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Collectivemigration, themovement of groups inwhich individuals affect thebe-
haviour of one another, occurs at practically every scale, from bacteria up to
whole species’ populations. Universal principles of collective movement can
be applied at all levels. In this review, we will describe the rules governing col-
lective motility, with a specific focus on the neural crest, an embryonic stem cell
population that undergoes extensive collective migration during development.
Wewill discuss how the underlying principles of individual cell behaviour, and
those that emerge from a supracellular scale, can explain collective migration.

This article is part of the theme issue ‘Multi-scale analysis and modelling
of collective migration in biological systems’.
1. Collective migration
The annualmigration of the great wildebeest in the Serengeti, a group ofmalignant
cancer cells escaping into a blood vessel, bacteria swarming over solid surfaces to
produce a biofilm: all of these are examples of collective behaviour, which refers
to the phenomenon that an individual unit’s actions are dominated by the influence
of others. More specifically, these are all examples of collective migration, which is
definedby themovementof groupswhereby individuals bothmove in concertwith
one another and affect each other’s behaviour. This differs from individual
migration, whereby movement is undertaken solitarily, and individuals do not
influence each other. The interactions between individuals migrating collectively
leads to emergent behaviour. For instance, birds show patterns of movement that
are only achievedwhen they are part of a flock [1], and swarming bacteria perform
large-scale swirling and streaming motions which are not seen during individual
bacterial migration (which instead, move by swimming) [2,3].

Collective migration can offer distinct advantages over solitary migration.
The swarming behaviour of bacteria, whereby movement of multicellular bac-
terial aggregates is powered by rotating flagella, optimizes the search for
nutrients and other necessary resources [4]. Most invasive cancers infiltrate col-
lectively [5], which defines malignant function, and cancer aggression is likened
more to collective cell migration than to single-cell migration [6]. At the other
end of the spectrum, animals like the great wildebeest must relocate to new
sources of food; their enormous herd size providing protection and a greater
chance of survival from predators during their migration. Collective motion
also appears as an emergent trait in artificial self-propelled particles [7] and
other non-living systems. Thus, collective migration is evident at practically
all scales (figure 1), in both natural and artificial systems.

The universality of this phenomenon [8] has led to intense investigation; col-
lective migration has been studied substantially in animals [1,9], but only
comparatively recently in cells. The fact that collective motion is conserved at
different scales suggests that there may be common, underlying principles
that govern the movement of groups. It has long been noted in animals that
there is a remarkable degree of long-range organization that cannot be apparent
to each individual, meaning there must be some degree of leadership or com-
munication [10]. Likewise, embryonic morphogenesis involves large-scale
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Figure 1. Collective migration at all scales. Collective migration is found at practically all levels, from self-propelled particles to bacteria, cancer and animals.

Box 1. Definitions of the three rules of collective migration.

Attraction: a behaviour that causes individuals to steer
towards the centre of mass, which is the average pos-
ition of individuals within a certain radius.
Repulsion: the behaviour that causes individuals to steer
away from all its neighbours.
Alignment: a behaviour that causes an individual to line
up with individuals close by, such that it moves with the
averaged heading of the nearby individuals.
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tissue movements that presumably require cells to direct one
another because communication and influence are necessary
to organize large groups.
2. Rules for collective migration
Altogether, the combinedempirical evidence and computational
simulations of collectivemotionofdifferent entities suggests that
three ‘rules’ are sufficient to describe and explain collective
movement: repulsion, attraction and alignment (box 1).

Firstly, repulsion,whereby individuals separate to avoiding
crossing neighbours, is exhibited between all individuals of
the group. Individuals cannot exist in the same space as one
another; rather, they are loosely connected. Secondly, the
group’s cohesion is driven by individuals being attracted to
one another, which means that individuals steer towards the
average position of neighbours, which ensures that the group
migrates collectively rather than individually. Repulsion is
finely balanced with attraction to maintain the integrity of
the group as a loose collective [11]. Thirdly, the movement of
neighbouring individuals is aligned, meaning they coordinate
motion andmove in the same direction (the average heading of
neighbours). For example, starlings decide their orientation
from only the six or seven closest birds [12]. When neighbour
velocities are not aligned, the group becomes disorganized
and collective motility is impaired. The ubiquity of these
‘rules’ has led to intense investigation. For example, these prin-
ciples form the basis of a multiplicity of mathematical models
that are used to study collective motion. One of the first simu-
lations of collective motion was an artificial program called
Boids, which simulates the flocking behaviour of birds [13].
Since then, the principles of swarm intelligence, the collective
behaviour of self-organized systems, has even been employed
in artificial intelligence, such as robotics [14]. In this review, we
will focus on how these rules work during collective cell
migration, and how they fit with phenomena that emerge at
a higher level: that of the whole migratory group.
3. Collective cell migration: epithelial versus
mesenchymal cells

Collective cell movements underly many developmental
and pathological processes including embryonic morpho-
genesis, wound healing and diseases like cancer invasion
[15,16]. During collective cell migration, many cells move
together, cooperatively and coordinately, in a manner simi-
lar to that of animals. To a large degree, the behaviours
exhibited depend on the type of cells that are moving: collec-
tive migration events can involve epithelial sheets with cells
retaining apicobasal polarity markers, including strong,
stable intercellular junctions; alternatively, they can involve
the cooperative interaction between looser mesenchymal
cohorts mediated by transient adherens junctions (figure 2)
[16].

Epithelia are normally quiescent, with cells ‘jammed’ in
their respective positions, lacking the energy to overcome
high junctional tension. Fluidization of the tissue via an
unjamming transition in which tension is reduced [17] per-
mits collective motility of large epithelial groups, such as
those cells involved in wound healing [18] or cells from asth-
matic airway epithelium [19]. During such large-scale
movements, cell adhesion is high, and the group remain
tightly bound, and all cells contribute equally to the
group’s movement [20–24]. For example, leader and follower
cells produce protrusions oriented in the direction of
migration, and both produce traction forces that pull on the
substrate [23,25–27]. The arrest of cellular monolayers can
also be driven by strong cell–cell binding [28].
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Figure 2. Collective migration of epithelial cells and mesenchymal cells. Epithelial migration can arise from an unjamming transition of quiescent epithelial sheets.
Such unjammed, motile epithelia display packs of collectively migrating cells ( purple cells), while maintaining strong intercellular junctions (dark brown rectangles)
and epithelial markers, such as E-cadherin. Epithelial migration is also evident in wound healing. Leader cells tend to form large forward-facing protrusions, with
follower cells also contributing significant traction forces to move the sheet forward (teal rectangles). Mesenchymal migration can arise from an epithelial-to-
mesenchymal transition, in which cells (green cells) lose apicobasal polarity in favour of front-rear polarity, and intercellular adhesions become weaker and
more transient (light brown rectangles), which is associated with a change in gene expression, such as E-cadherin being replaced by N-cadherin. Whereas
leader cells form strong focal adhesions, follower cells do not. The black arrow indicates the direction of migration.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190387

3

By contrast, mesenchymal cells, such as the mesendoderm
(also called the prechordal plate) or neural crest, display front-
rear polarity with weaker, more transient cell contacts, which
may redirect protrusion formation contributing to the overall
directionality [16]. This allows them to migrate as a loosely
connected pack [29]. Mesenchymal migration is, therefore,
far more akin to the type of collective motion observed in
animals, bacteria and synthesized self-propelled particles
than epithelial migration is. Consequently, the three conserved
‘rules’ of collection motion are likely to be more applicable to
mesenchymal migration than to epithelial migration.

Surprisingly, the concepts that emerge from the studyof cells
reveal that the types of interactions, behaviours andmovements
are like those of collectivelymoving animals. Repulsion between
cells arises as a consequence of the formation of cell–cell contacts
between individuals, and it has been observed in the collective
migration of mesenchymal cell populations like the neural
crest [30–32], the mesendoderm [33,34] and cancer cells
[35–37]. By contrast, in epithelia, repulsion does not occur as
cells are tightly held together by strong intercellular junctions.

Group cohesion arises when cells express both a ligand
and its receptor. This leads to cells being mutually attracted
to each other [38,39]. For example, Dictyostelium amoebae
secrete the chemoattractant cyclic AMP (cAMP), which
encourages aggregation [40], whereas mutual cell attraction
is not required in epithelial cells because they maintain
strong intercellular adhesions which keep them together.

Finally, in all the cases, cell motion is aligned [41–43]. For
instance, Xenopus axial mesoderm cells move in the same
direction as one another [43]. Surprisingly little is known
about the mechanisms governing cell alignment, despite it
being essential for collective motion. In some cases, such as
the collective migration of keratinocytes in vitro, alignment
is partially a consequence of each individual cell responding
to growth factor signals, although this also does not totally
account for their coordinated alignment [44]. Likewise, the
orientation of daughter cells following mitosis can form
locally ordered regions [45], but this does not explain the
aligned motion of non-proliferative cells. Instead, coordi-
nation of motion requires direct or indirect communication
between cells of the migrating group.

Various models of self-propelled particles and inelastic
collisions between particles have demonstrated that collision
properties affect alignment [46–49]. The collision properties
of certain malignant cancer cells also mediate the alignment
of cell motion. Cells at the edge of the group have more pro-
pulsion than those in the centre because they experience less
contact inhibition of locomotion—a mechanism of cell repul-
sion that repels cells away from cell–cell contacts—which
leads to edge cells having stronger alignment interactions
compared with those at the centre of the cluster [50].

In fibroblasts, cell collision guidance,which refers to the reor-
ientation of cells to one another after collision, is vital for
generating long-range alignment patterns in a mechanism that
involves suppression of the actomyosin machinery at the cell
contact [51]. A consequence of this behaviour is the generation
of an anisotropic extracellular matrix (ECM) [51], which then
feeds back to cell alignment. For instance, contact guidance,
which refers to the response of cells to the underlying substrate
or hard boundaries, can mediate the orientation of cells [52,53].
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Figure 3. Neural crest migration. The neural crest form at the border of the
neural plate (top of the embryo), and then collectively migrate ( pink arrow)
toward the pharyngeal arches (bottom of the embryo). The green areas cor-
respond to cranial neural crest migration, the yellow to cardiac neural crest
migration, and the purple to trunk neural crest migration, which must
move over the somites (brown ovals). When they reach the pharyngeal
arches, they differentiate into a variety of cell types and contribute to
many tissues and organs, including the craniofacial structures, the outflow
tract, dorsal root ganglia and the enteric nervous system.
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Thus,mutual alignmentbetween fibroblasts andunderlying col-
lagen fibres produces a long-range ordered cell pattern [51,54].

The surge of research into collective migration over the
past decade has led to various simulations being developed.
Computational models that simulate collective cell migration
in a variety of morphogenetic processes have also shown that,
like for animal migration, repulsion is needed [55,56]. Likewise,
spontaneous emergent coordinated patterns of movement, such
as streaming and swirling, arise in models as a consequence of
the inherent cellular behaviours involved in contact-dependent
repulsion, such as cell repolarization [57–62].

Although collective migration can be simulated in various
ways, the enormous availability of quantitative biological
data on cells means quantitative mathematical models which
incorporate experimental values can be of great benefit to
understanding the relationship and relative importance of
various parameters, such as attraction, repulsion and align-
ment. The quantitative information from cell dimensions, cell
trajectories (such as velocity and persistence) and gene
expression are all parameters that can be incorporated into
models to test their relative contribution to collective behav-
iour. For example, quantitative modelling was important
in concluding that although aligned fibroblasts are more
persistent in their movement, this was insufficient to drive
alignment and lead to anisotropic ECM [51].

Interestingly, many different experimental and theoretical
studies have described that directional movement by chemo-
taxis is enhanced when cells cooperate as a group compared
to if they responded as individuals, including neural crest
cells, lymphocytes and breast organoids [63–66]. Thus,
theory and empirical observations have shown that these
simple interaction rules are sufficient to generate the mechan-
isms responsible for emergent group migratory properties
and highly efficient collective behaviour [1,67].

4. Collective migration of neural crest cells
Many of the cellular mechanisms responsible for controlling
these ‘rules’ have been discovered in a model system for col-
lective mesenchymal migration: the neural crest [68]. The
neural crest is a multipotent stem cell population of ver-
tebrate embryos. It is initially formed from the ectoderm, at
the border of the neural plate. It then delaminates and under-
goes extensive migration to colonize the pharyngeal arches
on the other side of the embryo, where they contribute to
many different tissues (figure 3) [69]. Different subpopu-
lations of neural crest arise from and inhabit different
regions along the embryo. For example, the cranial neural
crest contributes most of the tissues that make up the cranio-
facial structures, including bones of the skull, cartilage and
connective tissue of the nose and the underlying nerves.

Most neural crest migrate collectively as chains, in streams
or as sheets [68,70], in a manner that has been likened to inva-
sive cancers [71,72]. For example, cephalic neural crest cells
maintain short and long-range cell–cell interactions [73]. Like
other cell types that have the capacity to migrate both collec-
tively and individually, overall movement is faster and more
directional when the cells migrate as a group [64,65], which
indicates that interactions between individuals of the group
promote directionality [73]. Interestingly, the emergence of
improved efficiency of motion in collectives, compared to indi-
viduals, is also evident at other scales; collective bacterial
swarming is more efficient than solitary swimming [4,74].
Similarly, chicks of king penguins, larval damselfish and
pigeons all move straighter, faster and via more efficient
routes when moving as a group rather than alone [1,75–78].

Repulsion between neural crest cells is mediated through
contact inhibition of locomotion (CIL; figure 4a), which refers
to the phenomenon by which colliding cells repolarize and
move away from each other [79,80]. CIL is the driving force
for the collective cell migration of many different cell types
[30,80–82]. The mechanism by which CIL occurs depends
on the type of migratory cohort, but in the case of the
neural crest it involves N-cadherin, ephrins and planar cell
polarity signalling from sites of cell–cell contact, which
leads to high levels of RhoA at the contact and high levels
of Rac1 away from the contact [30,31,83]. These small
GTPases regulate adhesive forces such that cells pull away
from each other [84].

Theattractionbetweenneural crest cells ismediatedbyshort-
range chemotaxis (also called co-attraction; figure 4b). Each cell
within the group expresses both chemoattractant, C3a, and its
cognate receptor, C3aR, meaning cells are attracted to each
other [38]. A balance between the repulsive and attractivemech-
anisms is essential for collective migration, ensuring the neural
crest is maintained as a loosely connected migratory group,
which behaves in a fluid-like manner [85]. When the attraction
is too strong, the group fails to move; when repulsion is too
strong, the cells disperse away from each other, and migration
becomes individualistic rather than collective [11,38,86].

Finally, cell tracking and particle image velocimetry has
revealed that there is alignment of motion during collective
neural crest migration, with neighbouring cells tending to
move in the same direction at a similar speed (figure 4c)
[41,42]. The mechanisms governing aligned cell movement
are unclear, but likely involve space limitations and the fact
that cells are adhered to one another. Also, N-cadherin-
dependent adhesion junctions form between colliding cells,
meaning that through physical attachment, cell movement
is aligned until the repulsion stage is reached [79]. This is
further supported by theoretical and experimental evidence,
which shows that the emergence of persistently polarized col-
lective cell movements when they are under confinement can
arise from CIL between colliding cells [59]. Dictyostelium cell
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Figure 4. Cellular mechanisms of the three ‘rules’ of collective migration. (a)
Two colliding cells (black dotted lines) repolarize and move away from each
other (black arrows) by contact inhibition of locomotion. Purple regions rep-
resent the local activity of Rac1 at the leading edge and brown regions
represent the local activity of RhoA at the cell rear. (b) Two cells are mutually
attracted by C3a-dependent chemotaxis. (c) Two colliding cells move together
for a short period of time after colliding, and before repulsion. This is one
mechanism that drives the alignment of cell motion.

Figure 5. Supracellular migration of the neural crest. A group of neural crest
cells (green circles) migrate forward by chemotaxis (grey arrow; chemotactic gra-
dient is purple background). The mechanism for this directed movement relies
on a supracellular contraction force at the rear (red arrows), driven by a plur-
icellular actomyosin cable (red). Contraction is inhibited by chemoattractant at
the front. This rear force causes cells to intercalate forward (black arrows),
moving to the front before becoming mechanically connected at the edge.
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alignment in collective migration is, in part, directed by the
induction of a new leading edge from cell–cell contact and
the accompanying forward protrusion, which has been
called contact activation of locomotion (or contact following
of locomotion) [39,87], indicating that the effects of cell
collision may be more multifaceted than initially thought.
5. Directional collective migration requires
external cues

Unlike the motion of some animal groups, like many shoals
of fish, or synthetic self-propelled particles, collective cell
migration normally displays persistent long-range directional-
ity. However, whereas collective motion emerges from the
‘rules’ outlined above, when cells are confined, overall net dis-
placement does not, because these ‘rules’ alone do not confer
front-rear polarity on the group, nor necessarily a mechanism
by which to move in a persistently directed manner. This
implies that there are mechanisms of guidance. For the
neural crest, it is the cell’s interaction with the surrounding
environment that directs their persistent directionalmovement.
The directionality of neural crest migration is dependent on
collective chemotaxis [64], which refers to the movement of a
cell group along a gradient of soluble chemical cues. Various
chemokines and growth factors have been identified for
neural crest migration in different species and subpopulations
[88]. InXenopus and zebrafish, placodal cells, which give rise to
structures of the sensory nervous system, secrete the chemo-
kine SDF1 (also called CXCL12), which attracts cranial neural
crest cells [89]. The neural crest expresses its cognate receptor,
CXCR4, causing it to ‘chase’ after the placodes by collective
chemotaxis. CIL mediates repulsion between the cell popula-
tions, meaning the placodal cells ‘run’ away [89]. This ‘chase
and run’ mechanism results in the directional movement of
both populations. Computational and experimental evidence
supports the idea that collective migratory streaming exhibited
by the neural crest is an emergent property based on the com-
bined interactions of neural crest cells with each other andwith
the placodes [90]. Chemotaxis similarly mediates the direc-
tional migration of most of the other collectively migrating
cell populations, including border cells [91], the posterior lat-
eral line primordium [92], tracheal cells during branching
morphogenesis [93,94] and endothelial cells during angiogen-
esis [95]. Non-artificial systems of collective migration also rely
on external signals to direct motion; bacterial swarming is a
chemotactic response to nutrient gradients, and many animal
groups move along food gradients [96,97].

A variety of other mechanisms also play a role during
neural crest migration [98]. Repulsive signals, including
ephrins, semaphorins, extracellularmatrixmolecules like versi-
can and the BMP antagonist, DAN, exist between the neural
crest to confine them into streams, promoting directional
migration and preventing ectopic neural crest invasion
[86,98–101]. Mechanical signals of mesoderm stiffness are
sensed by the overlying neural crest to controls its migration;
it can only migrate when the mesoderm is rigid and not
when it is soft [102], meaning both chemical and mechanical
signals control collective neural crest migration. Confinement
of neural crest cells also promotes directional persistence by
optimizing density based on the parameters of CIL and co-
attraction [86]. Thesemechanisms all work together to regulate
neural crest cell migration [103], but they are not exclusive to
the collective migration of neural crest: sensing of mechanical
signals, chemorepellents and confinement also control
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Figure 6. Stages of supracellular neural crest cell migration. (a) Cells at the edge of the cluster are linked by an actomyosin cable (red). The cable contracts at the
rear (red cable, red arrows indicate contraction) but not at the front. (b) All cells at the rear are brought closer together, causing cells to intercalate forwards (blue
cells intercalation as pink cells move closer together; movement is black arrow). (c) The intercalating cell (blue) makes contact with the unpolarized cell in front
(yellow), causing it to polarize, producing protrusions forward. This occurs by CIL (orange inhibition symbol). (d ) This cell (yellow) then moves forward, propagating
the signal to the cells in front (brown cell), and so forth. Thus, an anterograde wave of aligned forward cell flow emanates from the rear of the cell cluster.
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collective cell migration in other systems [104–107], and exter-
nal attractive and repulsive cues are easily analogous with
collective movement at other scales.
6. Supracellular mechanism of collective
chemotaxis

At all scales, although the three rules of attraction, repulsion
and alignment can generate collective motility, they are insuf-
ficient to explain persistent directional collective migration;
instead, external signals are required to direct movement.
For the neural crest, collective chemotaxis to placodal cells
secreting SDF1 is essential in determining directionality
[64,89,90]. The mechanism by which the cranial neural crest
of Xenopus and zebrafish undergo collective chemotaxis has
been recently elucidated; this shows that the neural crest
move by supracellular migration, which is a type of collective
migration whereby movement can be better described by the
behaviour and activity of the group as a whole rather than by
the individuals of which it is comprised [108].

Neural crest cells at the edge of the group are mechanically
connected by a multicellular actin cable, seemingly via N-
cadherin adherens junctions across cell contacts [42]. The actin
cable is associated with the motor protein, non-muscle
myosin II, which exerts contractile force synchronously between
adjacent cells at the rear of neural crest groups. At the front,
contraction is inhibited by neural crest chemoattractants such
as SDF1 or PDGF [42]. This contraction forces cells to intercalate
forwards from the rear, with a knock-on effect causing those
cells in front of them to move forward (figure 5). Overall,
this causes cells in the group to flow forward, and they do so
with liquid-like behaviour thanks to loose N-cadherin-
dependent cell adhesions that are rapidly turned over [85].
Thus, a physical supracellular mechanism coordinates
long-range collective chemotaxis of neural crest cells.

Alongside contractile forces traction forces also contribute
to the directed migration of collective chemotaxis. Cells at the
free edge have larger protrusions than those in the centre [83],
and SDF1 enhances Rac1 activity in leading cells [64],
meaning traction forces are higher at the front than anywhere
else. High traction at the front and high contraction at the rear
likely work together to move the group forward, in a similar
way to how single cells move [109], therefore, making the
cluster act like a ‘supracell’ [108].
7. Integrating individual rules with supracellular
behaviour

How do the three rules that govern collective cell migration
(i.e. attraction, repulsion and alignment) espouse those at
the supracellular level? Supracellular contractile forces make
neighbouring neural crest cells come closer together
(figure 6a) [42]. These forces cause cells to intercalate for-
ward from the rear (figure 6b, blue cell). This intercalation
at the rear of the cluster moves this rear cell forward, increas-
ing the contact with the cell immediately in front of it which
was unpolarized (figure 6b, yellow cell). This increased con-
tact leads to a CIL response in the front cell favouring its
forward polarity (figure 6c, yellow cell). This polarized
cell will move forward, contacting other cells and inducing
the same cycle of polarization by CIL leading to the propa-
gation of a forward wave of movement [42] (figure 6d).
Interestingly, the movement of edge cells into the middle
was also observed and modelled in collective malignant
cancer cell chemotaxis [50].

The mechanism of supracellular contractility, therefore,
complements the rules of collective motion. In the absence of
an actomyosin cable, the neural crest are motile but do not dis-
play chemotaxis, which indicates it is required for directed
movement but not clustermotility [42]. Supracellular contracti-
lity supports co-attraction, by forcing cells to move together. In
doing so, colliding cells form cell adherens junctions and often
move together before the repulsion phase of CIL. Thus, con-
tractility promotes the alignment of neighbouring cell motion
by promoting CIL to generate directed flow. This enhancement
of CIL may explain why clusters of neural crest cells are more
persistent and directional than cells that move alone [64].
Cell flow is also dependent on the group’s low intercellular
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adhesion strength [83,85]. In support of this idea, mathematical
modelling has shown that collective movement can be heavily
modulated by changing CIL parameters. Finally, the supracel-
lular polarity of traction forces likely also contributes to aligned
cell movement in the group [83,84].

The role for supracellular behaviour may be different in
other systems. However, similar to the neural crest, the acto-
myosin network is highly organized across epithelial sheets
during wound healing, including a supracellular actomyosin
cable at the wound edge that is required for coordination of
cell movements and to prevent scarring [110,111].

8. Conclusion
There is substantive evidence that repulsion, attraction and
alignment are sufficient for the collective movement of animals,
and equivalent behaviours have been described for the collec-
tive migration of many cell types, especially mesenchymal
cells.We are nowalso beginning to understand themechanisms
by which directed movement emerges. The mechanism of
directedmigration for the neural crest is supracellular, however,
it remains an interesting and open question as to whether
supraorganismal behaviour exists. Like in cells, the long-
range direction can be imparted through communication
between individual animals within a group, and leader and fol-
lower individuals can emerge [112]. In some animal groups,
individuals do not take on specific roles of leaders and fol-
lowers; instead, directed movement is imparted by each
individual knowing how much local food there is [112].
Unlike in cells, animals do not have a physical structure that
coordinates their directedmovement; instead, group awareness
and behaviour can emergewhen organismsmovemore quickly
in unfavourable environments; this modulation of speed as a
function of local conditions allows the group to detect gradients
even when any particular individual cannot [112]. These indi-
vidual-to-individual behaviour differences result in fluid-like
movement similar to that of supracells, which suggests some
collective animal migration may be better understood at the
level of the group.And in the case of animals, there is also grow-
ing evidence that migratory animals use social cues and that
collective factors can shape movement [112].

The cellular mechanisms by which alignment arises are
also unclear. Although CIL can contribute to cell alignment,
whether this is the predominant, or only, mechanism by
which alignment occurs is not known. Given alignment
only constitutes a portion of the CIL response, it is likely
that other methods of cell–cell communication contribute to
aligned motion.
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