenesis via endoglin/pSmad1
signaling. Above all, the regulation of VEGF and endoglin pathways enhances the anti-
angiogenic capacity in vitro. In line with the redundancy between endoglin and VEGF
signaling in angiogenesis, the novelty of this study is that treatment with curcuminoids
significantly decreases endoglin/Smad1 signaling. These results suggest the possibility
of combination treatment with curcuminoids and semaxanib. Additionally, the combina-
tion treatment with endoglin and VEGF would be applicable for conquering resistance to
VEGF-neutralizing agents.
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