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The thiol isomerase, protein disulfide isomerase (PDI), plays important intracellular roles
during protein folding, maintaining cellular function and viability. Recent studies suggest
novel roles for extracellular cell surface PDI in enhancing cellular activation and promoting
their function. Moreover, a number of food-derived substances have been shown to
regulate cellular PDI activity and alter disease progression. We hypothesized that PDI may
have similar roles during mast cell-mediated allergic responses and examined its effects
on IgE-induced mast cell activity during cell culture and food allergy. Mast cells were
activated via IgE and antigen and the effects of PDI inhibition on mast cell activation were
assessed. The effects of PDI blockade in vivo were examined by treating mice with the
irreversible PDI inhibitor, PACMA-31, in an ovalbumin-induced model of food allergy. The
role of dietary PDI modulators was investigated using various dietary compounds
including curcumin and quercetin-3-rutinoside (rutin). PDI expression was observed on
resting mast cell surfaces, intracellularly, and in the intestines of allergic mice. Furthermore,
enhanced secretion of extracellular PDI was observed on mast cell membranes during IgE
and antigen activation. Insulin turbidimetric assays demonstrated that curcumin is a
potent PDI inhibitor and pre-treatment of mast cells with curcumin or established PDI
inhibitors such as bacitracin, rutin or PACMA-31, resulted in the suppression of IgE-
mediated activation and the secretion of various cytokines. This was accompanied by
decreased mast cell proliferation, FceRI expression, and mast cell degranulation. Similarly,
treatment of allergic BALB/c mice with PACMA-31 attenuated the development of food
allergy resulting in decreased allergic diarrhea, mast cell activation, and fewer intestinal
mast cells. The production of TH2-specific cytokines was also suppressed. Our
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Abbreviations: OVA, ovalbumin; WT, wild
mast cells; PACMA-31, propynoic aci
quercetin-3-rutinoside.
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observations suggest that PDI catalytic activity is essential in the regulation of mast cell
activation, and that its blockade may benefit patients with allergic inflammation.
Keywords: protein disulfide isomerase, mast cells, food allergy, PDI, propynoic acid carbamoyl methyl amide
INTRODUCTION

IgE-mediated mast cell activation is a critical component in the
induction of allergic responses to food-derived antigens (1–3). The
cross-linking of food-specific antigens by IgE-bearing mast cells in
the intestinal tract induces a stepwise cascade of activation-induced
events, resulting first in the release of various pre-formedmediators
from mast cell granules, followed by the synthesis of several
de novo substances including various cytokines and lipid
mediators. These events are tightly orchestrated involving several
phosphorylative reactions that culminate in the activation of
transcription factors which regulate gene expression.

We have previously shown that food-derived components
such as curcumin can attenuate the development of mast cell
responses during food allergy (4, 5). Curcumin, a natural product
found in the spice turmeric has well-known pharmacological
properties, including anti-allergic (4, 6, 7), anti-inflammatory
(8), and anti-cancer activities (9, 10). Despite the interest in
curcumin and its analogues as potential therapeutics (9), there is
no consensus on the molecular mechanisms by which it exerts
pharmacological action. While some studies have demonstrated
curcumin acts upon various transcription factors to regulate the
expression of enzymes and cytokines (4, 11), other studies
suggest that curcumin exerts these effects by modulating the
redox status of the target cell (12).

We hypothesized that dietary components such as curcumin
may modulate the mast cell response during food allergy by
inhibiting the direct activation of circulating proteins and
enzymes and explored likely targets. One common mechanism
of protein activation is through an allosteric disulfide bond, where
a disulfide will rearrange to alter the intra- or intermolecular
structure of the protein to activate or inactivate it (13). The
rearrangement of these disulfide bonds is often accomplished
through a thiol reductase enzyme such as protein disulfide
isomerase (PDI).

Thiol isomerases such as PDI catalyze the breakage,
formation and rearrangement of disulfide bonds, regulating
protein folding within the endoplasmic reticulum (ER) (14, 15).
However more recent studies have determined extracellular roles
for PDI including the activation of thrombus formation (16), entry
of HIV into lymphocytes (17), and the survival and progression of
various cancers (18).

In this study, we verify the PDI inhibitory activity of
curcumin and explore the role that PDI plays in the
development of mast cell-mediated responses during food
allergy using known PDI inhibitors. To date, with the
exception of a postulation that PDI catalyzes the formation of
-type; BMMCs, bone marrow-derived
d carbamoyl methyl amide; Rutin,

org 2
IgG4 under conditions of chronic antigen exposure (19), there
has been no known role of the enzyme in the development of
mast cell-dependent allergic responses. Here, we show for the
first time that mast cells express extracellular PDI on their
surface and that blockade of PDI in mast cells suppresses their
function and attenuates the development of mast cell responses
during food allergy. Pretreatment of bone marrow-derived mast
cells (BMMCs) with PDI inhibitors including dietary PDI
modulators suppressed their activation and degranulation,
resulting in the decreased expression and secretion of various
mast cell-derived cytokines. Furthermore, treatment of wild-type
mice with PACMA-31 (an orally active irreversible PDI
inhibitor) in a model of ovalbumin (OVA)-induced food
allergy resulted in a significant attenuation in the development
of food allergy symptoms including decreases in allergic diarrhea,
mast cell activation and allergen-specific IgE. These data
demonstrate that PDI plays vital roles during mast cell-
mediated responses by regulating mast cell activation and
cytokine production. Furthermore, dietary components can
modulate mast cell activation during allergic responses by
regulating PDI activity, suggesting that blocking PDI function
may prove to be of therapeutic benefit in allergic patients.
MATERIALS AND METHODS

Animals
BALB/c mice were purchased from Taconic Farms and Envigo.
All mice were bred in our facility and all animal research was
approved by the IACUC of Western New England University.

Insulin Turbidity Assay
PDI activity was measured via PDI-catalyzed reduction of
insulin in the insulin turbidity assay as previously described by
us and others (20–22). Briefly, the reaction mixture consisted of
100 mM potassium phosphate (pH 7.4), 0.75 mM DTT, 2 mM
EDTA, 35 µg/ul of bovine insulin, and 0.8 µg purified human
PDI in a total volume of 30 ml in a 384-well plate. The progress of
the reaction was monitored for 90 min at 37°C. Curcumin,
PACMA-31 or control buffer was added prior to the addition
of enzyme at the concentrations indicated. PDI activity in the
presence of compound was determined by the following formula:
PDI activity (%) = (OD[compound + PDI + DTT] – OD[DTT])/(OD
[PDI + DTT] – OD[DTT]) × 100%. Enzyme inhibition was
determined by the following formula: enzyme inhibition = (1 –
[ODmax{compound + enzyme}/ODmax{buffer control + enzyme}]).

BMMC Culture
BMMCs were generated from naïve BALB/c mice and cultured
with 10 ng/ml of rIL-3 (Shenandoah) and rSCF (Shenandoah)
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for >4 weeks as we have previously described (23). Harvested
BMMC were positive for c-Kit and FcϵRI.

BMMC Activation and Pre-Treatment
With PDI Inhibitors
1 × 106 BMMCs/ml were cultured in triplicates with 10 ng/ml
IL-3 and SCF. Cells were activated by pre-sensitizing with 1 µg/
ml DNP-IgE (clone SPE7, Sigma) or vehicle (medium), followed
by treatment with 200 ng/ml DNP-BSA (5, 24). Increasing
concentrations of curcumin (Sigma), bacitracin (Sigma),
quercetin-3-rutinoside hydrate or rutin (Sigma), and propynoic
acid carbamoyl methyl amide (PACMA)-31 (Sigma) or vehicle
(DMSO) were added to various experimental groups for different
time periods (including 30 min and 24 h) prior to challenge with
DNP-BSA. Expression of cytokine genes was assessed by RT-
PCR between 30 min to 1 h following activation. Assessment of
secreted cytokines was performed 6 to 24 h later.

Measurement of ER Stress
ER stress was induced by adding brefeldin A (1 µg/ml) to
unactivated BMMCs or cells activated with IgE and antigen as
described above. The effects of PDI inhibition were examined by
treating with PDI inhibitors such as curcumin or PACMA-31.
Six hours after activation with IgE/Ag, cells were stained for
surface antigens such as c-Kit or FceRI with fluorescently-labeled
mAbs. Intracellular cytokine staining was then performed using
a kit from Biolegend (San Diego, CA). Cells were fixed, then
permeabilized and stained for various cytokines using mAbs.
Cytokine-producing cells were enumerated by flow cytometry.

Quantitative PCR Analysis and ELISAs
Quantitative RT-PCR was performed as previously described using
Taqman probes (5, 24). Expression of cytokine genes (IL-4, IL-5, IL-
6, IL-9, IL-10, IL-13, IL-33, TNF-a, IFN-g) and PDI (P4HB, PDIA3)
was calculated relative to GAPDH transcripts. ELISAs for mMCP-1
(Affymetrix), IL-4, IL-5, IL-6, TNF-a, and IFN-g (Biolegend), IL-13
(R&D Systems), and OVA-IgE were performed according to
manufacturers’ protocols as previously described (5, 24).

b-Hexosaminidase (b-Hex) Assay
BMMCs were activated with DNP-IgE and DNP-BSA in the
presence or absence of various PDI inhibitors. b-hex activity in
cell culture supernatants was assessed as previously described by
us (5, 24). Percent cellular content was calculated according to
the following formula: (amount released into supernatant)/
(amount in supernatant + amount in lysate) × 100.

BMMC Proliferation
BMMCs were cultured with rIL-3 and rSCF as described above.
Some groups of cells were treated with various concentrations of
bacitracin, rutin or PACMA-31. Cells were counted daily for 4 to
5 days, and live cells were enumerated on the basis of trypan
blue exclusion.

Flow Cytometry
BMMCs and MC/9 cells (a murine mast cell line) were incubated
with mAbs against mouse c-Kit (Biolegend), FceRI (Biolegend),
Frontiers in Immunology | www.frontiersin.org 3
PDI (Life Technologies), and isotype controls for PDI (IgG2a/
Life Technologies). Expression of cell surface PDI was assessed at
various times in cells after activation with IgE and antigen and in
unactivated controls. Intracellular PDI expression was assessed
30 min later in fixed and permeabilized cells. Flow cytometric
analysis was performed using an Accuri C6 flow cytometer and
Flow jo software.

Western Blot
BMMCs and MC/9 cells were activated with DNP-IgE and DNP-
BSA and total protein extracts were harvested after 4 h. Western
blot was performed as previously described (4). PDI detection
was performed using a rabbit anti-PDI mAb (1:1000;
Cell Signaling).

Food Allergy Regimen
To induce food allergy, BALB/c mice were i.p. immunized with 50
mg chicken egg OVA in 1 mg alum twice as previously described
(5, 24). Mice were challenged i.g.with 50 mg OVA on 6 alternating
days. Control animals were i.p. sensitized but not challenged with
OVA. One hour after the sixth challenge, mice were sacrificed and
assessed as previously described (5, 24, 25). To assess the effects of
PACMA-31 exposure in allergic mice, some groups of mice (both
controls and OVA-challenged animals) were gavaged with 10 mg/
kg (300 µg) of PACMA-31 suspended in 250 µl 1% carboxymethyl
cellulose (CMC) as previously described (4). Treatment with
PACMA-31 was initiated one day prior to challenge with OVA
and continued daily until sacrifice. Mice were sacrificed 1 h after
the sixth challenge with OVA and food allergy parameters were
assessed as previously described (4, 5, 24). The development of
intestinal anaphylaxis was assessed as described below. Blood was
collected for evaluation of antibodies and mMCP-1 in serum.
Jejunum was collected for histological assessment of mast cells and
evaluation of cytokine gene expression by RT-PCR as described
above. Spleens were collected for evaluation of systemic cytokine
production by T cells.

Measurement of Intestinal Anaphylaxis
Intestinal anaphylaxis was assessed in challenged mice by scoring
the percentage of animals exhibiting allergic diarrhea for one h
after OVA challenge (4, 25).

Histological Analysis and Enumeration
of Mast Cells
Intestinal mast cells were enumerated as previously described by
us (26). Tissue sections were stained with chloroacetate esterase
(CAE) and mast cells were counted in complete cross-sections
of jejunum.

Spleen Stimulation
Spleen cells were cultured with medium, 200 mg/ml OVA or anti-
CD3 and anti-CD28 and cytokines were enumerated in
supernatants as previously described (5, 24).

Statistical Analysis
Data are expressed as mean ± SEM, unless stated otherwise.
Statistical significance comparing different sets of mice (between
December 2020 | Volume 11 | Article 606837
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2 groups) was determined by the unpaired Student’s t-test,
whenever applicable. In experiments comparing multiple
experimental groups or time points, one or two-way analysis of
variance was performed followed by the Dunnett test for
multiple comparisons.
RESULTS

Curcumin Inhibits Protein Disulfide
Isomerase Activity and Suppresses IgE-
Mediated Mast Cell Activation
We have previously demonstrated that food-derived substances
such as curcumin can modulate mast cell responses during food
allergy by suppressing their activation and pro-allergic effects (4).
The proper folding and assembly of proteins catalyzed by PDI as
well as their dimerization is a critical component of cellular
function, suggesting that the modulation of mast cell responses
during allergic inflammation may depend on cell-specific
regulation of PDI activity. Furthermore, a number of recent
studies suggest novel roles for dietary PDI inhibitors in
regulating cellular activation and altering disease progression
(27, 28). This includes polyphenolic flavonoids such as the
quercetin-3-glycosides, which have been shown to inhibit PDI
both in vitro and in mice (20). We therefore wondered whether
the effects of curcumin on mast cells may also be mediated via
inhibition of PDI catalytic activity. Using a modified version of
the insulin turbidimetric assay that measures PDI catalytic
activity (20–22), we therefore explored the potential of
curcumin to also inhibit PDI activity (Figure 1A). Curcumin
inhibited PDI activity in a dose-dependent manner, suggesting
that its ability to inhibit mast cell activation in vivo may be
dependent on regulation of PDI activity (Figure 1A). PDI
catalytic activity is highly induced during conditions of ER
stress and upregulation of the unfolded protein response
(UPR). To therefore further assess whether the inhibitory
effects of curcumin on mast cells maybe mediated via PDI
inhibition, we examined its role in IgE-activated mast cells
under conditions of ER stress. One way of inducing ER stress
in cells is to block protein transport using the chemical, brefeldin
A (29). Brefeldin A inhibits transport of proteins from the ER to
the Golgi and induces retrograde protein transport from the
Golgi apparatus to the ER. This results in the accumulation of
unfolded proteins in the ER. Examination of TNF-a cytokine
production by BMMCs after IgE-induced activation using
intracellular cytokine staining revealed a significant decrease in
the generation of TNF-a-producing cells in the presence of
curcumin (Figure 1B). Furthermore, pretreatment of BMMCs
with curcumin prior to activation with IgE and antigen resulted
in a significant decrease in the production of the cytokines IL-4,
IL-6, IL-13, and TNF-a (Figures 1C–F). Collectively, these data
demonstrate that curcumin inhibits PDI activity and its effects on
mast cells may be mediated via PDI inhibition, warranting
further assessment of the role of PDI during mast cell-
mediated responses.
Frontiers in Immunology | www.frontiersin.org 4
Bacitracin Pre-Treatment Modulates
Cytokine Gene Expression and Secretion
in IgE-Activated Mast Cells
The ubiquitous expression of PDI and its importance in protein
folding presents a major challenge to examination of its activity
using gene knockdown strategies. Knockdown of PDI is lethal in
yeast and mammalian cell lines (30) and to date, no viable strains
of PDI knockout mice exist. As such, the functions of PDI both in
vitro and in vivo have often been studied using various small
molecule inhibitors of PDI as well as PDI-blocking antibodies.
To further investigate the role of PDI during mast cell activation
and function, we therefore assessed the effects of pre-treatment
with various PDI inhibitors on mast cell cytokine production
after activation with IgE and antigen. We explored the effects of
three well-established PDI inhibitors to verify they all had the
same effect and corroborate that the process was PDI-dependent.
The following stepwise approach was utilized: assessment of
mast cell function using classic PDI inhibitors such as bacitracin,
examination of the effects of clinically validated PDI inhibitors
such as rutin on mast cells, and confirmation of PDI activity in
mast cells using selective PDI inhibitors such as PACMA-31.

The effects of PDI in cell studies have historically been studied
using the topical peptide antibiotic, bacitracin (27, 31). Bacitracin
is a well-studied, non-selective inhibitor of PDI and blocks PDI
function in the high micromolar range (IC50 of 70µM in insulin
reductase assays) inhibiting disulfide bond formation (32).
Bacitracin is also non cell-permeable (27). Therefore, its effects
on PDI catalytic activity maybe mediated via inhibition of cell
surface PDI. To examine the effects of bacitracin pre-treatment
on IgE-mediated activation in mast cells, BMMCs were pre-
treated with increasing concentrations of the drug overnight
prior to activation via IgE and antigen. The dose-dependent
effects of bacitracin pre-treatment on cytokine were then
assessed. As expected, IgE-mediated activation of BMMCs
resulted in the enhanced secretion of IL-4, IL-6, IL-13, and
TNF-a into cell culture supernatants (Figures 2A–D). In
contrast, pre-treatment with various doses of bacitracin,
resulted in a dose-dependent inhibition of cytokine secretion
(Figures 2A–D), suggesting that bacitracin suppresses mast cell-
mediated cytokine production by inhibiting the activity of PDI
during IgE-induced activation. Similar effects were also observed
on the induction of cytokine gene transcription (Supplementary
Figures 1A–C). These data therefore suggest that inhibition of
PDI activity can suppress the production of cytokines by IgE-
activated mast cells. Furthermore, they also strongly implicate a
role for extracellular PDI activity, as bacitracin is a non-cell
membrane permeable PDI inhibitor.

Rutin Pre-Treatment Modulates Cytokine
Secretion in IgE-Activated Mast Cells
While bacitracin is widely used in research as a PDI antagonist,
its clinical use in vivo is hampered by its low membrane
permeability and adverse side effects such as nephrotoxicity
(27). To therefore further confirm that PDI plays an important
role in mast cell activation, we utilized a second well-established
December 2020 | Volume 11 | Article 606837
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A

B

D E

F

C

FIGURE 1 | Curcumin inhibits PDI catalytic activity and suppresses IgE-mediated mast cell-derived cytokine production. (A) PDI activity was measured using the
insulin-based turbidimetric assay in the absence (red) or presence of 0.3 µM (orange), 1 µM (green), 3 µM (blue), or 10 µM (purple) curcumin. The brown line
represents baseline with DTT in the absence of PDI. (B) BMMCs were pre-treated with 30µM curcumin overnight and activated with DNP-IgE (1µg/ml) and DNP-BSA
(200 ng/ml) in the presence or absence of Brefeldin A (1 µg/ml). Six h later, TNF-a-positive cells were enumerated using intracellular staining. (C–F) BMMCs were
pre-treated with 30 µM curcumin and activated via DNP-IgE and antigen. Supernatants were collected 12 h later and were evaluated for the presence of IL-4, IL-6,
IL-13, and TNF-a by ELISA. Data are representative of three or more independent experiments. ** p < 0.0051; ***p < 0.0005; ****p < 0.0001 (students t-test).
Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 6068375
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inhibitor of PDI, rutin (IC50 6 µM in insulin reductase assays
(27)), in human studies (28, 33, 34). The polyphenolic flavonoid,
quercitin-3-rutinoside (rutin) was recently shown to be a potent
small molecule inhibitor of PDI (20). Quercetin and its
derivatives such as rutin are ubiquitously present in many
fruits and vegetables (27), suggesting that they may have the
potential to modulate mast cell function in a manner similar to
that observed with curcumin (4). To therefore further investigate
the importance of PDI during mast cell activation and confirm
the effects observed above with bacitracin, we also cultured
BMMCs with increasing concentrations of rutin, and assessed
the production of mast cell-derived cytokines. As observed
above, pre-treatment with increasing concentrations of rutin,
also suppressed cytokine gene expression (Supplementary
Figures 1D–F) and the production of mast cell-derived
cytokines in a dose-dependent manner (Figures 2E–H),
suggesting that mast cell activity during immune responses in
vivo may be modulated by the fine-tuning of cell-specific
PDI activity.
Frontiers in Immunology | www.frontiersin.org 6
Pre-Treatment With Bacitracin or Rutin
Suppresses Release of Pre-Formed
Mediators and Influences Long-Term Cell
Survival
Our observations above demonstrating a dose-dependent
suppression of cytokine expression and secretion by PDI
inhibitors are consistent with well-described roles of PDIs as
molecular chaperones during the intracellular generation of
various proteins. To further determine whether PDI is also
involved during mast cell degranulation and the release of pre-
formed mediators, we examined cell culture supernatants
immediately after activation with DNP-BSA, and assessed the
secretion of the enzyme b-hexosaminidase (b-hex) as previously
described (24). As observed in Figure 3A, IgE-mediated activation
induced the secretion of b-hex into cell culture supernatants 15 min
later compared with unactivated controls (Figure 3A). In contrast,
pre-treatment with increasing concentrations of either bacitracin or
rutin, resulted in decreased secretion of this enzyme in activated
cells (Figure 3A). These data suggest that inhibition of PDI can
A B

D E F

G H

C

FIGURE 2 | Pre-treatment with PDI inhibitors suppresses the secretion of cytokines in IgE-activated BMMCs. BMMCs were treated with increasing doses of (A–D)
bacitracin (Bac) or (E–H) rutin (Rut) overnight and activated via IgE and antigen stimulation as in Figure 1. Supernatants were collected 12 h after activation and
ELISAs were performed for IL-4, IL-6, IL-13, and TNF-a. Data are representative of two or more independent experiments. Statistical signifance between multiple
groups was performed using one-way ANOVA with p < 0.0001. Significance for means of groups treated with Bac or Rut compared to mean of untreated cells is
shown above bars representing the groups respectively. *p < 0.03; **p < 0.002; ***p < 0.0002; ****p < 0.0001 (Dunnet's post-hoc test).
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suppress the release of pre-formed mediators from mast cell
granules after IgE-mediated activation. Furthermore, the total
cellular b-hex content was also decreased in cells treated with PDI
inhibitors (data not shown), suggesting that PDI inhibitionmay also
block b-hex production. However, a much smaller effect on the
extent of intrinsic mast cell degranulation was observed
(Figure 3B).

To further investigate the effects of PDI inhibition on mast
cells, we also examined the effects of bacitracin and rutin
exposure on BMMC proliferation and survival as previously
described (24). BMMCs were cultured with IL-3 and SCF, along
with various concentrations of bacitracin, rutin, or vehicle. Their
proliferation and/or survival was followed for 5 days and live
cells were enumerated using trypan blue exclusion. As observed
in Figure 3C and data not shown, co-culture with bacitracin or
rutin for 5 days, resulted in an overall dose-dependent decrease
in BMMC proliferation and survival, suggesting that PDI activity
may regulate mast cell homeostasis and proliferation possibly by
modulating intracellular protein folding during cell growth. This
is consistent with the known roles of PDI as an important
housekeeping protein necessary for cell survival (30). However,
Frontiers in Immunology | www.frontiersin.org 7
treatment with both PDI inhibitors had no effects on cell viability
and proliferation for at least up to 48 h (for the 10µM doses) or
longer (for the 1µM doses) after treatment. At these time points,
percentages of live cells were comparable between groups and no
changes in percentages of dead cells, approximately 10%, were
observed. This confirms that the effects of the PDI inhibitors on
IgE-mediated mast cell activation described above are not due to
cell death but reduction of catalytic activity consistent with
reported observations in other (27).

Suppression of Mast Cell Activation and
Function by the PDI-Selective Inhibitor,
PACMA-31
Lastly, to verify that PDI plays an important role in these
processes, we used a PDI selective compound, shown to have
potent anti-PDI activity in animal studies. Recently, a class of
propynoic acid carbomyl methyl amides (PACMAs) was shown
to have broad-spectrum activity against various cancer cell lines
(18, 35). Of these, the small molecule compound, PACMA-31,
was shown to have irreversible activity against PDI (IC50 of
10µM in animal studies (35)), forming a covalent bond with
A B

C

FIGURE 3 | Pre-treatment with PDI inhibitors suppresses mast cell degranulation and cell proliferation. (A, B) BMMCs were cultured with varying concentrations of
bacitracin or rutin as described above. Mast cell degranulation was assessed by pre-sensitizing BMMCs with DNP-IgE followed by challenge with DNP-BSA.
Supernatants and cell lysates were collected and the b-hex assay was performed. (A) O.D. values correlating to b-hex release in supernatants and (B) percent
degranulation (percent cellular content) of BMMCs is shown. (C) The effects of treatment with PDI inhibitors on BMMC proliferation and survival were assessed.
BMMCs were cultured in triplicates with rIL-3 and rSCF for 5 days in the presence of varying concentrations of bacitracin or rutin and vehicle (DMSO). Cells were
counted daily. Numbers of live cells are shown. Data are representative of 2 independent experiments. *p < 0.05; **p < 0.005 (students t-test). ****p < 0.0001 using
two-way ANOVA between untreated controls and 10µM-treated groups.
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active site cysteines, and exhibited in vivo activity with oral
bioavailability in a mouse xenograft model of ovarian cancer
(35). Furthermore, PACMA-31 has a greater selectivity for PDI
over other thiol isomerases compared to bacitracin. We therefore
investigated whether PACMA-31 would also inhibit PDI in our
confirmatory assays and assessed its effects on mast cell
activation and function in our model. As observed in Figure
4A, PACMA-31 is a potent inhibitor of PDI in cell-free
enzymatic assays and inhibits the insulin reduction catalytic
activity of PDI in a dose-dependent manner. A comparison of
the PDI inhibitory activity of PACMA-31 with curcumin is
shown in Supplementary Figure 2. To further investigate
whether PACMA-31 has similar dose-dependent effects on
functional studies in mast cells, we treated BMMCs with
various concentrations (10µM and 30µM) of PACMA-31. As
observed in the case of bacitracin and rutin above, pre-treatment
of BMMCs with PACMA-31 overnight (Figures 4B–E) resulted
in a significant suppression of mast cell activation as evidenced
by reduced mast cell cytokine production (Figures 4B–D) and
decreased overall mast cell survival (Figure 4E).

Enhanced Secretion of PDI in Activated
Mast Cells
Our data above demonstrates a significant reduction in mast cell
functional activity and activation-induced events such as
cytokine production when exposed to PDI inhibitors,
suggesting that PDI enzymatic activity is induced in mast cells
after activation has occurred. This is consistent with the known
effects of PDI during cellular activation in various cells.
Interestingly, several recent studies have also identified novel
functional roles for extracellular secreted PDI in various cells (16,
36–40). PDI bound to integrins on the surfaces of these cells has
been shown to exert extracellular effects and modulate cellular
function. As such, we wondered whether extracellular PDI is also
secreted by mast cells during IgE-activation and whether cell-
surface PDI may likely be a target of our PDI inhibitors.

To further explore the role ofPDI and evaluate its activity during
mast cell activation,weassessed the expressionofPDI in restingand
IgE-activated BMMCs by quantitative PCR. PDI is the gene
originally identified as the b-subunit of prolyl-4-hydroxylase
(P4HB) that catalyzes the formation of 4-hydroxyproline in
collagen (reviewed in (41)). We therefore assessed the expression
of the P4HB gene in resting and activated mast cells. As seen in
Figure 5A, basal expression of the P4HB gene may be observed in
resting BMMCs consistent with its role as an intracellular
chaperone. However, no further increase in gene expression was
observed in IgE-activated BMMCs a few h after activation,
suggesting that the intracellular transcriptional levels of PDI
remain stable after activation has occurred (Figure 5A). This is
not surprising as it is the increasedenzymatic activity ofPDIandnot
its cellular expression levels that contribute to changes in
cellular function.

The secretion and extracellular activity of PDI in endothelial
cells and platelets is well-established (16, 40, 42, 43), but its
extracellular role in mast cells is unknown. To determine
whether PDI can be detected on the surface of mast cells, we
Frontiers in Immunology | www.frontiersin.org 8
assessed the secretion of PDI using flow cytometry. As seen in
Figures 5B, C, extracellular PDI can be detected on both resting
and activated mast cells, with increased expression being
observed a few min after activation. Quantification of the
median fluorescence intensity of PDI expression revealed a
significant increase in the presence of this molecule on the
surfaces of cells activated with IgE and antigen (Figure 5C).
These data therefore suggest that extracellular PDI is present on
the cell membranes of resting mast cells, where it has the
potential to modulate cellular function via its enzymatic
activity. The secretion of extracellular PDI is further enhanced
soon after IgE activation has occurred. Next, to examine the
levels of intracellular PDI protein in mast cells, we evaluated its
presence in unactivated and IgE-activated mast cells six h after
IgE-activation had occurred. As observed in Figure 5A above,
intracellular PDI was detected both constitutively and in
activated mast cells by flow cytometry (Figure 5D). A small
but demonstrable increase was observed in activated cells,
although the overall levels appeared to be similar (Figure 5D),
consistent with observations of intracellular PDI levels in other
cell types (16, 36, 38–40). This was also confirmed by Western
blot analysis (Figure 5E). These data therefore demonstrate that
PDI is secreted on the surfaces of mast cells, where they may be a
likely target of naturally occurring food-derived PDI inhibitors.

PDI Inhibition During Mast Cell Activation
Is Sufficient to Suppress IgE-Induced
Cytokine Production
The data above suggest that PDI can be secreted by mast cells
after activation, with the potential to modulate downstream
events such as the transcription of cytokine genes. To further
assess the role of PDI inhibition on mast cell activation, we
examined the effects of PACMA-31 pre-treatment on the
expression of the high affinity receptor for IgE, FceRI, on
resting and activated BMMCs. As observed in Figure 6A,
resting BMMCs express high levels of unbound FceRI.
In contrast, pre-incubation with PACMA-31 significantly
decreased the expression of the receptor in BMMCs. In
activated mast cells, the overall intensity of unbound FceRI
expression was decreased as would be expected as a
consequence of saturation by IgE molecules. However, this
was further reduced in PACMA-31-exposed and IgE-
activated BMMCs.

It is possible that in the experiments above, the effects of
PACMA-31 were mediated via inhibition of constitutively
present cell surface PDI. To further investigate the effects of
PDI inhibition during mast cell activation and to determine
whether activation-associated PDI activity can modulate
downstream cellular events, BMMCs were incubated with
PACMA-31 starting 30 min prior to activation with DNP-BSA.
Six h post-challenge with antigen, the levels of cytokines in
supernatants were assessed. As observed in Figures 6B–D, the
levels of TNF-a, IL-6, and IL-13 were suppressed in the
PACMA-31–treated samples compared to untreated controls,
suggesting that inhibition of activation-induced PDI activity may
be sufficient to alter mast cell responses in vivo. Furthermore,
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FIGURE 4 | PACMA-31 inhibits PDI and pre-treatment with PACMA-31 suppresses BMMC proliferation and cytokine secretion in IgE-activated mast cells. (A) PDI
catalytic activity was measured using the insulin-based turbidimetric assay in the absence or presence of various concentrations of PACMA-31. (B–E) BMMCs were
treated with 10µM or 30µM PACMA-31 (P-31) overnight and activated via IgE and antigen stimulation. Supernatants were collected 12 h after activation and ELISAs
were performed for respective cytokines. (F) BMMCs were cultured with rIL-3 and rSCF for 5 days and the effects of PACMA-31 treatment on mast cell proliferation
were assessed. Numbers of live cells at different time points are shown. Data are representative of 3 or more independent experiments. *p < 0.05; **p < 0.005;
***p < 0.001; ****p < 0.0001 (student’s t-test). ‡p < 0.0001 by two-way ANOVA between untreated cells and P-31–treated groups.
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inhibition of PDI was sufficient to attenuate the suppression of
both pre-formed mediators such as TNF-a as well as de novo
synthesized cytokines such as IL-13. To further confirm the
effects of inhibition of cell surface PDI, BMMCs were treated
with an anti-PDI mAb (Abcam), followed by activation via IgE
and antigen (Figure 6E). As expected, extracellular PDI blockade
also resulted in suppression of mast cell-derived IL-13 as seen in
Figure 6E. Lastly, to determine whether PDI blockade by
PACMA-31 during ER stress can inhibit the production of
mast cell-derived cytokines, BMMCs were cultured with
brefeldin A just before activating with DNP-BSA as described
in Figure 1. Pre-treatment of cells with PACMA-31 significantly
attenuated the capacity of BMMCs to produce IL-13 and TNF-a
as shown in Figures 6F to H. Furthermore, the median
fluorescence intensity of both cytokines was also decreased in
PACMA-31-treated cells (Figures 6G–I). These data therefore
Frontiers in Immunology | www.frontiersin.org 10
strongly suggest that IgE-mediated mast cell activation can be
regulated by the catalytic activity of mast cell surface PDI.

PDI Inhibition Suppresses Mast Cell
Responses in a Mouse Model of Food
Allergy
Our data above demonstrate a significant role for PDI during
mast cell activation and function in cell culture. To ascertain
whether blocking PDI activity in vivo will have similar effects on
mast cell responses, we assessed the effects of PACMA-31
treatment in a mast cell-mediated model of intestinal food
anaphylaxis. Briefly, mice were sensitized and challenged with
the egg allergen OVA as previously described (24) (Figure 7A).
Beginning one day prior to challenge with OVA, some groups of
mice were orally gavaged with PACMA-31 suspended in 1%
carboxy methyl cellulose as previously described (4) (Figure 7A).
A B

D
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C

FIGURE 5 | Upregulation of PDI expression in mast cells after activation with IgE and antigen. (A) BMMCs were activated with DNP-IgE and antigen and cells were
collected for RT-PCR analysis after 4 h. Expression of P4HB is shown. (B–D) In other experiments, activated BMMCs or MC/9 cells and controls were examined for
the expression of PDI family members by flow cytometry. (B) Histogram overlay depicting increase in PDI expression in activated BMMCs compared to isotype
control is shown. (C) Plot depicting calculated median fluorescence intensity of PDI expression is shown. (D) Intracellular expression of PDI in fixed and
permeabilized cells is shown. Isotype controls are represented as dashed lines. (E) Western blot for PDI in MC/9 cells. Data are representative of 2 independent
experiments. **p < 0.01 (student’s t-test).
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As observed in Figure 7B, OVA-sensitized and challenged mice
developed profuse diarrhea in comparison with OVA-sensitized
controls. This correlated with an increase in OVA-specific IgE
production as enumerated in the serum (Figure 7C). In contrast,
PACMA-31–gavaged animals did not develop diarrhea and
exhibited decreased serum OVA-IgE levels (Figures 7B, C).

Furthermore, enumeration of mast cells in the small intestine
revealed a significant upregulation of chloroacetate esterase-
positive mast cells in the jejunum of OVA-sensitized and
challenged mice (Figure 7D and Supplementary Figure 3).
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Far fewer mast cells were observed in the jejunae of PACMA-
31–treated animals (Figure 7D and Supplementary Figure 3).
Similarly, the production of murine mast cell protease-1
(mMCP-1) was enhanced in OVA-challenged allergic mice
compared to unchallenged controls (Figure 7E). In contrast,
serum levels of this enzyme were decreased in PACMA-31–
treated mice, suggesting decreased mast cell activation in these
animals (Figure 7E). Furthermore, the expression of various
TH2-type cytokines including IL-4, IL-5, IL-13, IL-9, and IL-10
was significantly reduced in the OVA-challenged PACMA-31-
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C

FIGURE 6 | Evaluation of FceRI expression, cell surface PDI inhibition and ER stress in PACMA-31–treated and IgE-activated BMMCs. (A) BMMCs were cultured
with PACMA-31 overnight and the expression of FceRI was assessed in unactivated and activated cells. Mean fluorescence intensity is shown. (B–D) BMMCs were
treated with 30 mM PACMA-31 for 30 min and activated via IgE and antigen stimulation. Supernatants were collected 6 h after activation and ELISAs were performed
for respective cytokines. (E) BMMCs were pre-treated with anti-PDI mAb for 6 h and activated via IgE and Ag. IL-13 secretion into cell supernatants was assessed
by ELISA. (F–I) BMMCs were pre-treated with PACMA-31 overnight and activated via IgE and antigen. ER stress was induced by adding Brefeldin A during
activation. Intracellular staining was performed 6 h later. (F) Numbers of cytokine producing cells (G–H) representative histogram overlays and (I) Median
Fluorescence intensity for cytokines is shown. Data are representative of 2 independent experiments. *p < 0.05; **p < 0.005; ***p < 0.001; ****p < 0.0001 (student’s
t-test).
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treated group compared to the OVA-challenged controls
(Figures 8A–E).

The data above suggest that PDI activity in vivo may be
enhanced during allergic responses and its inhibition can
modulate mast cell function during food allergy. To determine
whether this correlated with increased expression of PDI family
members in the intestines of allergic mice, we assessed the levels
of P4HB in the jejunae of experimental animals. As expected,
expression of these genes was observed in the intestines of both
controls and allergic animals and unchanged, consistent with
enzymatic inhibition as opposed to decreased expression
(Figure 8F).

Lastly, the effects of PDI inhibition on systemic TH2 cytokine
production were assessed by stimulating spleen cells with
OVA and examining the production of cytokines. As expected,
the production of IL-4, IL-5, and IL-13 (Figures 9A–C)
was enhanced in OVA-stimulated splenic cultures compared
to unstimulated controls. In contrast, no enhancement of
cytokine production was seen in similarly stimulated cells from
PACMA-31–gavaged animals. Also, no differences in IFN-g
production were observed across all groups examined (Figure
9D). A similar pattern was observed in cells polyclonally
stimulated with T cell agonists (Supplementary Figure 4).
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These data therefore suggest that PDI blockade can suppress
TH2-specific cytokine production during allergic inflammation.
DISCUSSION

In this study, we report for the first time an important role for
PDI in the modulation of mast cell homeostasis and mast cell-
mediated allergic responses. Collectively, our data demonstrate
that mast cells express PDI both constitutively and during IgE-
mediated activation. The presence of PDI was also detected in the
intestines of enterally-challenged allergic mice. Blockade of PDI
activity at both the cellular and physiological levels resulted in a
profound suppression of mast cell-mediated responses including
decreased mast cell proliferative capacity, reduced secretion of
mast cell cytokines, and protection from the development of
food allergy.

PDI, a multifunctional ER thiol isomerase, is a 55-kDa
protein that is the prototype of the PDI family of proteins. The
PDI family comprises of 21 members (44). PDI family members
play a critical role in the regulation of protein folding and
assembly, both during physiological homeostasis as well as in
conditions of cellular stress (15). Increased generation of
A
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C

FIGURE 7 | PACMA-31 treatment suppresses the development of food allergy in OVA-sensitized and challenged mice. (A) BALB/c mice were sensitized and
challenged with OVA as shown. Some groups of animals were also gavaged with 300 µg PACMA-31 suspended in 1% CMC. (B) Percent of diarrhea-positive
animals. (C) Serum OVA-IgE levels (D) Numbers of CAE+ jejunal mast cells. (E) Serum mMCP-1 levels are shown. n=7 mice/group. Data are representative of 2
independent experiments. *p < 0.05; **p < 0.01 (student’s t-test).
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unfolded or misfolded proteins during ER stress activates the
UPR, resulting in reduced protein synthesis, an increase in the
ER curvature, and the activation of PDI and other chaperones
(45, 46).

The development of inflammation is thought to activate the
UPR, resulting in the enhancement of protein synthesis and
folding, and consequently increased PDI activity (47). Complex
allergens in particular, such as food-derived proteins, have the
potential to induce ER stress and upregulate the function of PDI
family members (48). Despite this, the effects of PDI on immune
cells has been poorly studied, and very little is known regarding
its functions during allergic inflammation. Interestingly, a recent
study demonstrated a critical role for a PDI family member,
ERp57 in airway allergic responses (49). The expression of
ERp57 was increased in lung epithelial cells in both allergen-
challenged patients and in mice. Deletion of ERp57 in house
Frontiers in Immunology | www.frontiersin.org 13
dust-mite-challenged mice resulted in decreased airway
inflammation and hyperreactivity, accompanied by decreased
disulfide bridges in eotaxin, epidermal growth factor, and
periostin in the lungs of allergic animals. These data suggest
that modulation of PDI activity in vivo can influence the
outcome of allergic sensitization and challenge.

We hypothesized that food-derived substances may have the
potential to modulate mast cell responses during food allergy by
inhibiting the activity of PDI. We have previously shown that
widely consumed dietary components such as curcumin can
suppress mast cell activation and inhibit the development of food
allergy in mice (4). The suppression of mast cells by curcumin in
this model was dependent on the inhibition of NF-kB activation
(4). Similarly, Lee et al. also described anti-allergic effects of
curcumin on mast cells (7). They found that the inhibitory effects
of curcumin on cultured mast cells were mediated via inhibition
A B

D

E F

C

FIGURE 8 | Expression of intestinal PDI in allergic mice and suppression of jejunal Th2 cytokine expression by PACMA-31. BALB/c mice were sensitized and
challenged with OVA. Some groups of animals were also gavaged with 300 µg PACMA-31 suspended in 1% CMC. The expression of mRNA for various cytokines
(A–E), and (F) P4HB was assessed using established Taqman probes and RT-PCR. n=7 mice/group. Data are representative of 2 independent experiments.
*p < 0.05; **p < 0.01 (student’s t-test).
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of Syk kinase activity. In this study, we report the PDI inhibitory
activity of curcumin, suggesting another potential mechanism
for its anti-allergic effects. Since PDI is involved in the formation
of disulfide bonds which is critical for the folding of many
proteins including transcription factors, it is likely that the
previously described suppression of proteins by curcumin and
other dietary substances occurs via inhibition of PDI catalytic
activity. In this context, in addition to curcumin, we demonstrate
that another well-known dietary PDI modulator, rutin, also
inhibits mast cell activation in our model. This is consistent
with reported observations where quercetin and its derivatives,
have been demonstrated to have potent anti-PDI activity in vivo
in various clinical trials (27, 28). In this context, our data suggest
that anti-inflammatory compounds such as curcumin and the
flavonoids, which are ubiquitous in various types of diets
including fruits, vegetables, wines and teas, also have the
potential to alter PDI activity in human mast cells and
suppress the development of allergic inflammation (27, 28, 50).
While we did not specifically examine human mast cells or PDI
expression in these cells in this study, it will be important to
determine whether PDI has similar effects on IgE-mediated
activation in human cells. In this context, interestingly,
quercetin and other polyphenols have been shown to modulate
human mast cell activity in other studies (51, 52).
Frontiers in Immunology | www.frontiersin.org 14
Our data suggests that allergen-induced mast cell activation
may be a likely target of PDI-dependent modulation by dietary
substances, thereby mitigating the overall magnitude of the
allergic response. Dietary PDI modulators may possibly
attenuate the activity of extracellular or cell surface PDI on
mast cells and other immune cells, thereby suppressing
their overall activation, and decreasing the production of
proinflammatory mediators. This was evidenced by treatment
with various PDI inhibitors, which suppressed the IgE-mediated
activation of mast cells and inhibited their degranulation and
cytokine secretion. Furthermore, treatment with PACMA-31, an
orally bioactive, irreversible inhibitor of PDI suppressed mast cell
responses both in cell culture and during the development of
food allergy, suggesting that therapeutic targeting of PDI in
allergic patients may prove to be of benefit. Interestingly, PDI
inhibition also attenuated the long-term survival of BMMCs,
suggesting that modulation of PDI activity in vivo can influence
the homeostasis of mast cells. Nonetheless, the effects of PDI
inhibition on mast cell degranulation and cytokine secretion
were unrelated to its effects on cell viability, as no significant
effects on cellular viability were observed within the first 48 h, i.e.
the percentages of live and dead cells between untreated and
treated groups were comparable at this time point (Figures 3C
and 4F).
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FIGURE 9 | Impaired TH2 cytokine production by spleen cells from OVA-challenged, PACMA-31–treated mice. BALB/c mice were sensitized and challenged with
OVA. Some groups of animals were also gavaged with 300 µg PACMA-31 suspended in 1% CMC. Spleen cells were stimulated with OVA for 72 h. Levels of the
cytokines (A) IL-4, (B) IL-5, (C) IL-13, and (D) IFN-g were enumerated in the supernatants by ELISA. n=4 mice/group. Data are representative of 2 independent
experiments. *p < 0.05 (student’s t-test).
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In this report, we demonstrate for the first time the presence
of PDI molecules on the surface of mast cells. Here, their
enhanced extracellular activity (which can be blocked by PDI
inhibitors) during mast cell activation may modulate
downstream cellular events, contributing to changes in
molecular and cellular function. In this context, cell-surface
specific PDI has been found to be important for the functions
of hepatocytes, endothelial cells, and platelets (27, 53).
Furthermore, PDI has also been shown to be secreted into cell
culture supernatants, which we did not ascertain in these studies
(reviewed in (15)). It is thought that in these locations, PDI
assists with redox protein folding, intramolecular thiol-disulfide
exchanges and isomerization activities, as a result of highly
specific interactions with various substrates. Future studies
aimed at dissecting the contributions of both extracellular and
intracellular PDI to mast cell activation will shed further light on
the mechanisms by which PDI enhances mast cell responses. In
particular, the effects of PDI catalytic activity on the formation of
disulfide bonds in various proteins produced by mast cells or that
activate them will be important to characterize. In this context,
recent studies have elucidated novel roles for the disulfide dimer
histamine-releasing factor (HRF) in mast cell-mediated allergic
responses (54, 55). HRF forms dimers which can cross-link with
IgE on basophils and mast cells and induce the secretion of
enhanced levels of histamine, IL-4 and IL-13. Both increased
levels of HRF-reactive IgE as well as increased numbers of HRF
dimers were found in a recently described study of mast cell-
mediated food allergy (54, 55). Similarly, patients with food
allergy also had increased levels of serum HRF-reactive IgE and
blockade of HRF function in the mouse model as well as oral
immunotherapy in patients inhibited the allergic response (54,
55). In light of our data above, it is possible that the generation of
HRF dimers in vivo may depend on PDI activity, resulting in the
enhanced secretion of these proteins during allergic responses
and the amplification of mast cell-mediated reactions.

The effects of PDI may also extend beyond its known
isomerization activities. For example, recent studies
demonstrate that PDI can increase the levels of reactive oxygen
species (56) thus directly inducing oxidative stress and apoptosis,
as well as activate transcription factors, such as NF- kB and AP-1
(57). In this context, we have previously demonstrated that the
protective effects of curcumin on mast cells are mediated via
inhibition of NF-kB activation (4), whereas another study
demonstrated that flavonoids such as rutin can inhibit reactive
oxygen species in mast cells (51). As such, further analysis of the
effects of PDI inhibition on these and other parameters in mast
cells will help elucidate the roles of PDI in these areas.

Lastly, this study demonstrates that PDI blockade has a
profound effect on mast cell homeostasis (intestinal mast cell
numbers), activation (mMCP-1 levels), and mast cell-mediated
effects such as allergic diarrhea in the IgE and mast cell-
dependent model of OVA-induced food allergy. However,
although we have not examined other immune cell types in
this study, it is likely that the activity of PDI family members is
also altered in other cells during allergic responses. Particularly,
our data in Figure 9 demonstrate that OVA-specific splenic
Frontiers in Immunology | www.frontiersin.org 15
responses are also suppressed in the food allergy model, thereby
implicating a role for PDI in the modulation of allergen-specific
T cells. Future studies aimed at examining the effects of PDI on
various immune cells during food allergy are therefore necessary
to clarify the differential effects of PDI modulation on immune
cells and their contribution to the development of food allergy.

Taken together, our data suggest that PDI and its related
family members may play vital roles in the regulation of mast cell
activation during the allergic response, and that in vivo blockade
of their activity may prove to be of therapeutic benefit in patients
with mast cell-mediated disorders.
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SUPPLEMENTARY FIGURE 1 | Pre-treatment with bacitracin and rutin
suppresses IgE-induced BMMC cytokine gene expression. BMMCs were treated
with increasing doses of bacitracin (Bac) (A–C) or rutin (rut) (D–F) and activated via
IgE and antigen stimulation. Cells were pooled and collected 1 h after activation and
RNA and cDNA were prepared using established protocols. qRT-PCR was
performed using Taqman probes. Expression of genes was calculated relative to
that of GAPDH.
SUPPLEMENTARY FIGURE 2 | Comparison of the percent PDI inhibitory
activity of curcumin and PACMA-31. The PDI inhibitory activity of curcumin
and PACMA-31 were evaluated using the insulin turbidimetric assay. Bar
graphs representing inhibition at the 40 min time point for various doses of the
inhibitors are shown. Significance at each dose was calculated against the PDI
added and untreated control group using one-way ANOVA (p< p=<0.0001).
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SUPPLEMENTARY FIGURE 3 | Histology of small intestine from OVA-sensitized
and challenged and PACMA-31–treated mice. Food allergy was induced in mice by
sensitizing and challenging with OVA as in Figure 7A. Some groups were treated
with PACMA-31 orally. Representative histological images depicting CAE-positive
mast cells is shown for the (A) WT control (B) WT OVA (C) P-31 control and (D, E)
two P-31 OVA groups. Mast cells are shown by an arrow.

SUPPLEMENTARY FIGURE 4 | Impaired polyclonal cytokine production by
spleen cells from OVA-challenged, PACMA-31–treated mice. BALB/c mice were
sensitized and challenged with OVA to induce food allergy. Some groups of animals
were also gavaged with 300 µg PACMA-31 suspended in 1% CMC. Upon sacrifice,
spleen cells were stimulated with anti-CD3 and anti-CD28 for 72 h. Levels of the
cytokines (A) IL-4 (B) IL-5 (C) IL-13, and (D) IFN-g were enumerated in the
supernatants by ELISA. n = 4–7 mice/group. Data are representative of 2
independent experiments. *=p<0.05; **=p<0.01; ***=p<0.0001 (student’s t-test).
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