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Abstract: Coronaviruses are very large RNA viruses that originate in animal reservoirs and include
severe acute respiratory distress syndrome (SARS) and Middle East respiratory syndrome (MERS)
and other inconsequential coronaviruses from human reservoirs like the common cold. SARS-CoV-2,
the virus that causes COVID-19 and is believed to originate from bat, quickly spread into a global
pandemic. This RNA virus has a special affinity for porphyrins. It invades the cell at the angiotensin
converting enzyme-2 (ACE-2) receptor and binds to hemoproteins, resulting in a severe systemic
inflammatory response, particularly in high ACE-2 organs like the lungs, heart, and kidney, resulting
in systemic disease. The inflammatory response manifested by increased cytokine levels and
reactive oxygen species results in inhibition of heme oxygenase (HO-1), with a subsequent loss
of cytoprotection. This has been seen in other viral illness like human immunodeficiency virus
(HIV), Ebola, and SARS/MERS. There are a number of medications that have been tried with some
showing early clinical promise. This illness disproportionately affects patients with obesity, a chronic
inflammatory disease with a baseline excess of cytokines. The majority of the medications used in
the treatment of COVID-19 are metabolized by cytochrome P450 (CYP) enzymes, primarily CYP2D6.
This is further complicated by genetic polymorphisms of CYP2D6, HO-1, ACE, and ACE-2. There is a
potential role for HO-1 upregulation to treat/prevent cytokine storm. Current therapy must focus on
antivirals and heme oxygenase upregulation. Vaccine development will be the only magic bullet.

Keywords: SARS-CoV-2; COVID-19; cytokine storm; HO-1; ACE-2; ACE-2R; Genetic polymorphisms;
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1. Introduction

SARS-CoV-2 is a betacoronavirus, an RNA virus that shares the same subgenus as severe acute
respiratory distress syndrome (SARS) [1]. Human coronaviruses include the common cold and are
generally inconsequential. Both SARS and Middle East respiratory syndrome (MERS) came from
animal reservoirs and caused global epidemics. Coronaviruses are large viruses and include alpha, beta,
delta, and gamma subgroups, with alpha and beta affecting humans [2]. The early presenting signs and
symptoms of the coronavirus are very non-specific [3]. SARS-CoV-2, the virus that causes COVID-19,
has a tremendous ability to bind porphyrins with even stronger affinity than ACE-2 receptors, resulting
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in the upregulation of free heme, an oxidant, and severe reactive oxygen species (ROS) formation,
and decreased levels of heme oxygenase-1 enzymes (HO-1) [4]. Some have found these assertions
controversial [5] but these findings may provide insight into the pathophysiologic process occurring
with COVID-19 infection and possible treatment options.

The HO system, which comprises HO-1 (inducible) and HO-2 (constitutive), which degrade heme
to free iron (increased ferritin synthesis), bilirubin (antioxidant), and carbon monoxide (antiapoptotic)
is critical in its primary role in cellular defense is involved in a variety of crucial physiological functions.
These include cytoprotection, anti-inflammation, anti-oxidative effects, apoptosis, neuromodulation,
immune-modulation, angiogenesis, and vascular regulation [6]. Increased levels of HO-1 expression
also results from numerous forms of stress, including smoking, cytokines, hypoxia, heme, oxidative
stress, heat shock, ROS, nitric oxide (NO), cAMP, and oxidized lipids [6].

2. COVID-19 Increases Free Heme and Decreases Functional Hemoprotein

COVID-19 produces a severe systemic inflammatory reaction, likely the result of increased free
heme levels and decreased levels of HO-1 activity and functional hemoprotein. The spike protein of
COVID-19 binds ACE-2 receptors (Figure 1) and porphyrin molecules with weak and strong affinity,
respectively [7]. Porphyrins are the building blocks of heme and allow COVID-19 access to invade
cells along with ACE-2 receptors and bind functional hemoprotein within the cell [7]. The resulting
COVID-porphyrin complex may lead to an impairment of HO-1 function and an upregulation of
pro-inflammatory free heme and iron, which overwhelms the anti-inflammatory cytoprotection of
HO-1 [6].
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Figure 1. This represents the spike protein of the COVD-19 virus. The spike enters the cell through the
ACE-2 receptor. The spike is subsequently cleaved by the following proteases, transmembrane serine
protease 2 (TMPRSS2), and FURIN, creating an active COVID-19 infection.

COVID-19 infects cells with low ACE-2 receptor concentration [low ACE-2R] and high [ACE-2R]
with worse outcomes occurring in high [ACE-2R] cells because COVID-19 has a high affinity for the
porphyrin substrate on hemoprotein within the cell, which causes a decrease in functional intracellular
hemoprotein levels (Figure 2). Thus, COVID-19 produces clinical signs and symptoms mainly affecting
high [ACE-2R] organs such as the lungs (endothelium), kidney, liver, gastrointestinal (GI) tract, testes,
and heart [8].
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Figure 2. COVID-19 infects the cells. COVID-19 increases free heme and free iron (Fe), but more
importantly, decreases functional hemoprotein. (Left) Unbound COVID-19 binds to porphyrin within
the cell membrane with high affinity, providing entry into the cell. Iron and oxygen are released
forming a COVID-19-Porphyrin complex. The COVID-19-porphyrin complex competitively inhibits
heme oxygenase (HO-1) leading to severe oxidative stress from free heme and iron, and subsequently
downregulates HO-1 gene expression. (Right) Unbound COVID-19 binds ACE-2 receptor with lower
affinity than porphyrin, and upon internalization into the cell, binds to the porphyrin substrate of
hemoprotein within the cell. The result is a malfunctional hemoprotein, and with the release of iron
and oxygen, a COVID-19-porphyrin complex. The consequences of increased free heme and iron along
with decreased HO-1 levels, inhibition of HO-1, and decreased functional hemoprotein levels have
detrimental effects to the infected cells. Key: oxygen = O2, carbon dioxide = CO2, electron transport
chain = ETC, hydroxide = OH−.

3. How COVID-19-Cytokine Storm Inhibits HO-1

Inhibitors of HO activity are metalloporphyrins, which do not carry an iron molecule but are
replaced by tin, chromium, or zinc, inhibit the rate limiting enzyme heme oxygenase [9–15]. Tin (Sn4+)
has been used to lower bilirubin levels in newborns to treat hyperbilirubinemia in newborns [6].
HO-1 cleaves the tetrapyrrole ring at the methylene bridge to produce carbon monoxide (CO) biliverdin,
and iron [6,16]. Biliverdin is reduced to bilirubin by biliverdin reductase in mammals. Since COVID-19
binds porphyrin and removes iron and oxygen to form a COVID-19-Porphyrin complex, it can behave
as a metalloporphyrin and competitively inhibits HO-1 (Figure 3) [17].
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Figure 3. As more COVID-19-Porphyrin complexes are being produced the competitive inhibition
increases, eventually out-competing heme leading to increasing reactive oxygen species (ROS) formation.
The result is less production of ferritin, Fe, bilirubin, and carbon monoxide (CO). This may be part
of the reason why COVID-19 patients have fluctuations in ferritin and bilirubin, which are measurable
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inflammatory markers. Furthermore, free iron release from the binding of COVID-19 to porphyrin
increases ferritin even when HO-1 is inhibited. The end result is increased free heme and iron that
leads to severe oxidative stress causing decreased HO-1 gene expression and competitively inhibited
HO-1 enzymes that were previously active. Key: p38 mitogen-activated protein kinases = P38 MAPK,
nicotinamide adenine dinucleotide phosphate (NADP+/NADPH).

4. COVID-19 Induction of ALAS-1/2

The COVID-porphyrin complex leads to an upregulation of pro-inflammatory free heme
production presumably by inducing delta-aminolevulinic acid (ALAS-1/2), the first step and rate
limiting enzyme in the synthesis of the heme pathway [18]. Since COVID-19 is able to bind heme at
the porphyrin binding site, it reduces the amount of functional hemoprotein, potentially inducing
ALAS-1/2 to produce more heme as a result of a negative feedback loop (Figure 4). ALA synthetase
and porphobilinogen deaminase (PBGD), which are present in both adipocytes and red cells maintain
heme levels. ALAS-1/2 increases heme degradation by HO-1 [19]. COVID-19 produces dysfunctional
hemoproteins and dysfunctional porphyrin that are no longer capable of making heme. This leads
to more hemoprotein available for COVID-19 to bind to, which leads to the release of more free
iron, and as a result, increased inflammation [6]. In addition, the iron released by dying cells has
additive toxic effects. Murine models of HO-1 deficiency demonstrate a loss of stress defenses and
increased toxicity from free iron [20–22]. Humans with HO-1 deficiency resulted in death at an
early age [23,24], as a result of lack of stress defenses [25], tubular injury [24], hemolysis, nephritis,
and asplenia [26]. The increased inflammation leads to severe oxidative stress which further decreases
HO-1 gene expression [6]. Drugs currently being used to treat COVID-19 patients include Chloroquine,
Hydroxychloroquine, Azithromycin, and Remdesivir are all cytochrome P450 (CYP) inhibitors [27],
although Remdesivir has only shown this for in vitro activity by Gilead Sciences as described in the
Remdesivir (GS-5734) investigator’s brochure, Edition 5, 21 February 2020 and listed in the NIH
COVID-19 Treatment Guidelines, Since these drugs downregulate CYP, which has a heme moiety,
this decreases the demand for heme production [28]. The success of these drugs is likely attributable to
the fact that they all inhibit CYP production which results in lower heme production [29].
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Figure 4. The porphyrin synthesis pathway in relation to COVID-19. The porphyrin synthesis pathway
displaying COVID-19 binding the end product, hemoprotein, which binds non-enzymatically to
porphyrin causing upregulation of heme production as a result of negative feedback due to a decrease in
functional hemoprotein. This leads to increased free heme, decreased functional hemoprotein, and the
release of toxic iron, resulting in tissue injury. Key: CoA = coenzyme A, ALA = delta-aminolevulinic
acid, and HMB = hydroxymethylbilane.
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5. Consequences of Hemoprotein Malfunction/Deficiency

The consequence of COVID-19 binding the porphyrin molecules results in decreased functional
hemoprotein, which has clinical manifestations [4]. A hemoprotein is a protein linked to iron (Fe).
The Fe group attached to the protein is capable of undergoing oxidation reduction (redox) reactions
and function within the electron transport chain (ETC) of the mitochondria. Hemoproteins include
hemoglobin, myoglobin, nitric oxide (NO) synthetase, catalase, and the cytochromes of the ETC in the
mitochondria. Deficiency of any of these hemoproteins cause tissue inflammation and organ damage
and even a prothrombotic state (Table 1). Many COVID-19 patients require prolonged periods of
supplemental oxygenation to maintain saturation levels even after all other symptoms have resolved.
This is due to the decreased oxygen affinity COVID-19 causes in hemoglobin leading to the displacement
of iron [7]. Deficiency of human HO-1 causes early death as a result of severe iron toxicity, renal failure,
and nephrotic range proteinuria, the same clinical issues we have faced with COVID-19 [23–26,30].
Similar to hemoglobin, myoglobin is also affected by COVID-19. A significant number of COVID-19
patients experience rhabdomyolysis due to COVID-19 directly binding the porphyrin substrate of
myoglobin, leading to the release of hemoprotein and iron, which induces inflammation and muscle
breakdown [31–34]. This has previously been shown in HO-1 deficiency in vitro and in vivo [35–37].
It has been proposed that the severe inflammation in COVID-19 downregulates HO-1 further exacerbating
the severe inflammatory response [17].

Table 1. This represents a list of functional hemoproteins and the clinical scenarios caused by dysfunction
of these hemoproteins. Key: AKI = acute kidney injury, ARF = acute renal failure, CHF = congestive
heart failure, AOCI = anemia of chronic inflammation.

Consequences of Hemoprotein Malfunction/Deficiency

Hemoprotein Deficiency Consequence Clinical Manifestation Main Organs Affected

Catalase ↑ ROS formation Tissue damage High [ACE-2R] organs

Cytochrome of the ETC ↓ Aerobic respiration
↑ Apoptosis Tissue damage High [ACE-2R] organs

NO synthetase

↓ vessel hemostasis
↓ smooth M. relaxation
↑ cardiac contractility
↓ regulation of renal

hemodynamics,
sodium regulation,

and tubuloglomerular feedback

Prothrombotic state
Vasoconstriction
CHF/tachycardia

AKI/ARF

High [ACE-2R] organs

Myoglobin ↑ Rhabdomyolysis
Rhabdomyolysis

Acute kidney injury
Electrolyte derangement

Skeletal muscle

Hemoglobin ↓ O2 and CO2 affinity
↓ Production

Prolonged and increasing
O2 requirements
Anemia (AOCI)

RBCs

All cells with porphyrin
in membrane

No deficiency. Allows COVID-19
to bind with high affinity leading

to infection

Progressive tissue damage,
especially as virus continues to

replicate within the cell

Low [ACE-2R]
organs

NO synthetase is a hemoprotein probably affected by COVID-19. If COVID-19 impairs NO
synthetase, NO levels decrease. Recent studies have tried using inhaled nitric oxide to mitigate the
severity of COVID-19 to supplement the amount normally produced by the nasal turbinates to promote
bronchodilatory and vasodilatory effects [38–40]. Previous studies have demonstrated patients who have
an impaired NO pathway include those with hypertension, diabetes mellitus, and atherosclerosis, patients
observed to have worse outcomes from COVID-19 infection [41]. In the kidney, NO functions to regulate
renal hemodynamics, medullary perfusion, natriuresis, tubuloglomerular feedback, inhibition of tubular
sodium reabsorption, and modulation of renal sympathetic neural activity [42]. Endothelial cells produce
NO to compensate for the growing demand for oxygen and to provide anti-inflammatory and healing
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actions in the vasculature [6]. In contrast, vasoconstrictors, such as endothelin 1, angiotensin II (ANG-II),
and thromboxane A, act as opposing molecules to nitric oxide (NO) [6].

Cytochrome P450 (CYP) enzymes are hemoproteins [43,44]. As a result, if CYP enzymes levels
increase, heme production is increased [28]. Alternatively, if CYP enzymes are decreased, the result is
decreased heme production [28]. Decreased CYP production decreases heme production and decreases
inflammation. Drugs used to treat COVID-19 are CYP inhibitors, which include Azithromycin,
Lopinavir, Hydroxychloroquine, and Chloroquine [27].

Catalase and cytochrome enzymes require heme. Catalase is a vital hemoprotein also potentially
affected by COVID-19 as its malfunction would be responsible for directly increasing free ROS.
When catalase is not present, the conversion of hydrogen peroxide (H2O2) to water (H2O) and O2 does
not occur [44]. Cytochromes in the ETC, including cytochrome C, are also hemoproteins potentially
affected by COVID-19. The binding of COVID-19 may cause dysfunction of the ETC in cells and may
translocate cytochrome C into the cytosol from mitochondria, which induces an apoptosis cascade [45].

6. HO-1 Genetic Polymorphisms and COVID-19′s Cytokine Storm

It has been demonstrated in multiple studies that HO-1 genetic polymorphisms, specifically
the GT dinucleotide repeat in the promoter region, regulates the inducibility (i.e., transcription) of
HO-1 to ROS [46–52]. Individuals with larger GT repeats have been found to be more susceptible
to diseases that involve the endothelium of the cardiovascular system including abdominal aortic
aneurysms, atherosclerosis, and coronary artery disease, especially in diabetes and obesity [46,49,50].
Other diseases such as emphysema and melanoma were also more prevalent in patients with larger
GT repeat sequences [47,48]. Whether or not shorter GT alleles are associated with higher levels of
HO-1 and better glycemic control remain controversial, but there is agreement that if any correlation is
suspected, the shorter GT allele is associated with mild beneficial glycemic control [52,53].

HO-1 levels are lower in those with longer GT sequences predisposing patients to more inflammation
and decreased endothelial hemostasis [46–52]. Individuals with long GT repeats had lower bilirubin and
ferritin levels [54], reviewed in [55], and in vitro studies displayed increased HO-1 levels when induced
by oxidative stress in lymphoblastoid cell lines with shorter GT sequences than in those with longer GT
sequences [49,52]. The result was increased oxidant-induced apoptosis in lymphoblastoid cell lines with
longer GT sequences [49]. That is, short alleles of the GT repeat are associated with greater inducibility of
HO-1, which leads to increased cytoprotection and reduced inflammation [52].

Perhaps COVID-19 patients with longer GT sequences are at higher risk of developing the
complications of COVID-19 including decreased vessel hemostasis (Figure 5). Further research needs
to be done to determine if there is a correlation. Patients with Gilbert syndrome are known to have
shorter GT sequences and elevated HO-1 levels and bilirubin [46,56–58]. These patients are well
protected from cardiovascular disease due to a lower inflammatory state given the increase in bilirubin
and HO-1 levels at baseline and during times of stress (e.g., fasting), which decreases ROS [46,56–58].
These findings further support that shorter GT sequences lead to a lower inflammatory state.

COVID-19 has worse outcomes in the obese and diabetic populations, likely because these patients
are already in a proinflammatory state at baseline due to elevated levels of interleukin 6 (IL-6) from
insulin and leptin resistance [59,60]. Obese and metabolic syndrome patients have both insulin
and leptin resistance leading to appetite stimulation further exacerbating rises in insulin and leptin
levels [59,61]. As a result, IL-6 is expressed and released from adipocytes (mainly white fat cells)
through multiple signal pathways resulting in inflammation [62]. Insulin resistance also results in
chronic very low density lipoprotein (VLDL) secretion and increased delivery of acyl moieties to muscle,
which if provided in excess, will lead to induction of insulin resistance irrespective of obesity [63].

There are many reasons for the negative clinical outcomes in the chronic inflammatory state of
obesity as result of COVID-19 [60]. Peterson et al. have shown that obesity increases the oxidation
of high-density lipoprotein (HDL) [64]. Oxidized HDL (Ox-HDL) alone is considered to potentiate
increased inflammatory cytokines levels by the direct effect on adipocyte stem cells [65]. Additionally,
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Ox-HDL causes an inflammatory cascade with inflammatory cytokines, interleukins (IL-6, IL-1), tumor
necrosis factor (TNF), and upregulation of Angiotensin II (ANG II), a biomarker for early detection
of cardiovascular risk [64]. This made obese subjects susceptible to early heart failure and death
subsequent to COVID-19 infection [66]. We showed that humans and mice with obesity display low
left ventricle function [67]. In a study of inflammatory markers comparing obese women in rural
Appalachia to women in urban Brooklyn, Brooklyn had higher levels of both IL-6 and TNF, but both
had low levels of adiponectin, marked elevation of Ox-HDL, and circulating endothelial cells (CEC).
Obesity increases the volume of epicardial fat and subsequent inflammation converts beige fat to white
fat after uncoupling of mitochondrial enzymes and destruction of mitochondria [68]. This negatively
affected cardiovascular outcomes in obesity including heart failure and arrhythmias, even prior to
COVID-19 infection. Increased antioxidant and HO-1-derived bilirubin may ameliorate the negative
effect of COVID-19. Recent studies showed that upregulation of HO-1 attenuated this risk [68],
and converts white epicardial fat to preferred beige epicardial fat [68,69]. Increasing HO-1 levels with
pharmacological therapy [70] may be with an advantageous effect in severe inflammation states.
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Figure 5. (Left) Individuals with the longer GT repeat allele HO-1 genetic polymorphism has
lower HO-1 expression and decreased endothelial hemostasis. Rapid CYP2D6 metabolizers develop
subtherapeutic drug levels. (Right) Individuals with the shorter GT repeat allele have higher HO-1
expression and increased endothelial hemostasis. Poor CYP2D6 metabolizers develop toxic drug levels.
The endothelium in all organs can be affected in larger GT allele individuals including the endothelium
in the lungs, kidney, and the rest of the cardiovascular system.

The obese population also has a higher distribution of white fat relative to non-obese people,
who have higher amounts of brown fat [71]. White fat is proinflammatory and has lower concentrations
of mitochondria than brown fat [72]. Mitochondria is a major source of ROS. ROS generated in the
mitochondria occurs at the ETC during the process of oxidative phosphorylation [64,67] (Figure 6).
During oxidative phosphorylation energy is transferred through four multi protein complexes
(I–IV) embedded in the inner mitochondrial membrane to create adenosine triphosphate (ATP)
cofactors, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) [73,74].
Electrons from reduced cofactors (NADH and FADH2) of tricarboxylic acid cycle and β-oxidation
of fatty acids transfer electrons to complexes I and II before traversing complexes III and IV, result
in active transport of H+ protons from the mitochondrial matrix across the inner mitochondrial
membrane to create an electrochemical gradient [73,75,76], which is harnessed by ATP synthase
to produce ATP [73,75,76]. Most of the electrons are completely consumed during this process,
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but some electrons leak from complexes I and III of the ETC and return to the mitochondrial matrix
without ATP synthase. These electrons react with oxygen to produce superoxide and/or hydrogen
peroxide [64,70,71]. Although the superoxide anion is not a particularly powerful oxidant, it serves as a
potent precursor to the majority of other ROS and a proliferator of numerous oxidative chain reactions.
Brown fat can counteract ROS formation through uncoupling mechanisms in the ETC of mitochondria,
which is abundant in these cells [77] (Figure 7). Uncoupling protein facilitates the movement of
protons from the inner membrane space to the mitochondrial matrix that does not couple during
the ATP synthesis [78–80]. One of the main mechanisms by which brown fat neutralizes ROS and
inflammation is through thermogenesis via uncoupling of mitochondrial respiration in the ETC [65].
Carbon monoxide has an uncoupling effect on mitochondrial respiration by activating mitochondrial
BKCa channels (Ca2+-activated K+ channels), an uncoupling protein [81–83]. Other uncoupling proteins
such as uncoupling proteins 1–3 (UCPs) and adenine nucleotide translocases (ANTs) are also activated
by ROS to allow thermogenesis and gluthathione modulation, which lowers ROS formation and
counteracts oxidative stress [81]. The UCP-1 causes a proton leak across the inner membrane of the
mitochondria by converting the electrochemical energy into heat. Brown fat adipocytes degrade
electrochemical chemical energy, and subsequently energy of the substrate is oxidized and converted
into heat [78,79,84]. Uncoupling oxidative phosphorylation decreases ROS by lowering the inevitable
oxidizing species formed by mitochondrial respiration in the ETC [81,83]. ROS are increased in obese
and diabetic patients because this population has a higher white fat-to-brown fat ratio, which contains
fewer mitochondria to perform thermogenesis [71,77] (Figure 6).
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Figure 6. As ATPase activity increases, more electrons and protons permeate through the mitochondrial
membrane into the matrix, leading to the formation of ROS. Molecules such as uncoupling proteins
(UCPs), and adenine nucleotide translocases (ANTs) uncouple these reactions counteracting ATPase’s
increased activity lowering the formation of ROS with increased thermogenesis. Furthermore, the ROS
formed by COVID-19′s “cytokine storm” create inflammation that is destructive to the mitochondria
in the electron transport chain (ETC). If insufficient mitochondria in cells is evident, such as in white
adipose cells, these cells are unable to accommodate the severe ROS formed leading to overwhelming
inflammation. Brown adipose cells are better at handling ROS due to higher concentrations of
mitochondria. CO increases ATP production and activates mitochondrial biogenesis [85–87] and
bilirubin blocks ROS action and increases resistance to hepatic steatosis. [88,89].

The combination of increased ACE-2R on adipocytes along with elevated levels of insulin, leptin,
and acyl moieties allows COVID-19 to create the perfect “cytokine storm” leading to severe ROS formation
which destroys mitochondria, especially in patients with abundant white fat cells (Figure 7). In severe
cytokine storm you have inducible nitric oxide synthetase (iNOS), NO which will convert superoxides to
peroxynitrite which is directly toxic to DNA and the vascular endothelium. The severity of the cytokine
storm will inhibit HO-1. In addition, the uncoupling of mitochondrial enzymes will further increase
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ROS production. Increasing HO-1 levels decrease these inflammatory cytokines and iron toxicity in
obesity. [68] This along with longer GT allele HO-1 polymorphisms lead to even more ROS formation as
HO-1 levels in these individuals are lower at baseline with less inducibility, and therefore, lower CO levels
are produced from the degradation of heme [52]. Moreover, adipocyte specific HO-1 gene expression is
effective in restoring vascular function, insulin sensitivity, the conversion of white adipocytes to brown
adipocytes [90], and improved mitochondrial function [91].
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Figure 7. ACE-2 is overexpressed in adipose tissue in obesity and diabetes allowing COVID-19 to infect
the cell. Lean (brown adipocyte) tissue is characterized by high amounts of mitochondria and HO-1
levels which result in low levels of ROS. Brown adipose tissue is better than white adipose tissue in its
ability to handle the inflammation cause by COVID-19. Obese (white adipocyte) tissue is characterized
by low amounts of mitochondria and HO-1, which results in high levels of ROS and upregulation of
ACE-2 receptors, especially in morbid obesity and diabetes. COVID-19 patients with high amounts of
white adipose tissue develop severe inflammation.

7. Clinical Presentation

Patients can be mildly symptomatic to severely ill with multi-organ damage/failure, multifocal
pneumonia with acute respiratory distress syndrome (ARDS), rhabdomyolysis, anemia with increased
oxygen requirements, and elevated liver enzymes. Most commonly, they will have leukopenia and
lymphopenia, with a reversal of the CD4/CD8 ratio [92]. Elevated C-reactive protein (CRP) and ferritin
levels suggest an impending cytokine storm [93]. Elevated D-dimers suggest the likelihood of deep vein
thrombosis and venous thromboembolism (DVT/VTE) and anticoagulation must be considered [94,95].
COVID-19 patients can present with acute kidney injury complicated by acute renal failure, nephrotic
range proteinuria, and/or electrolyte derangements [96]. Older patients have comorbid conditions
like hypertension and diabetes [41]. Younger patients have more pronounced obesity and the chronic
inflammatory state that it implies [60].

The organs mainly affected by COVID-19 infection includes the lungs (i.e., the endothelium of the
pulmonary vasculature), kidneys, liver, and arterial endothelium (as evidenced by a prothrombotic
state); all of which contain high concentrations of ACE-2Rs known to provide a binding site to
COVID-19 to infect cells. There is concern that patients with hypertension on ACE inhibitors and
angiotensin II receptor blockers (ARB’s) might have an increased risk of infection [97]. Since these
drugs may upregulate ACE-2 expression, are they more susceptible to the SARS-CoV-2 virus that causes
COVID-19? This continues to remain controversial, but current recommendations are to continue these
drugs as indicated [97]. New articles published in the New England Journal of Medicine showed no
evidence of harm. All were observational studies but all negate stopping these medications on patients
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who are currently taking them [98]. Evidence was presented in a recent JAMA article that ACEI/ARB
therapy is not associated with increased risk of disease or severity of illness [99].

COVID-19 patients present with fever, headache, sore throat, cough, shortness of breath, and less
commonly, myalgias, diarrhea, and nausea or vomiting [92]. Furthermore, the principal laboratory
derangements seen in COVID-19 patients includes anemia, lymphopenia, elevated ferritin, elevated
liver enzymes AST (aspartate transaminase) and ALT (alanine aminotransferase), elevated CRP
(c-reactive protein), elevated D-dimer, and thrombocytopenia [100–102]. Initial imaging findings
typically reveal bilateral infiltrates, unilateral infiltrates, or pleural effusion [100–102].

The overall clinical presentation of COVID-19 patients is consistent with the predilection of the
virus to mainly affect cells with high ACE-2 receptors, likely as a result of the ability of the virus to
decrease the amount of functional hemoprotein in these cells. These hemoproteins include hemoglobin,
myoglobin, NO synthase, cytochromes within the electron transport chain (ETC), CYP enzymes,
and catalase. Given that hemoprotein by definition contains heme, thus providing COVID-19 a
substrate to bind to, COVID-19 has the potential to cause serious malfunction in all of the metabolic
pathways in which these proteins are essential for normal function [7].

The basis for COVID-19 causing morbidity and mortality is severe systemic inflammation. This is
the result of increased heme and free iron production, impairment of intracellular hemoprotein function,
decreased levels of HO-1, and downregulation of HO-1 gene expression. The basis of current research
to treat COVID-19 has focused on direct inhibition of viral replication and the inflammatory response.

8. Cytochrome 2D6 Genetic Polymorphisms COVID-19

Chloroquine was first introduced in 1934. Hydroxychloroquine/chloroquine are both
4-aminoquinolones approved in the treatment of Malaria, Systemic Lupus Erythematosus,
and Rheumatoid Arthritis [103]. The FDA approved these drugs for “emergency use” in hospitalized
patients with COVID-19 in March of 2020. Many proposals to use these drugs for coronavirus are
based on in vitro and animal studies where they proved beneficial, the use of chloroquine was based
on evidence of it being a potent inhibitor of SARS coronavirus infection and spread [104]. The data for
the prevention and treatment of severely ill patients have so far been disappointing. During the MERS
epidemic, 4-aminoquinolones were shown to affect glycosylation of ACE-2 receptors, which is used by
COVID-19 to enter cells [104].

There is comprehensive literature on the genetic polymorphisms of cytochrome P450 (CYP) 2D6
that affects metabolism of drugs that use this pathway, which includes almost 50% of the drugs currently
in use [105]. These polymorphisms can increase the metabolism (ultrarapid metabolizers) that might
decrease their effectiveness or markedly decrease their metabolism (slow metabolizers) resulting in
toxicity [106]. Slow metabolizers are more common. Slow metabolizers allow toxic levels of drugs like
hydroxychloroquine to accumulate resulting in increased cardiac complications like prolonged QTc
syndrome, with increased risk of cardiac death, particularly in obesity and diabetes, where ACE-2 is
upregulated (Figure 7) due to an increase of white adipocytes and a reduction in brown adipocytes.

Polymorphism of CYP2D6 is higher in African Americans and Asians [107–109], disproportionately
affected by this disease. One study in Lupus patients in Korea showed significant variability in
hydroxychloroquine levels due to CYP2D6 polymorphisms [110]. Another study in discoid lupus
found that 39% had either poor results from fast metabolism or poor outcomes related to toxicity from
slow metabolism [111]. This accounts for the differences in clinical outcomes with this medication.

There are multiple accounts of these genetic polymorphisms resulting in resistant strains of
malaria because of abnormalities in metabolism [112–114]. These same gene polymorphisms affect
heart failure patients since the CYP 2D6 gene is responsible for the metabolism of metoprolol [115,116].
This polymorphism affect many other drugs such as Isoniazid (INH), barbiturates, omeprazole, selective
serotonin reuptake inhibitors (SSRI’s), sulfasalazine, hydralazine, etc. [75].

Patients with genetic polymorphisms of the CYP2D6 and the HO-1 GT allele make treatment and
prognosis challenging. Carriers of these different polymorphisms will respond well to medications



Antioxidants 2020, 9, 636 11 of 23

and have less risk of developing complications from COVID-19 such as ARDS and multiorgan failure,
while others will develop toxic drug levels and multiorgan failure [106] (Figure 4). This may explain
the unpredictability clinicians are observing with COVID-19 patients and variable results regarding
4-aminoquinolones. More recent data suggests that 4-aminoquinolones showed no benefit over the
standard of care and patients were at higher risk of developing cardiac arrest in the treatment group,
especially when combined with Azithromycin [117,118].

9. Therapeutic Strategies-COVID-19

9.1. Antivirals

Remdesivir, a CYP3A4 substrate, is an anti-viral agent developed to treat Ebola but proved
ineffective [119]. It also showed promise in SARS and MERS [120,121]. The drug is currently being
used in clinical trials to treat COVID-19. It is an adenosine analogue that inserts itself into the RNA
virus, terminating its replication. It has been the most promising antiviral agent currently tested
(in two phase III randomized clinical trials) against COVID-19. CYP3A4 transcription is affected
by cytokines and glucocorticoids, downregulated by the acute phase reactant IL-6 and upregulated
by dexamethasone [122]. As a result, concomitant use of steroids along with Remdesivir may lead
to lower drug levels of Remdesivir in COVID-19 patients with severe inflammation, and therefore
higher IL-6. This may be the reason behind reports of adverse events in Remdesivir recipients versus
placebo [123]. The anti-influenza RdRp inhibitor favipiravir is also being clinically evaluated for its
efficacy in COVID-19 patients [124]. Favipiravir is undergoing phase II clinical trials in China and
Thailand with reports of efficacy when combined with interferon [125]. Favilavir, another antiviral,
was the first approved COVID medication in China. In a clinical trial of 70 patients, the drug reportedly
showed efficacy in treating the disease with minimal adverse effects [126]. Another antiviral agent that
was tested against COVID-19 was the protease inhibitors Lopinavir/ritonavir (LPV/RTV). This drug
combination was found to reduce mortality rate and lead to a milder disease course during the open
clinical trial in the 2003 SARS outbreak [127,128]. However, LPV/RTV alone has not proved to be
superior to the standard of care in COVID-19 patients [129]. Interestingly, LPV is a substrate of CYP3A4,
while RTV is a potent inhibitor of CYP3A4 [130]. Is it possible that RTV potentiates the effects of LPV
by increasing drug levels of LPV? Further research needs to be done to evaluate this. Current in vitro
studies are examining LPV/RTV and interferon beta against COVID-19 [131].

9.2. Cytokine Inhibitors

IL-6 inhibitors, such as Tocilizumab, are currently being tried as a potential treatment for COVID-19
patients to reduce inflammation in the lungs and prevent progressive damage [132]. Results thus far
have shown benefit in the treatment group versus the standard of care and are currently in phase III
clinical trials as of April 15th. There are reports of Gram-negative sepsis with the use of this drug [133].
Tocilizumab has the potential to affect the expression of several CYP enzyme polymorphisms including
CYP3A4 and CYP2D6 [134].

9.3. Antiretrovirals, Monoclonal Antibodies, Convalescent Plasma, and Corticosteroids

Leronlimab, the CCR5 (chemokine receptor 5) inhibitor, is currently entering Phase II clinical
trials. This is an antiretroviral agent used to prevent the virus from entering the CD4 cell by blocking
the CCR5 receptor [135]. CCR5 inhibitors are also being studied and have been found to significantly
reduce IL-6 and TNF-a with a lower toxicity profile than Tocilizumab [136]. It has an excellent safety
profile, used extensively in triple negative breast cancer and in human immunodeficiency virus
(HIV) treatment [137,138]. There is a granulocyte-macrophage colony-stimulating factor (GM-CSF)
monoclonal antibody, Lenzilumab, which is being tested (Phase III clinical trial) for prevention of
respiratory failure and/or death in COVID-19 patients [139]. Convalescent plasma has been administered
to patients who are seropositive for acute COVID-19 and hypoxic, which lead to undetectable viral load
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and improved oxygenation in 3 days after one dose in non-intubated patients [140]. Convalescent plasma
has been shown to reduce hypoxia in intubated patients [140]. The adverse effects associated with
plasma transfusions include the risk of TRALI, TACO, and anaphylactic reactions [141].

Immunosuppression therapy is being examined to counteract the severe systemic inflammatory
reaction caused by SARS-COV-2 infection. One of the modalities being considered is corticosteroids.
Corticosteroids should only be used in COVID-19 induced lung injury in the setting of a clinical
trial [142]. There is data that concludes harm in using corticosteroids in COVID-19 patients, while
other studies have been inconclusive or biased with confounding factors [142]. Some studies were
noted to indicate benefit in COVID-19 patients with a low-to-moderate dose [142]. Nonetheless,
the use of corticosteroids remains controversial given the methodological limitations in the available
evidence [142]. A more recent randomized clinical trial (RCT) published in the UK involving
2100 patients in the treatment arm has shown promising results with the use of dexamethasone [143].
In the patients who were critically ill on ventilators secondary to COVID-19, the treatment group
showed a decrease in mortality by 1/3 vs. the standard of care [143]. Furthermore, those who required
supplemental oxygen but were not intubated showed a 20% decrease in mortality rates [143]. Given the
feasibility and cost effectiveness of dexamethasone, it has been approved by the UK government for
use in COVID-19 patients. These results emphasize that the inflammatory storm caused by COVID-19
could present a critical therapeutic target to mitigate the deleterious effect of the virus. In summary,
there has been no magical therapy to treat COVID. The search remains for an approach that combines
antiviral therapy with an approach to reducing the inflammatory cytokines.

10. Heme Arginate-HO-1 Levels—Inflammation

Heme arginate increases HO-1 levels by inhibiting delta-aminolevulinate synthase (ALAS-1/2),
the rate limiting enzyme in the eight steps of the heme synthetic pathway [55]. Heme arginate also
promotes glucagon release, which results in an increase of 2.3-fold in HO activity [144]. Previous studies
have shown that increasing levels of HO-1 with heme arginate can improve inflammation and
viral infections [145–148]. Sickle cell patients, for example, are in a pro-inflammatory state [149].
HO-1 upregulation reduced oxidative stress in the kidney in sickle cell disease [150]. Heme arginate,
which is an upregulator of HO-1, was studied in this population and found to prevent dysfunctional
hemoprotein formation, while increasing the ability of ferritin to chelate iron [150]. Increased levels of
HO-1 play an essential role in the induction of ferritin synthesis as a result of increased levels of free
iron from degradation of heme, which acts as antioxidant protection [151–153]. Increasing levels of
HO-1 decreases lipid peroxidation, red blood cell (RBC) sickling, and heme content in the kidney [150].
Heme arginate also increases Nitric Oxide (NO) while decreasing adhesion molecules in HIV infected
stem cells leading to a decrease in the number of HIV copies in cells [145–147]. This inhibition
of HIV replication requires decreased adhesion, increased levels of antioxidants, and inhibition of
viral transcriptase enzymes, all of which was accomplished by administration of azidothymidine
(AZT)-Heme arginate [145–147]. This combination was successful even in an AZT resistant HIV
strain [147]. HO-1 upregulation by heme arginate decreased dysfunctional hemoprotein, which
resulted in HO-1 upregulation attenuating the EBOLA virus (EBOV) transcription/replication leading
to a decrease in viral particles [148]. Heme arginate is well known to decrease heme production
and has been used extensively to treat porphyria patients. The resultant increase in HO-1 reduces
vasoconstriction [154,155], hepcidin [156], and inflammation with the potential ability to prevent the
cytokine storm [55]. This is especially important in patients who are predisposed to “the perfect
cytokine storm” from COVID-19, including those with the longer GT allele HO-1 polymorphism,
abundant white adipose cells (in obesity and diabetes), and those with CYP2D6 polymorphisms that
lead to supra- or sub-therapeutic drug levels. There are a number of naturally occurring substances
that are capable of upregulating HO-1. These include Thymoquine (black seed oil) in combination with
Omega-3 that was shown to protect against obesity induced oxidative stress, improve insulin sensitivity
and convert white fat to beige fat in a murine model of obesity [157]. In addition, pomegranate seed



Antioxidants 2020, 9, 636 13 of 23

oil upregulated HO-1, improved mitochondrial function, and attenuated hepatic steatosis/fibrosis in a
murine model of obesity [158]. It has previously been reported that HO-1 was upregulated in response
to other naturally occurring substances such as resveratrol, curcumin, statins, and aspirin [19].

11. ACE Genetic Polymorphisms

ACE levels are under genetic control and much research had been dedicated to understanding
polymorphisms of the ACE genes [159]. Individuals with ACE gene polymorphisms are susceptible
to the severe inflammation induced by COVID-19. Angiotensinogen is produced in the liver and is
upregulated in adipocytes in obesity, while adipocyte angiotensin deficiency can prevent hypertension
in the obese populations [160–162]. The major role of ACE-2 in the renin-angiotensin system (RAS) is
in the conversion of angiotensin II (ANG-II) to angiotensin 1-7 (AT 1-7) (Figure 8). ANG-II promotes
obesity associated metabolic diseases, oxidative stress, and inflammation in the lungs, vascular
endothelial cells, and kidney epithelial cells [159,163]. In contrast, AT 1-7 promoted cardiovascular
(CVS) protection along with anti-inflammation, anti-proliferation, and anti-fibrosis in organs with
high ACE-2 concentrations [163]. ACE-2 is present in the heart, lungs, kidney, testes, and adipose
tissue with the highest levels in adipocytes [164,165]. ACE-2 is upregulated in adipose tissue in obesity
and diabetes, with an increase in the ACE-2 receptors in white adipose cells, but more importantly,
a major increase in the number of white adipocytes in obesity accounts for the increase in total
ACE-2 receptors [163]. Since the spike protein of the COVID-19 virus enters the cell via the ACE-2
receptor, it remains unclear if this is the reason why obesity, with a significant upregulation of ACE-2
receptors, increases the risk of significant morbidity and mortality. Genetic polymorphisms exist for
ACE-2 just as in ACE, and ACE activity has been well studied in individuals with different genetic
polymorphisms [166]. Those with the DD genotype had higher ACE activity levels than those with
the ID genotype (intermediate ACE activity), which was associated with higher ACE activity than
those with the II genotype (least ACE activity) [166]. Since ACE is responsible for converting inactive
ANG-1 to proinflammatory ANG-II, those with higher ACE levels are at higher risk of developing
severe inflammation secondary to COVID-19 infection [166] (Figure 8).
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Figure 8. ACE-2 is needed to convert pro-inflammatory angiotensin II (ANG-II) to anti-inflammatory
ANG (1-7) in the renin-angiotensin system (RAS). As COVID-19 competes for ACE-2, less ANG-II is
converted to ANG (1-7) which leads to more inflammation. Furthermore, individuals with ACE genetic
polymorphism DD have higher levels of ACE activity which promotes more formation of ANG-II making
individuals with this polymorphism susceptible to even greater inflammation. Individuals with the ACE
polymorphism have the lowest ACE activity, which leads to lower levels of ANG-II and less inflammation.
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12. Conclusions

The main drugs currently being used to treat COVID-19 patients such as the 4-aminoquinolones,
azithromycin, and remdesivir all decrease heme production, in part, by inhibiting CYP enzyme
induction, thus decreasing the demand for heme. These drugs also display interactions with the CYP
system, which makes maintaining safe effective therapeutic drug levels a challenge. Heme arginate
is a more powerful upregulator of HO-1 and inhibitor of ALAS, lowering heme levels substantially.
Furthermore, Heme arginate is able to accelerate reactions mediated by CYP2D6 and CYP3A4 [108,110].
Future combination of Heme arginate and LPV/RTV or drugs that are not metabolized by CYP2D6/3A4
might have a synergy as an efficacious dual drug-therapy to counteract the severe inflammation caused
by COVID-19.

Obesity is a chronic inflammatory disease manifested by an increase in cytokine levels at baseline,
increasing the risk of a “cytokine storm” in obese patients. Obese individuals have many more ACE-2
receptors on the surface of white necrotic adipocytes and have many more white adipocytes in total
than the number of brown adipocytes of their lean counterparts. COVID-19 causes severe systemic
inflammation and downregulation of HO-1, already downregulated in the chronic inflammatory state
of obesity. The clinical course of the disease has been challenged by the interaction of three genetic
polymorphisms, all affected by COVID-19: first is the CYP2D6 enzyme system, second is the HO-1
anti-inflammatory gene, and third the ACE and ACE-2 enzyme systems. Effective therapy must
include anti-viral drugs to halt viral replication. The second must involve the upregulation of the
heme oxygenase system to reduce ROS and the severe inflammation caused by the cytokine excess.
The anti-inflammatory and antioxidant approach should be essential to our armamentarium until we
have an effective vaccine.
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Abbreviations

ACE angiotensin converting enzyme
HO heme oxygenase
HIV human immunodeficiency virus
SARS acute respiratory distress syndrome
MERS middle East respiratory syndrome
ROS reactive oxygen species
NO nitric oxide
cAMP cyclic adenosine monophosphate
TMPRSS-2 transmembrane serine protease 2
ETC electron transport chain
OH− hydroxide
p38 MAPK p38 mitogen-activated protein kinases
PBGD porphobilinogen deaminase
ALA delta-aminolevulinic acid
HMB hydroxymethylbilane
ETC electron transport chain
AKI acute kidney injury
ARF acute renal failure
CHF congestive heart failure
AOCI anemia of chronic inflammation
Ox-HDL oxidized high-density lipoprotein
VLDL very low-density lipoprotein
IL interleukins
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TNF tumor necrosis factor
NADH nicotinamide adenine dinucleotide
FADH2 flavin adenine dinucleotide
ANTs adenine nucleotide translocases
UCP uncoupling proteins
INOS inducible nitric oxide synthetase
ALT aspartate transaminase
AST alanine aminotransferase
CRP c-reactive protein
LPV/RTV Lopinavir/ritonavir
RTC randomized clinical trial
AZT azidothymidine
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