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ABSTRACT Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplank-
ton-associated marine member of the Gammaproteobacteria with a range extend-
ing from tropical waters to polar regions and including hadal zones. Here, we
describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal
waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA
molecule with 50.1% G1C content and 47 putative open reading frames (ORFs).
Three auxiliary metabolic genes were identified, encoding metal-dependent phos-
phohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase.
The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z)
in phage genomes and help phages to evade attack from host restriction enzymes.
The nucleotide pyrophosphohydrolase enables the host cells to stop programmed
cell death and improves the survival rate of the host in a nutrient-depleted envi-
ronment. Phylogenetic analysis based on the amino acid sequences of whole
genomes and comparative genomic analysis revealed that ZP6 is most closely
related to Enhodamvirus but with low similarity (shared genes, ,30%, and average
nucleotide sequence identity, ,65%); it is distinct from other bacteriophages.
Together, these results suggest that ZP6 could represent a novel viral genus, here
named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a
diaminopurine genome-biosynthetic system, and its representativeness of an
understudied viral group, ZP6 could be an important and novel model system for
marine virus research.

IMPORTANCE Alteromonas is an important symbiotic bacterium of phytoplankton,
but research on its bacteriophages is still at an elementary level. Our isolation and
genome characterization of a novel Alteromonas podovirus, ZP6, identified a new
viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diamino-
purine genome-biosynthetic system, is different from those of other isolated
Alteromonas phages and will bring new impetus to the development of virus clas-
sification and provide important insights into novel viral sequences from metage-
nomic data sets.
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Viruses play a vital role in the control of marine microbial communities (1, 2) and are
responsible for most prokaryote deaths. Recent studies using electron microscopy,

epifluorescence microscopy, and flow cytometry have shown that viruses are the most
abundant biological entities in diverse marine environments (3–5). They are not only
highly abundant but also have very high genetic diversity (6). They replicate through
infection of their hosts, which include both heterotrophic and autotrophic organisms.
Some viruses can even change the genomes of marine organisms, regulate nutrient
cycles, and facilitate evolution (1, 7). As the largest source of genetic elements on earth,
viruses are thought to be responsible for most gene transfer in the oceans (8).

During the past decade, metagenomic studies of viruses have extended our under-
standing of marine viral community structure and function (9, 10). A total of 195,728 vi-
ral populations were assembled and described in the Global Ocean Viromes 2.0 (GOV
2.0) data set (9). However, most viral populations in these viromes cannot be either
classified into known viral groups or associated with their hosts. Because phages (i.e.,
bacterial viruses) are believed to be the most abundant marine viruses, the isolation
and genomic analysis of individual viruses, especially phages infecting dominant bac-
terial clades, such as pelagiphages, cyanophages, and Puniceispirillum phage HMO-
2011, infecting the SAR116 bacterial clade, has substantially improved our understand-
ing of the ecological and evolutionary roles of marine viruses and the interpretation of
the virome sequences (11, 12). However, very few viruses from the dominant marine
bacterial clades have been isolated.

Alteromonas species, which are widespread marine copiotrophs of the class
Gammaproteobacteria, are commonly found in waters from the tropics to the poles,
including hadal zones (13, 14). The Tara Oceans expedition found that Alteromonas
had an occurrence rate reaching 80% with consistently high relative abundances (15).
In the Challenger Deep of the Mariana Trench, the deepest site in the Earth’s oceans,
Alteromonas was found to still be abundant in the hadal zone, at depths greater than
10,000 m below the surface (10 to 20% of 16S rRNA genes) (16). In phytoplankton
blooms, the contribution of Alteromonas to the total bacterial biomass is at levels simi-
lar to those of the Cytophaga-Flavobacteria-Bacteroides group and Roseobacter (17–19).

Alteromonas has been found to make significant contributions to iron metabolism
(20, 21) and play an important role in marine organic carbon and nitrogen cycling (22).
In laboratory cocultures with cyanobacteria like Prochlorococcus, Synechococcus, and
Trichodesmium (23), Alteromonas has demonstrated broad substrate preferences and
can utilize dissolved organic carbon and particulate organic carbon supplied by photo-
autotrophs (24). Some isolates of Alteromonas have been used to synthesize exopoly-
saccharides (EPS) for production of colloidal suspensions of silver nanoparticles
(AgNPs) (25, 26), which have excellent application prospects in nanomedicine, pharma-
ceutical science, and biomedical engineering (27, 28).

However, although Alteromonas plays important roles in the ocean, our understand-
ing of Alteromonas phages is still poor. So far, only 11 Alteromonas phages have been
isolated and deposited into GenBank, including five siphoviruses, four podoviruses, two
autographiviruses, one myovirus, and one unclassified virus. The five Siphoviridae
phages, including JH01, P24, PB15, XX1924, and vB_AcoS-R7M (29–32), were all isolated
from the coastal water of China. Among those siphoviruses, vB_AcoS-R7M was found to
share a set of similar characteristics with a number of siphophages infecting diverse
aquatic opportunistic copiotrophs and inspired the creation of a new subfamily,
Queuovirinae (32). Podoviridae phages vB_AmaP_AD45 P1 to P4 (33) have very similar
genomic structures. They are similar to the N4-like Podoviridae genus but lack three com-
mon genes of the N4-like phages, encoding a cysteine-free N4-like virion-encapsidated
RNA polymerase, a protein similar to the single-stranded DNA binding protein, and an
extra DNA-dependent RNA polymerase. Alteromonas viruses vB_AspP-H4/4 and
vB_AmeP_R8W have been classified into Autographiviridae. Phage vB_AspP-H4/4, iso-
lated from the North Sea (34), has been used as a biological tracer in hydrological trans-
port studies (35). Phage vB_AmeP_R8W can infect 35 Alteromonas strains and exhibited
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a strong specificity for strains isolated from deep waters (36). Phage vB_AmeM_PT11-
V22 was identified as a myovirus by genomic and morphological analyses, but it lacked
sequence similarity to any other known myoviruses (37). Its genome size is about 92 kb,
with a very low G1C content (38%). These characteristics suggest that myovirus
vB_AmeM_PT11-V22 belongs to a new type of phage, the Myoalterovirus genus within
the Myoviridae family. Although the genome of bacteriophage phiAFP1 has been
uploaded, it has not yet been classified into a viral family.

In this study, to gain a better understanding of marine Alteromonas phages,
genomic, phylogenetic, and comparative genomic analyses of a novel Alteromonas
phage, ZP6, are reported. Phylogenetic analysis based on the whole genome of phage
ZP6 and comparative genomic analysis indicates that ZP6-like phages form a novel vi-
ral cluster within the Podoviridae. The relative abundances and distributions of
Alteromonas phages, Pelagibacter phages, and cyanophages suggest that ZP6 could be
prevalent in the mesopelagic zone of the temperate and tropical oceans.

RESULTS AND DISCUSSION
Morphology and one-step growth curve. A marine phage, designated ZP6, that

can infect the Yellow Sea variant of the Alteromonas macleodii type strain ATCC 27126
was isolated from a surface seawater sample from the coastal waters of Qingdao,
Yellow Sea. Transmission electron microscopy (TEM) images showed that phage ZP6
had an isometric head (diameter of 50 to 62.5 nm [average 6 standard deviation,
55 6 3 nm]) and a short, thick tail (length of 10 to 12.5 nm [11 6 3 nm]) (Fig. 1A) and
could be classified into the Podoviridae family, order Caudovirales. Currently, only four
podoviruses of Alteromonas have been isolated, and these are all from coastal waters
of the Mediterranean Sea (Table S1 in the supplemental material) (33). Phage ZP6 is
the first podovirus of Alteromonas to be isolated from the west Pacific Ocean. The one-
step growth curve of phage ZP6 showed that the latent period was approximately
80 min and the rise period was approximately 40 min (Fig. 1B). The burst size is close
to 210 virions per cell (Fig. 1B), which is smaller than those of the other four
Alteromonas podoviruses, vB_AmaP_AD45 P1 to P4 (500 virions per cell) (33), but larger
than those of Autographiviridae virus vB_AmeP-R8W (88 PFU/cell) (36) and Siphoviridae
virus R7M (182 PFU/cell) (32).

Overall genome features. The ZP6 genome is a linear, 38,080-bp, double-stranded
DNA (dsDNA) molecule with a G1C content of 50.1% (Fig. 2); no tRNA genes are pre-
dicted. The open reading frames (ORFs) of ZP6 were identified by BLASTp, Pfam search,
and HHpred analyses, and a total of 47 ORFs were predicted. Among these genes, 20

FIG 1 Morphology and biological properties of Alteromonas phage ZP6. (A) Transmission electron micrograph of ZP6. (B) One-step growth curve of
Alteromonas ZP6. The data shown are average values from triplicate experiments, and error bars indicate standard deviations (SDs).
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genes are predicted to have known functions (Table 1) and are grouped into three
functional modules as follows: phage packaging and lysis (ORFs 2, 4, 5, 16, and 30),
phage structure and assembly (ORFs 8, 10, 11, 14, 17, and 18), and DNA metabolism
and replication (ORFs 12, 20, 24, 25, 32, and 40). Additionally, three auxiliary metabolic

FIG 2 Genome map of Alteromonas phage ZP6. Putative functional categories were defined according to annotation and are represented by different
colors. The length of each arrow represents the length of each gene.

TABLE 1 Genomic annotation of Alteromonas phage ZP6 and conserved domains detected

ORF

Position

Strand Function CD accession no.a E valueStart Stop
2 336 869 1 Terminase small subunit PF03592.18 (Pfam) 4.6e220 (HHpred)
4 1,543 2,904 1 Terminase large subunit PF03354.17 (Pfam) 5.2e233 (HHpred)
5 2,904 4,508 1 Portal protein PF12236.10 (Pfam) 1.7e255 (Hhpred)
8 5,869 6,771 1 Major capsid protein PF19821.1 (Pfam) 5.7e227 (HHpred)
10 7,023 7,613 1 Tail tubular protein PF17212.5 (Pfam) 1.8e234 (HHpred)
11 7,613 9,781 1 Tail tubular protein 6R21_f (PDB) 3.8e278 (HHpred)
12 9,765 10,163 1 Acetyltransferase MBT3950205.1 4e206 (BLASTp)
14 10,570 12,675 1 Structural protein YP_009140146.1 7e206 (BLASTp)
16 16,285 16,617 1 Holin PF16085.7 (Pfam) 5.1e227 (HHpred)
17 16,614 19,235 1 Tailspike protein 5JSD_B (PDB) 7.1e224 (HHpred)
18 19,247 21,136 1 Tailspike protein 5W6S_A (PDB) 2.4e228 (HHpred)
20 21,839 21,402 2 Nuclease 4QBN_B (PDB) 7.5e29 (HHpred)
21 22,347 21,832 2 Metal-dependent phosphohydrolase PF12917.9 (Pfam) 3.4e218 (HHpred)
22 22,601 22,344 2 Nucleotide pyrophosphohydrolase PF03819.17 (Pfam) 2.1e208 (Pfam)
23 23,626 22,601 2 Diaminopurine synthetase PF00709.21 (Pfam) 2.1e221 (Pfam)
24 25,922 23,628 2 DNA primase PF09250.11 (Pfam) 3.3e226 (Pfam)
25 27,796 25,919 2 DNA polymerase family A PF09250.11 (Pfam) 1.2e242 (Pfam)
30 30,063 29,617 2 Endolysin YP_008051103.1 4e230 (BLASTp)
32 32,043 30,577 2 Superfamily II DNA/RNA helicase YP_009153058.1 2e2123 (BLASTp)
40 34,857 34,651 2 HTH-type transcriptional regulator PF01381.22 (Pfam) 1.3e210 (Pfam)
aAccession numbers for which the database is not named are from GenBank. CD, conserved domain.
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genes (AMGs) (ORFs 21, 22, and 23) were predicted, and 27 ORFs were predicted to
encode hypothetical proteins.

Most of the genes associated with phage packaging are located at the beginning of
the ZP6 genome. ORFs 2 and 4 encoded the terminase small (TerS) and large (TerL)
subunit (38), respectively. The terminase and DNA recognition proteins mediate the
packaging of dsDNA virus concatemers and require interaction of the prohead with
the virus DNA (39). The TerS is thought to form a nucleoprotein structure that helps to
locate the TerL at the packaging initiation site (40). ORF 5 encodes the portal protein,
which controls the size of the assembled viral genome and effectively prevents the
DNA from escaping from the capsid during assembly (41). ORF 16 encodes a small
hydrophobic protein called holin, which oligomerizes in the cytoplasmic membrane
until pores are formed. ORF 30 encodes endolysin, which cleaves the cell wall peptido-
glycan. Together, they form a classical holin-endolysin lysis system. Endolysin reaches
the cell wall through the pore formed by holin, degrades the host cell wall, and effec-
tively completes the lysis. (42).

Genes related to the structure are mainly located in the middle of the ZP6 genome.
ORF 8 encodes the major capsid protein (MCP), which synthesizes the protein coats of
viruses that encapsulate their genetic material. ORFs 10 and 11 encode the tail tubular
protein, which allows phages to inject their genomes inside the bacterial cytoplasm
without disrupting the cellular integrity (43). ORF 14 was similar to ORF 17 of Vibrio
phage phiVC8 (44), identified as a structure-related gene with unknown role. ORF 17
and 18 encode the tail spike protein, which is located at the tail of the viral particles
and can help the virus deliberately identify host cells (45).

Genes related to the replication and regulation of bacteriophage DNA were mainly
located in the downstream region of the ZP6 genome. ORF 12 was predicted to encode
a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily, which is a large
group of evolutionarily related acetyltransferases with multiple paralogs in organisms
from all kingdoms of life (31). The GNAT protein encoded by phiKMV-like viruses has the
biological function of the RNA polymerase alpha subunit cleavage protein (Rac) (46). Rac
can bind the b9 DNA-dependent RNA polymerase subunit, inactivate bacterial transcrip-
tion, and then control the switch to late transcription (47). ORF 10 might be involved in
the acetylation of histones at specific lysine residues, which is required by the process of
transcriptional activation and has been implicated in chromatin assembly and DNA repli-
cation (48, 49). ORF 20 contained a virus-type replication-repair nuclease (VRR-NUC) do-
main. It is associated with members of the PD-(D/E)XK nuclease superfamily, such as the
type III restriction modification enzymes (50). ORF 24 encodes a DNA primase, which can
synthesize short oligonucleotides, usually RNA, that then act as primers to assist DNA po-
lymerization (51). ORF 23 encodes a DNA polymerase that contains a conserved domain
with PDB code 2KFZ found in Escherichia coli. (52). ORF 25 is similar to the DNA polymer-
ase encoded by the host bacteria. ORF 32 encodes DNA helicase, which is necessary for
the ATP-dependent unwinding of dsDNA, an important step in DNA replication, expres-
sion, recombination, and repair. At the same time, ORF 32 contains a conserved amino-
terminal region with an SNF2 domain corresponding to the helicase-like ATP-dependent
family and participating in chromatin structure remodeling (53). ORF 40 encodes a helix-
turn-helix (HTH)-type transcriptional regulator that is a major structural motif capable of
binding DNA. Each monomer incorporates two helices, joined by a short strand of amino
acids, that bind to the major groove of DNA (54).

Three diaminopurine genome-biosynthetic-related AMGs. The auxiliary meta-
bolic genes (AMGs) are phage-encoded and host-derived metabolic genes that are
putatively involved in the regulation of host metabolism to increase viral replication
(55, 56). Three AMGs were predicted within the ZP6 genome: ORF 21 (metal-dependent
phosphohydrolase), ORF 22 (nucleotide pyrophosphohydrolase), and ORF 23 (diamino-
purine synthetase).

Of these, the most interesting is diaminopurine synthetase (PurZ), encoded by ORF
23, which is involved in the replacement of adenine (A) by diaminopurine (Z) in phage
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genomes (57). PurZ is a homolog of adenylosuccinate synthetase (PurA) in the purine
biosynthetic pathway (54). Diaminopurine (Z) can completely replace adenine (A) and
form three hydrogen bonds with thymine (T). The diaminopurine genome, which is
completely different from the common Watson-Crick base pairing, endows phages
with evolutionary advantages for evading the attacks of host restriction enzymes (57).
Homology models were constructed for amino acid sequences of the identified PurZ
encoded by ORF 23 (ZpPurZ) (Table S4), PurA, and other identified PurZ proteins. The
results for all PurZ proteins showed that the catalytic residue Asp13 (Escherichia coli
PurA numbering) in PurA was without exception replaced by a Ser residue (Fig. S1). At
the same time, like most PurZ-carrying phages, ZP6 contains an HD domain-containing
hydrolase-like enzyme encoded by ORF 21. These HD domain enzymes exhibited
dATPase activity, which can catalyze the hydrolysis of dATP to dA and triphosphate. It
also catalyzes the hydrolysis of dADP and dAMP into dA, releasing pyrophosphate and
phosphate (57). Therefore, the dATPase encoded by ORF 21 could facilitate Z genome
synthesis by specifically removing dATP and its precursor dADP from the nucleotide
pool of the host (58), preventing the incorporation of A into the phage genome. PurZ,
dATPase, and DNA polymerase form the diaminopurine genome-biosynthetic system,
which can evade the restriction enzyme attacks of hosts (54, 57, 59, 60). Notably, these
three proteins were at similar locations in the genomes of Vibrio phages phiVC8, VP2,
and VP5. The presence of these enzymes constitutes one of the main characteristics of
the Enhodamvirus genus (61) and ZP6-like phages (Fig. S4).

ORF 22 encodes nucleotide pyrophosphohydrolase (MazG). MazG enables the host
cells to stop programmed cell death by hydrolyzing (p)ppGpp and improves the sur-
vival rate of the host in nutrient-depleted environments (62, 63). The role MazG plays
in host stringer responses enables it to be classified as a class I AMG (56). More interest-
ingly, a recent study has suggested that MazG shows a preference for dGTP and dCTP
as substrates, suggesting a role in recycling host nucleotides (64). Associated with the
recently published diaminopurine DNA genome, the MazG carried by ZP6 may provide
dGMP as a substrate for PurZ and, thus, improve the level of dZTP (57).

Phylogenetic and comparative genomic analyses. Since the known Alteromonas
phages are rare and distributed in different phage families, it is difficult to carry out a
comparative genomics analysis within the Alteromonas phage group (Table S1).
Therefore, 2,687 phage genomes were used as reference sequences to construct phylo-
genetic trees using VipTree (https://www.genome.jp/viptree) based on the whole-ge-
nome amino acid sequences of phage ZP6 and other Alteromonas phages (65).
tBLASTx and VipTree were used to perform the genome comparisons, in order to
describe the relationship between phage ZP6 and its closest relatives. One hundred
viruses related to Alteromonas phages were selected to clearly display the evolutionary
relationship between Alteromonas phages and related phages (Fig. 3A). Preliminary ob-
servation of the phylogenetic trees was consistent with the morphological characteris-
tics of ZP6 and its host. The results indicate that ZP6 is closely related to podoviruses
and Gammaproteobacteria phages. This suggests that ZP6 is a divergent podovirus
within the Podoviridae family. The close relationship between ZP6 and several
Podoviridae was in accordance with the results of the morphological analysis.
Additionally, 30 closely related genome sequences of ZP6 were selected to draw a rec-
tangular proteomic tree (Fig. 3B). The ZP6 genome was grouped with some Vibrio
phages, which all belong to Enhodamvirus (according to the virus taxonomy of ICTV,
Enhodamvirus is a genus of Podoviridae). This group of phages encode proteins that
are poorly related to any other phage proteins and form a separate branch, far from
the other sequences, and represent a novel viral cluster. Four protein phylogenetic
trees were constructed using hallmark conserved viral proteins, including the TerL,
MCP, DNA polymerase, and portal protein (Fig. S2). The results are consistent with the
proteomic tree generated by VipTree (Fig. 3). Although ZP6 is weakly clustered with
Enhodamvirus in the phylogenetic trees of marker genes and the complete genome,
the results still clearly demonstrate that ZP6 forms a new single clade by itself.
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All-vs-all BLASTp analysis was used to study the phylogenetic relationships between
ZP6 and other cultured Podoviridae phages (336 podovirus genomes from NCBI RefSeq
database) (Fig. S3) and further verify the unique status of ZP6. The results show that
only enhodamviruses and Pelagibacter phage HTVC010P have genes homologous with
those of ZP6 (threshold values: E value, ,1e25; identity, .30; and alignment coverage
per query [qcov], .50%). The ratio of shared genes between ZP6 and enhodamviruses
(Fig. 3C) is less than 30% (;27.65% to 29.47%). Pelagibacter phage HTVC010P (66) has
three conserved genes homologous with those of ZP6 (mcp, TerL, and portal protein
gene). The average nucleotide identity (ANI) values between ZP6 and the nine typical
enhodamviruses that are most closely related to ZP6 in the phylogenetic tree were cal-
culated by OrthoANI (ANI by orthology) (Fig. 3D). The ANI values between ZP6 and the
other nine enhodamviruses ranged from 61.92 to 64.46, which is far lower than the
ANI values among enhodamviruses (85.99 to 99.90). Phages are regarded by the ICTV
as being members of the same genus when their nucleotide sequence identities are
greater than 70% (67). All phylogenetic analyses illustrate that ZP6 is significantly

FIG 3 Phylogenetic and comparative genomic analyses of Alteromonas phage ZP6. (A) Phylogenetic tree of all 14 Alteromonas phages and 100 selected
viruses most closely related to Alteromonas phages, constructed by using VipTree. The colored rings represent the virus families (inner ring) and host
groups (outer ring). These trees are calculated by BIONJ according to the genome distance matrix and take the midpoint as the root. (B) Phylogenetic tree
of Alteromonas phage ZP6 and the 30 closest virus genomes. (C) The heat map shows shared genes among Alteromonas phage ZP6, other Alteromonas
phages, typical enhodamviruses, and Pelagibacter phage HTVC010P. The ratio of shared genes was based on all-vs-all BLASTp analysis, which was
performed by using OrthoFinder with the following parameters: cutoff E value, ,1e210; identity, .30%; and alignment region covering .50% of the
shorter sequence. The cluster method was complete, which defined the class-to-class distance as the complete distance between samples. The numbers in
parentheses in the keys of panels A, B, and C represented the number of different classification of viruses. (D) Heat map of OrthoANI values of ZP6 and
typical enhodamviruses. The values were calculated by using OAT software.
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different from all other isolated phages and should be classified as a representative of
an undiscovered viral group.

The results of a comparative genomic analysis of ZP6 and typical enhodamviruses
(Fig. 4), i.e., Vibrio phage phiVC8 (GenBank accession number NC_027118) (44), Vibrio phage
VP5 (NC_005891) (61), Vibrio phage VP2 (NC_005879), Vibrio phage QH (NC_027397), and
Vibrio phage J2 (NC_027393), by BLASTx (68) verified the conclusion that ZP6 belongs to a
previously unreported genus. The gene architecture of the five enhodamviruses showed
that the arrangement of functional genes is relatively conservative, with homologous genes
being arranged in the same order. However, unlike enhodamviruses, in the ZP6 genome,
taking those of ZP6 and Vibrio phage phiVC8 as examples, only the genes encoding the
packaging module TerL (amino acid identity of 32.96%, calculated by BLASTp), the portal
protein (45.04%), the DNA replication module DNA primase (45.1%), DNA polymerase
(52.61%), superfamily II DNA/RNA helicase (43.24%), and the iconic AMG of enhodamvi-
ruses, PurZ (52.61%), reflect this pattern. Among the structural modules, mcp (37.54%) and
the major tail subunit gene (30.1%) were homologous to those of enhodamviruses. The
main difference between ZP6 and enhodamviruses is the module related to tail structure
and host lysis. ZP6 contained four tail protein domains and had no similarity with enho-
damviruses, which may be the main reason for their infection of different hosts (43, 45). On
the other hand, enhodamviruses do not contain a gene related to host lysis, but ZP6 con-
tains a complete lysis system.

Although ZP6 apparently has characteristics belonging to a new genus, it has
been difficult to characterize this new genus with certainty from only a single phage.
So, five metagenome-assembled viral genomes (MAGs) with high homology (shared
genes, ;52.38% to 53.65%) to ZP6 were mined from Integrated Microbial Genome/
Virus (IMG/VR) 3.0 data sets (Tables S2 and S3). Comparative genomic analysis of the
six ZP6-like viruses and enhodamviruses (Fig. S4) showed that the ZP6-like viruses

FIG 4 Genomic comparisons between Alteromonas phage ZP6 and typical enhodamviruses. The predicted functions of proteins are indicated by different
colors of arrows representing genes. The shading below each genome indicates sequence similarities between the genomes, with different colors
representing the levels of similarity.
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contained eight core genes that were different from those of the enhodamviruses.
Four of them (ORFs 2, 10, 11, and 14 of ZP6) were functional protein genes coding for
terminase small subunit, major tail subunit, structural protein, and restriction endo-
nuclease, respectively. Then, 343 viruses (336 from NCBI RefSeq, ZP6, and 6 ZP6-like
viruses) were divided into genus or subfamily level groups using vConTACT 2.0 (Fig.
S5) (67). Using this method, 60 virus clusters were identified in the whole data set.
ZP6 overlapped with VC_40 (Enhodamvirus) and VC_39 (viral operational taxonomic
unit [vOTU] of IMG/VR [Sg_132140]) but had no correlations with other phages
(Fig. 5A). At the same time, whole-genome-based phylogenic analysis was conducted
for ZP6 and the other 45 different genera of Podoviridae (Fig. 5B). The whole-genome
phylogeny and OPTSIL taxon results all implied that ZP6 did not belong to any of the
identified genera. When this is combined with the network analysis and comparative
genomics analysis, it is clear that ZP6 should be classified as a new genus, here
named Mareflavirus.

FIG 5 (A) Gene content-based viral networks showing all of the Podoviridae viruses from the NCBI RefSeq database and five environmental viruses related
to ZP6 from IMG/VR. The nodes represent the viral genomic sequences. The edges represent the similarity scores between genomes based on shared gene
content. The isolated viral sequences are indicated by filled circles, and environmental viral sequences are indicated by regular hexagons. Among those,
the star represents Alteromonas phage ZP6. Viral genomes that belong to different viral clusters are indicated by different colors. (B) Whole-genome-based
phylogenetic tree constructed by VICTOR with the formula d6. ICTV and OPTSIL clusters are at the genus and family levels. Each genus is indicated by a
unique color. ZP6 is shown in red. Bootstrap values of $50 are shown.
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Distribution inmarine environments. The biogeographical distribution of Alteromonas
phage ZP6 was characterized in 154 viral metagenomes from five viral ecological zones
(VEZs) of the Global Ocean Viromes (GOV2.0) data set: Arctic (ARC), Antarctic (ANT), bathy-
pelagic (BATHY), temperate and tropical epipelagic (EPI), and temperate and tropical mes-
opelagic (MES). After being normalized by the number of databases of each ecological
environment, the relative abundances of the viral genomes were log10 transformed based
on 10 reads per kilobase per million (RPKM) (Fig. 6).

These results confirmed the high abundances of pelagiphages, the SAR116 bacte-
rial-clade-infecting phage HMO-2011, and cyanophages, as shown in previous studies
from Pacific, Indian, and Global Ocean viromes (11, 66, 69). Most of the Alteromonas
phages were less abundant than pelagiphages, cyanophages, and HMO-2011, except
for Alteromonas siphophage JH01, which had a higher abundance than HMO-2011 and
was comparable to cyanophages (Fig. 6). Alteromonas phages were detected in five dif-
ferent VEZs, which is in accordance with the widespread distribution of their hosts (13,
14). Based on the relative abundances in the GOV 2.0 database, Alteromonas sipho-
phages (JH01, P24, and XX1924) and autographivirus vB_AmeP_R8W were relatively
abundant, had similar distribution patterns, and were abundant in the BATHY VEZ.
Four Alteromonas podophages (ZP6, vB_AmaP_AD45-P2, vB_AmaP_AD45-P4, and
vB_AmaP_AD45-P1) and one Autographiviridae phage, vB_AspP-H4/4, had similar dis-
tribution patterns and were mainly detected in the MES VEZ, which was consistent
with the distribution of their hosts (70, 71).

Conclusion. Culturing viruses infecting major components of bacterial assemblages is
likely to provide important insights into novel viral sequences from metagenomic data

FIG 6 Relative abundances of Alteromonas phage ZP6 compared to the abundances of representative Pelagibacter phages, cyanophages, typical
enhodamviruses, and other Alteromonas phages in the 154 viromes of the Global Ocean Viromes data set (GOV 2.0). Relative abundances, expressed by
RPKM (reads per kilobase per million mapped reads) values, were calculated using the metagenomics tool minimap2. Left, relative abundances of different
bacteriophages in five marine viral ecological zones (VEZs) defined by the GOV2.0. Values were normalized by the number of databases of each VEZ, and
results were log10 transformed for description. Right, distributions of phages in five VEZs, shown as percentages. ARC, Arctic; ANT, Antarctic; BATHY,
bathypelagic; EPI, temperate and tropical epipelagic; MES, temperate and tropical mesopelagic.
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sets. Considering the ecological significance of Alteromonas, the research on its bacterio-
phages is still at an elementary level. In this study, we describe a novel Alteromonas phage,
ZP6, with unique genomic characteristics and phylogenetic position. ZP6 contains a diami-
nopurine genome-biosynthetic system, which could help it evade the attack of host
restriction enzymes. ZP6 represents a new viral genus of podovirus, namely, Mareflavirus.
The establishment of Mareflavirus will undoubtedly contribute to our knowledge of the lit-
tle-known Alteromonas phages, deepen our understanding of the physiology, genetic di-
versity, and genomic characteristics of phages in different aquatic environments, provide a
novel phage-host system for interaction analysis, and contribute to the data mining of the
massive metagenomic data set.

MATERIALS ANDMETHODS
Location and sampling. Surface seawater samples (50 liters per seawater sample) from the coastal

waters off Qingdao in the Yellow Sea (120°199230E, 36°4940N) were collected on 22 July 2018. The water
samples were processed immediately after collection. A subsample of the water sample was prefiltered
using 3-mm-pore-size filters to remove the larger plankton and particles, followed by filtration through
0.2-mm-pore-size, low-protein-binding polyvinylidene difluoride (PVDF) filters (Millipore) to remove any
remaining bacteria and phytoplankton. Using tangential flow filtration (laboratory scale, 50 kDa;
Millipore), the virus-containing seawater was concentrated 500-fold to give a 100-ml sample. The sam-
ples and the original seawater were stored at 4°C in the dark until experimentation (72).

Bacterial strain isolation and identification. Using serial dilution, a host bacterial strain was iso-
lated from the unfiltered seawater sample and then incubated in liquid Zobell medium at 28°C (73,
74). For molecular identification, the 16S rRNA gene was amplified by PCR. The result was analyzed via
16S rRNA gene sequence analysis (see the supplemental material) (72), and a BLASTn search of the
16S rRNA gene sequence was performed. The 16S rRNA gene sequence of the host bacterial strain of
phage ZP6 had a 99% similarity to Alteromonas macleodii type strain ATCC 27126 (accession number
CP003841).

Phage isolation and purification. The phage was isolated from the same seawater sample after filter-
ing a subsample through a 0.22-mm Millipore membrane to remove the bacteria and phytoplankton. The
isolation of phage plaques was by gradient dilution and the double-layer agar plate method (75), followed
by using the soft-agar overlay method for plaque analysis (76). Briefly, 1 ml of the filtrate and 0.2 ml of indica-
tor bacteria were placed into 5 ml of soft, warm agar (0.6%), agitated, and then poured onto petri dishes to
form plaques. Phages were purified by picking a single plaque, suspending it in SM buffer (100 mM NaCl,
8 mM MgSO4, 50 mM Tris HCl [pH 7.5]), and then incubating it for 1 h at 37°C. The purification step was
repeated three times, and then the purified phages were amplified and stored at 4°C.

Morphology study by TEM. The purified phage samples were negatively stained with phospho-
tungstic acid (2%, wt/vol, pH 7.2). Transmission electron microscopy (TEM) (JEOL JEM-1200EX; JEOL,
Japan) at 100 kV was used to provide images of phage ZP6 purified particles (77). The phage was exam-
ined at a magnification of �400,000. Phage size was calculated from the electron micrographs (78).

One-step growth curve. A one-step growth curve was used to determine the burst size (the aver-
age number of phage particles that a single infected bacterium can produce) of phage ZP6. The
latent period of the phage was determined by the double-layer agar plate method (79). The latent
period is defined as the time interval between absorption and the beginning of the first burst. The
burst size was calculated as the ratio of the final number of phage particles to the initial number of
infected host cells at the beginning of the test (80). The bacterial culture in exponential growth
phase (2 � 108 CFU/ml) was mixed with 1 ml of the phage to produce a multiplicity of infection
(MOI) of 0.1 (adsorption at 25°C). The unabsorbed phage was removed by centrifugation (12,800 � g
for 30 s). Samples were then taken every 5 min for 1 h, followed by sampling every 10 min for the
next hour (81). The last sample was taken half an hour after that. This experiment was repeated
three times (78). After collection, a double-layer plate was coated with the samples and cultured
overnight. The numbers of phage plaques were counted to calculate the titers of the phage in differ-
ent periods to determine the growth states of the phage.

Genome sequencing and bioinformatics analysis. The DNA of phage ZP6 was extracted according
to the experimental protocol used by Verheust et al. (82). The extracted phage DNA was sequenced
using the Illumina Miseq 2 � 300 paired-end sequence method. The gaps between remaining contigs
were closed using GapCloser and GapFiller, with purified genomic DNA as the template. The termini
were identified by using PhageTerm (83, 84). The reads with the maximum coverage were considered
phage termini (see the supplemental material). Genome annotations were analyzed using RAST (http://
rast.nmpdr.org/). Nucleotide sequences and protein sequences were scanned for homologs using BLAST
(http://blast.ncbi.nlm.nih.gov/, database updated on 25 June 2021), a Pfam search with default parame-
ters (https://pfam.xfam.org/search/sequence), and an HHpred search carried out using the online server
(https://toolkit.tuebingen.mpg.de/hhpred) (73, 76, 85–89). The tRNAscan-SE program was used to pre-
dict tRNA sequences (https://lowelab.ucsc.edu/tRNAscan-SE/) (90). Genome mapping was performed
using CLC Main Workbench 20.

Phylogenetic analysis and comparative genomic analyses. The proteomic tree, based on the
whole-genome amino acid sequences of phage ZP6 and Alteromonas phages, was generated using
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VipTree (https://www.genome.jp/viptree) (65). tBLASTx and VipTree were used to perform the genome
comparisons, in order to describe the relationships between phage ZP6 and its closest relatives.

Phylogenetic trees of viral conserved proteins (MCP, TerL, DNA polymerase, and portal protein) were
constructed to evaluate the evolutionary relationships among ZP6 and other diverse phages. Sequence
alignments were constructed with MUSCLE (91), evaluated for optimal amino acid substitution models,
and run with IQtree 2.0 (92) with a bootstrap of 1,000.

All-vs-all BLASTp analysis was performed by using OrthoFinder (93, 94) to calculate the percentage of
shared genes between phage ZP6 and all complete podovirus genomes from the NCBI RefSeq database.

vConTACT 2.0 (95, 96) performs guilt-by-contig-association classification based on the ICTV taxon-
omy data set to cluster and provide taxonomic context for the sequencing data. In order to describe the
taxonomic information of ZP6 in detail, the phage group was expanded using BLASTp. To search for ho-
mologous phages with more than 50% shared genes with ZP6, each coding sequence of ZP6 was
queried against the Integrated Microbial Genome/Virus (IMG/VR) database (10, 97, 98) (E value, ,1e25;
identity, .30; and alignment region covering .50%) (Tables S2 and S3). The selected sequences were
compared with ZP6 as a group in the vConTACT analysis to obtain more accurate results (similar sequen-
ces were selected by Diamond, and all satisfied the following parameters: E value, ,1e25; alignment
region covering more than 50% of the shorter sequence; and identity .30%) (99). The edge-weighted
model network based on vConTACT analysis was exhibited by Gephi (100).

Virus Classification and Tree Building Online Resource (VICTOR; https://ggdc.dsmz.de/victor.php)
(101) was used to determine the taxonomic position of ZP6 in the podoviruses. Ninety-nine podoviruses
from 45 different genera were selected from the ICTV taxonomy releases to construct a phylogenetic
tree with ZP6. The result was visualized with iTol (version 5) (102). All pairwise comparisons of the nucle-
otide sequences were conducted using the Genome-BLAST Distance Phylogeny (GBDP) method under
settings recommended for prokaryotic viruses (101, 103). Taxon boundaries at the species, genus, and
family levels were estimated with the OPTSIL program, using the recommended clustering thresholds
and an F value (fraction of links required for cluster fusion) of 0.5 (101, 103, 104).

OrthoANI (average nucleotide identity by orthology) (105) was obtained using the orthogonal
method to determine the overall similarity between two genomic sequences.

Ecological distribution in the ocean. The relative abundances of viral genomes in the Global Ocean
Viromes 2.0 (GOV 2.0) database (9), expressed by RPKM (reads per kilobase per million mapped reads) val-
ues, were calculated using the metagenomics tool minimap2 (parameters: –min-read-percent-identity 0.95
–min-read-aligned-percent 0.75 -m rpkm) (106). GOV 2.0 divided the 154 virome databases into five viral
ecological zones (VEZs), including the Arctic (ARC), Antarctic (ANT), bathypelagic (BATHY), temperate and
tropical epipelagic (EPI), and temperate and tropical mesopelagic (MES). The relative abundances of ZP6 in
the five VEZs were analyzed to study its global oceanic distribution. Meanwhile, the relative abundances of
ZP6 were compared with those of pelagiphage HTVC010P, phage HMO-2011, marine cyanophages P-SSP7
and P-SSM7, and roseophage SIO1, all of have widespread distributions in the ocean (11, 66), and other
Alteromonas phages and some Vibrio phages that have a taxonomic association with ZP6.

Data availability. The complete genome of bacteriophage ZP6 has been deposited in NCBI under
accession number MK203850.
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