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Abstract

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most harmful chemicals showing

resistance to biodegradation. The majority of TCDD effects is mediated by the aryl hydrocar-

bon receptor (AhR) pathway. TCDD binding to AhR results in the activation of cytochrome

P450 enzymes (CYP1A1, CYP1A2, CYP1B1) involved in dioxin biodegradation. The goal of

the study was to explore the potential role of CYP1A2 in the metabolism of TCDD. We inves-

tigated a molecular structure of CYP1A2 and the binding selectivity and affinity between the

pig CYP1A2 and: 1/ DiCDD or TCDD (dioxins differing in toxicity and biodegradability) or 2/

their selected metabolites. pCYP1A2 demonstrated higher affinity towards DiCDD and

TCDD than other pCYP1 enzymes. All dioxin-pCYP1A2 complexes were found to be stabi-

lized by hydrophobic interactions. The calculated distances between the heme oxygen and

the dioxin carbon nearest to the oxygen, reflecting the hydroxylating potential of CYP1A2,

were higher than in other pCYP1 enzymes. The distances between the heme iron and the

nearest dioxin carbon exceeded 5 Å, a distance sufficient to allow the metabolites to leave

the active site. However, the molecular dynamics simulations revealed that two access

channels of CYP1A2 were closed upon binding the majority of the examined dioxins. More-

over, the binding of dioxin metabolites did not promote opening of channel S–an exit for

hydroxylated products. It appears that the undesired changes in the behavior of access

channels prevail over the hydroxylating potential of CYP1A2 towards TCDD and the favor-

able distances, ultimately trapping the metabolites at the enzyme’s active site.

1. Introduction

The global awareness concerning environmental pollutants is constantly growing. This is due

to decades of industrialization which offered not only needed or desirable goods but also

flooded us with waste by-products. Such by-products include polychlorinated dibenzo-p-diox-

ins (PCDDs, dioxins) that persistently contaminate our environment. The largest uninten-

tional release of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),the most toxic amongst 75

known dioxin congeners, occurs through waste incineration, metal production as well as
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petrol industry and wood combustion [1]. TCDD is considered to be one of the most harmful

chemicals with long-lasting half-life (e.g., 8–10 years in humans). Exposure to TCDD results in

numerous pathophysiological abnormalities such as chloracne, thymic atrophy and immune

dysfunction, hepatic damage and steatosis, gastric epithelial hyperplasia, embryonic teratogen-

esis and cancer [2]. TCDD also affects male and female reproduction as well as endocrinology.

It alters sexual behavior, decreases spermatogenesis, diminishes fertility, causes endometriosis,

teratogenesis and abortion [3]. Moreover, the dioxin influences thyroid hormone metabolism

as well as steroid hormone secretion [4, 5]. In pigs, TCDD was also found to affect the expres-

sion of genes involved in the regulation of granulosa cell cycle, proliferation and follicular atre-

sia [6, 7].

Toxicity of dioxins is conditioned by the number and position of chlorine atoms present in

its molecule. Dioxin congeners substituted in lateral positions with chlorine atoms, usually

demonstrate high level of toxicity [8–10]. The extremely high toxicity of TCDD results from

the occurence of chlorine atoms in all lateral positions and is accompanied by the highest resis-

tance to biodegradation [9, 10] (. In contrast, 2,7-dichlorodibenzo-p-dioxin (DiCDD), less

toxic than TCDD and containing unsubstituted lateral positions, appears to be effectively

metabolized [11, 12]. TCDD’s high resistance to biodegradation results in its accumulation in

adipose tissue and hence is, at least partially, responsible for its adverse effects exerted on living

organisms [10, 13, 14]. It should be noted that both, toxicity and susceptibility of PCDDs to

biodegradation are not only determined by a dioxin chemical structure but also are species-

dependent [9, 10].

The majority of PCDD effects is mediated by the aryl hydrocarbon receptor (AhR) pathway.

AhR is a highly conserved transcription factor activated by numerous exogenous ligands,

including PCDDs, polyhalogenated dibenzofurans (PCDFs) and polyaromatic hydrocarbons

(PAHs) [15]. The TCDD binding to AhR results in the translocation of the TCDD-AhR com-

plex to the nucleus and dimerization with AhR nuclear translocator (ARNT). The TCDD-Ah-

R-ARNT complex binds a dioxin response element (DRE) in promoter regions of TCDD

target genes including those of phase I biotransformation enzymes, e.g., cytochrome P450

(CYP1) family 1. CYP1A1, CYP1A2 and CYP1B1 are involved in the biodegradation of

PCDDs and PAHs. In addition to contribution to phase 1 metabolism of drugs and xenobiot-

ics, the enzymes play also a role in the development of many diseases including cancer [16].

The detoxification process starts with reactions of hydroxylation occurring in heme-con-

taining active site of the enzyme [8, 15, 17, 18]. In our previous studies we analyzed the poten-

tial of pig CYP1A1 (pCYP1A; [12]) and CYP1B1 [19] to hydroxylate dioxins differing in

toxicity and biodegradability. We have reported that TCDD, but not DiCDD, was not effec-

tively metabolized by pCYP1A1 in pigs mainly due to the specific behavior of substrate chan-

nels leading into the active site of the enzyme. In silico analysis demonstrated that TCDD,

upon its binding by CYP1A1, is not able to leave the enzyme’s active site because of the closure

of the access channels [12]. Similar analysis performed for pig CYP1B1 demonstrated a smaller

distance between heme oxygen and the nearest TCDD carbon atom, reflecting the higher

hydroxylating potential of pig CYP1B1 than CYP1A1 [19]. Additionally, compared to

CYP1A1, TCDD binding to the CYP1B1 active site results in a higher availability of access

channel S–considered to be an exit channel for hydroxylation products [19, 20]. On the other

hand, the smaller volume of the CYP1B1 active site may hinder the mobility of TCDD mole-

cule. This fact together with the long half-life of TCDD associated with ineffective biodegrada-

tion suggests that there are other factors inhibiting hydroxylation of the dioxin. However, the

exact mechanism responsible for this inhibition within both CYPs is still not recognized.

Therefore, CYP1A2, the last member of the CYP1 family, directly involved in the metabolism

of xenobiotics [21] was a natural candidate for testing its ability to metabolize dioxins.
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Different dynamics of the loop-like structures forming the substrate binding cavity of a partic-

ular CYP1 enzyme additionally justify the idea to explore the dioxin-CYP1A2 complexes.

Moreover, contrary to CYP1A1 and CYP1B1, ubiquitously distributed in many animal tissues,

the presence of CYP1A2 is limited mainly to the liver [22, 23] which may also affect function-

ing of the enzyme.

It is commonly known that, contrary to other dioxins, biodegradation of TCDD is

extremely slow and inefficient. However, a few in vitro and in vivo studies demonstrated

the generation of several mono-hydroxylated TCDD metabolites in humans, rats and

dogs [9, 11, 14, 24, 25]. Therefore, in addition to TCDD and DiCDD, some selected pri-

mary TCDD metabolites as well as their molecular interactions with CYP1A2 were exam-

ined in the current study. The main goal of the present study was to explore the potential

role of CYP1A2 in the metabolism of PCDDs in the pig. To achieve this goal, we investi-

gated in silico a molecular structure of CYP1A2 as well as the binding selectivity and affin-

ity between the pig CYP1A2 and DiCDD or TCDD, the two dioxins differing in toxicity

and biodegradability. Similar analysis was also performed for four selected dioxin metab-

olites. In addition, the accessibility of CYP1A2 access channels upon binding of dioxins

and their metabolites was investigated.

2. Results

2.1. In silico model of the pig CYP1A2 catalytic domain

The similarity level of the CYP1A2 amino acid (aa) sequence between the pig and other species

ranged from71.40% (Mus pahari) to 86.05% (Camelus ferus) (S1 Table, Fig 1). It was also

found that aa sequence of pCYP1A2 shared 81.40% homology with human CYP1A2 (S1 Fig).

The tertiary structure of the pCYP1A2 catalytic domain is shown in Fig 2A. The pCYP1A2

protein is composed of 12 canonical α-helices (A-L) and six β-sheets (β1- β6). In addition, the

spatial structure of pCYP1A2 includes three short helices (B0, F0 and K0) anchored in the mem-

brane. These helices are frequently involved in the formation of substrate channels within the

enzyme active site. A characteristic three-aa break (221–223) in helix F, typical for mammalian

pCYP1A2 enzymes, was also found in the pig (S1 Fig). The PROCHECK evaluation of the

final pCYP1A2 model revealed that 94.2% of its residues were located in the most favorable

region (red) of Ramachandran plot (S2 Fig). The Z-score provided by ProSA-web indicated

the overall pCYP1A2 model quality as -9.34, while the overall model quality for human

CYP1A2 was estimated at-10.28.Moreover, the model evaluation performed by VERIFY3D

indicated that 94.0%of residues produced scores higher than 0.2. The achieved results confirm

that the generated homology-based model of pCYP1A2 protein is characterized by high quality

parameters and therefore highly reliable.

We have also shown that the deeply buried active site of the pCYP1A2 was bordered by K-

β1 and B-C loops, G, I, B0 and F helix regions and β4 sheet (Fig 2). The volume of the active

site was calculated to be 436.98 Å3.

The pig CYP1A2 protein was used as reference. Letter codes in the first (outer) circle indi-

cate the alignment position and the amino acid code of the reference sequence. The colored

square boxes of the second circle indicate the MSA position conservation (highly conserved

positions are presented in red, while less conserved in blue). The third circle shows the cumu-

lative mutual information as histograms, facing outwards. In the center of the circle lines can

be observed, that connect pairs of positions with mutual information greater than 6.5. Red

edges represent the top 5%, black lines represent points scoring between 95–70%, and gray

edges account for the remaining 70%.
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2.2. Docking and molecular dynamics simulation of the PCDD-porcine

CYP1A2 complexes

Molecular docking confirmed the high reliability of the constructed pCYP1A2 model. All

examined dioxins (DiCDD, TCDD and four metabolites) assumed the same orientation within

the CYP1A2 active site (S3 Fig). The amino acids involved in the stabilization of a particular

dioxin molecule within the enzyme active site are presented in Table 1. The dioxins were

Fig 1. CIRCOS analysis of CYP1A2 i.e., interspecies alignment of the enzyme sequence.

https://doi.org/10.1371/journal.pone.0267162.g001
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found to be stabilized by hydrophobic interactions including π-stacking interactions between

a dioxin molecule and the residues of the pCYP1A2.

During MD simulation the complexes reached equilibrium after the first 100 ns of the sim-

ulation (Fig 3, S2 Table). To examine the potential of the pCYP1A2 to hydroxylate dioxin con-

geners, the distance between the heme oxygen atom and the dioxin carbon atom nearest to the

oxygen was calculated. The calculated distances oscillated around 3.36 ± 0.42Å for DiCDD

and 3.50 ± 0.22 Å for TCDD (Fig 4A and 4B). In addition, the angle between the heme iron,

oxygen and the dioxin carbon atom that is nearest to the oxygen was also measured. This angle

oscillated around 138.42 ± 0.06˚ and 144.92 ± 0.04˚ for DiCDD and TCDD, respectively (Fig

4C and 4D). The visualization of a particular dioxin position within the active site of pCYP1A2

during MD simulation is presented in Fig 5. All examined congeners were located in the

pCYP1A2 active site directly above the heme. Dioxin molecules were found to be stabilized in

the active site solely by hydrophobic interactions (Table 1, Fig 5). Each dioxin was stabilized

Fig 2. The overall three-dimensional structure of pig CYP1A2 (pCYP1A2) catalytic domain (a). The N-terminal end

of the amino acid chain is marked in dark blue, the C-terminal end is marked in red; different letters and colors (A–L)

depict 12 α-helices of the protein. Topology of the pCYP1A2 active site (b). The active site of pCYP1A2 is presented as

a violet area. Heme molecule of the active site is shown in black. Residues bordering the active site are depicted as color

sticks. Helices (G, I, B0, F) and loops (B-C, K-β1) surrounding the active site are shown in different colors. A

characteristic three-aa break (221–223) in helix F, typical for mammalian pCYP1A2 enzymes, is visible in the aa

sequence.

https://doi.org/10.1371/journal.pone.0267162.g002
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primarily by G316, A317, T321, V382, I386and L497. Additionally, π-π interactions formed by

F125and F226 were also involved in the stabilization of each dioxin within the pCYP1A2 active

site.

Table 1. The pCYP1A2 residues involved in molecular interactions with the examined dioxins.

Compounds After molecular docking AfterMD simulations

Hydrophobic interactions π-π interactions Hydrophobic interactions π-π interactions

DiCDD L260

G316

A317

T321

V382

I386

F125

F226

T124

G316

A317

T321

V382

I386

L497

F125

F226

3OH-DiCDD T124

S223

V227

L260

G316

A317

D320

T321

I386

F226

F256

N257

L260

N312

G316

A317

T321

L497

F125

F226

TCDD T124

S223

L260

G316

A317

D320

I386

F226

F256

G316

A317

D320

T321

V382

I386

L497

F125

F226

F319

8OH-TriCDD L260

G316

A317

T321

V382

I386

T498

F125

F226

F256

L260

G316

A317

T321

V382

I386

L497

F125

F226

F319

1OH-TCDD T124

S223

V227

L260

G316

A317

D320

T321

V382

I386

T498

F226

F256

T118

T124

L260

G316

A317

T321

V382

I386

L497

F125

F226

F319

2OH-TCDD T124

L260

N312

G316

A317

T321

V382

I386

T498

F125

F226

F256

T124

S223

G227

L260

G316

A317

T321

V382

I386

L497

T498

F226

F256

F319

Bold letters indicate amino acids shared between dioxins and metabolites, red letters indicate amino acids shared between DiCDD and TCDD

https://doi.org/10.1371/journal.pone.0267162.t001
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The distance between the heme iron atom and the dioxin metabolite carbon atom that is

nearest to the iron was calculated to assess the potential of a hydroxylated metabolite to leave

the pCYP1A2 active site. The calculated distances oscillated around 5.36 ± 0.35 Å for

3OH-DiCDD, 5.71 ± 0.24 Å for 8OH-TriCDD, 6.13 ± 0.31 Å for 1OH-TCDD and 5.35± 0.37

Å for 2OH-TCDD (Fig 6). Each metabolite was stabilized primarily by G316 A317 T321and L497.

Additionally, π-π interactions formed by F226 were also involved in the stabilization of each

metabolite in the pCYP1A2 active site (Table 1, Fig 5).

2.3. Molecular dynamics simulation of PCDD-human CYP1A2 complexes

Similar to pCYP1A2, the distance between the heme oxygen atom and the dioxin carbon atom

that is nearest to the oxygen was also calculated for human CYP1A2. The calculated distances

oscillated around 4.15 ± 0.54 Å for DiCDD and 3.85 ± 0.34Å for TCDD (S4A and S4B Fig). In

addition, the angle between the heme iron, oxygen and the dioxin carbon atom that is nearest

to the oxygen oscillated around 145.45 ± 0.1˚ and 150.96 ± 0.9˚ for DiCDD and TCDD, respec-

tively (S4C and S4D Fig).

2.4. Calculated binding affinity of the PCDD-pCYP1A2 complexes after

MD simulations and thermodynamic integration

The binding free energy of the TCDD-pCYP1A2 complex (-13.671±0.020 kcal�mol−1) was

lower than that of the DiCDD-pCYP1A2 complex (-12.778±0.026 kcal�mol−1) (Table 2). The

binding free energy for DiCDD, in turn, was lower in comparison to that for 3OH-DiCDD

(-9.697±0.053 kcal�mol−1). Similarly, 8OH-TriCDD (-12.007 ± 0.032 kcal�mol−1) showed a

slightly lower affinity to the pCYP1A2 active site than TCDD. In contrast, the two other

TCDD metabolites i.e., 1OH-TCDD (-24.415±0.050 kcal�mol−1) and 2OH-TCDD (-15.324

±0.043 kcal�mol−1) showed higher affinity to the pCYP1A2 active site than TCDD. The

pCYP1A2 demonstrated higher affinity towards DiCDD and TCDD in comparison to other

members of pCYP1 enzymes [12, 19] (S3 Table).

Fig 3. The root-mean-square deviation (RMSD) values collected during MD simulations of the examined dioxin-

pCYP1A2 complexes (100–300 ns); APO–substrate-free form of pCYP1A2.

https://doi.org/10.1371/journal.pone.0267162.g003
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In addition, the binding free energy of each residue forming all the examined dioxin-

pCYP1A2 complexes was analyzed to estimate the influence of particular residues on the

dioxin-enzyme binding. The amino acids with the strongest impact on the formation of the

dioxin-pCYP1A2 complexes are listed in Table 3 and visualized in Fig 5. The complexes were

found to be stabilized by hydrophobic interactions including π-stacking interactions (F125 and

F226) between a dioxin and pCYP1A2.

2.5. Access channels of pig CYP1A2

The specific interactions of a particular dioxin with pCYP1A2 affected the opening status

(open vs. closed) of the substrate channels leading to the active site of the enzyme (Fig 7). To

assess the potential of pCYP1A2 to hydroxylate a dioxin, the availability of access channels

were analyzed in depth. The MD simulations revealed the presence of two channels (channel

2c and 2a) that were most frequently activated (opened) upon binding the examined dioxins

(Fig 7A). Therefore, the subsequent analysis was performed only with regard to these two

Fig 4. Time-dependent changes in the distance between the pCYP1A2 heme oxygen and the dioxin carbon atom that is nearest to the oxygen (a, b) and in the angle

between the pCYP1A2 heme iron, oxygen and the dioxin carbon atom that is nearest to the oxygen (c, d).

https://doi.org/10.1371/journal.pone.0267162.g004
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channels (Table 4). The accessibility of the substrate channels during the simulation time is

shown in Fig 7B. In substrate-free pCYP1A2, channels 2c and 2a were open for 25.35% and

74.42% of the simulation time, respectively. Compared to the APO form of the enzyme, the

presence of DiCDD or 8OH-TriCDD within the pCYP1A2 active site promoted the opening

of the channel 2c for 63.30% or 35.68%, respectively. Furthermore, the binding of TCDD or its

two metabolites i.e., 1OH-TCDD and 2OH-TCDD to the active site of the pCYP1A2 resulted

in a closure of channel 2c (Table 4). The binding of all examined dioxins resulted in a closure

of channel 2a. The presence of dioxin metabolites within the enzyme active site did not pro-

mote opening of channel S (Fig 7B).

3. Discussion

The members of the CYP1 family (CYP1A1, CYP1A2 and CYP1B1) are directly involved in

biotransformation of many important endogenous and exogenous substances including ste-

roid hormones, drugs or dioxins [21]. Previously, we have examined the potential of pig

CYP1A1 [12] or CYP1B1 [19] to hydroxylate dioxins which differ in their toxicity and biode-

gradability. In the current study, we have investigated in silico the binding affinity and

Fig 5. The visualization of a dioxin position in the active site of pCYP1A2duringmolecular dynamics simulations. Side chains of pCYP1A2 amino acids interacting

with the examined dioxin are depicted in yellow; heme is black; DiCDD is beige, TCDD is lavender, 3OH-DiCDD is green, 8OH-TriCDD is pink, 1OH-TCDD is pale

willow-green and 2OH-TCDD as orange.

https://doi.org/10.1371/journal.pone.0267162.g005
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selectivity between pig CYP1A2 and DiCDD–a less toxic and easily biodegraded dioxin or

TCDD–a dioxin that is strongly toxic and highly resistant to biodegradation. These molecular

interactions were also analyzed between pCYP1A2 and four selected dioxin metabolites:

Fig 6. Time-dependent changes in the distance between the pCYP1A2 heme iron and the dioxin metabolite carbon atom that is nearest to the iron. 3OH-DiCDD–

3-hydroxy-2,7-dichlorodibenzo-p-dioxin, 8OH-TriCDD– 8-hydroxy-2,3,7-trichlorodibenzo-p-dioxin, 1OH-TCDD– 1-hydroxy-2,3,7,8-tetrachlorodibenzo-p-dioxin,

2OH-TCDD– 2-hydroxy-1,3,7,8-tetrachlorodibenzo-p-dioxin.

https://doi.org/10.1371/journal.pone.0267162.g006
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3OH-DiCDD, 1OH-TCDD, 2OH-TCDD and 8OH-TriCDD [11, 14, 26]. Moreover, we have

studied the availability of access channels within the pCYP1A2 molecule after dioxin binding

to analyze the potential routes of the entrance of the ligands and the exit of the hydroxylated

products.

The concept of CYP-mediated metabolism of TCDD relies entirely upon the research

reporting the formation of the dioxin metabolites in human and animal tissues [14, 24, 27]

and/or the presence of catalytic activity of CYP1 enzymes towards TCDD [11, 25]. The pres-

ence of TCDD metabolites–as well as those of other dioxins–was detected in human faeces,

blood serum and urine as well as in body fluids of mice and dogs [14, 24, 27]. Moreover,

despite the documented formation of TCDD metabolites, the reason for slow and non-efficient

degradation of this dioxin is still unknown.

The CYP-mediated hydroxylation process of dioxins is initiated by an effective binding of a

specific substrate. The binding free energy reflects the binding affinity–the lower the energy,

the higher the affinity. The results of the current study demonstrated that binding free energy

of the TCDD-pCYP1A2 complex was lower than that of the DiCDD-pCYP1A2 complex, sug-

gesting that TCDD is held stronger within the active site of CYP1A2. Several studies demon-

strated a growing ligand binding affinity accompanying successive substituting the ligand

molecule with chlorine atoms [28–30].

The binding specificity data demonstrated that the examined dioxins were stabilized within

the CYP1A2 active site mostly via hydrophobic interactions. Among these, the π-stacking

Table 2. The absolute binding free energy (kcal�mol-1) calculated through MD simulations and thermodynamic integration for the dioxin-pCYP1A2 complexes.

Energy component DiCDD 3OH-DiCDD TCDD 8OH-TriCDD 1OH-TCDD 2OH-TCDD

ΔGprot
elecþvdwþrest -22.369±0.022 -21.939±0.051 -23.335±0.013 -23.825±0.027 -37.629±0.045 -28.110±0.040

ΔGsolv
elecþvdw 2.611±0.014 5.077±0.016 2.497±0.016 4.996±0.017 6.423±0.021 5.822±0.016

ΔGsolv
rest 6.980 7.165 6.894 6.936 6.791 6.964

ΔG0
binding -12.778±0.026 -9.697±0.053 -13.671±0.020 -12.007±0.032 -24.415±0.050 -15.324±0.043

DGprot
elecþvdwþrest–ligand decoupling from complex; DGsolv

elecþvdw–ligand decoupling from solution; DGsolv
rest –ligand restraints added to decoupled ligand; DG0

binding–absolute

binding free energy, DGo
binding ¼ DGprot

elecþvdwþrest þ DGsolv
elecþvdw þ DGsolv

rest

DiCDD– 2,7-dichlorodibenzo-p-dioxin, TCDD– 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3OH-DiCDD– 2,7-dichloro-3-hydroxy-dibenzo-p-dioxin

8OH-TriCDD– 2,3,7-trichloro-8-hydroxy-dibenzo-p-dioxin, 1OH-TCDD– 2,3,7,8-tetrachloro-1-hydroxy-dibenzo-p-dioxin, 2OH-TCDD– 1,3,7,8-tetrachloro-

2-hydroxy-dibenzo-p-dioxin

https://doi.org/10.1371/journal.pone.0267162.t002

Table 3. The relative binding free energy (ΔΔG;kcal�mol-1) calculated for individual amino acids stabilizing the dioxin-pCYP1A2 complexes.

Dioxin F125A F226A G316A A317G T321A V382A I386A L497A

DiCDD 1.527±0.033 2.202±0.015 0.615±0.003 0.990±0.101 1.122±0.012 0.897±0.008 1.131±0.014 2.910±0.017

3OH-DiCDD – -0.344±0.027 -0.248±0.004 1.303±0.004 1.776±0.014 – – 2.960±0.034

TCDD 0.807±0.031 2.010±0.012 0.091±0.004 0.471±0.004 0.960±0.007 -0.040±0.007 0.388±0.009 3.508±0.013

8OH-TriCDD – -0.322±0.021 -0.386±0.003 0.745±0.004 0.270±0.07 – – 4.443±0.031

1OH-TCDD – -0.039±0.024 0.747±0.004 0.142±0.004 1.761±0.08 – – 2.612±0.032

2OH-TCDD – 2.416±0.024 1.530±0.004 1.130±0.003 -0.087±0.009 – – 3.354±0.024

DiCDD– 2,7-dichlorodibenzo-p-dioxin, TCDD– 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3OH-DiCDD– 2,7-dichloro-3-hydroxy-dibenzo-p-dioxin

8OH-TriCDD– 2,3,7-trichloro-8-hydroxy-dibenzo-p-dioxin, 1OH-TCDD– 2,3,7,8-tetrachloro-1-hydroxy-dibenzo-p-dioxin, 2OH-TCDD– 1,3,7,8-tetrachloro-

2-hydroxy-dibenzo-p-dioxin

The value for wild type of the pCYP1A2 bound DiCDD or TCDD was used as a reference (ΔG = 0)

https://doi.org/10.1371/journal.pone.0267162.t003
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interactions, formed by F115or F226, seem to play an important role in the stabilization of a

dioxin in the enzyme catalytic site. In addition, it was demonstrated that all examined dioxins

assumed the same plane orientation within the CYP1A2 active site. The incorporation of

hydroxyl group to the substrate is the first step of dioxin biodegradation catalyzed by CYP1

enzymes [9, 11]. The efficiency of the hydroxylation depends on the distance between the oxy-

gen atom of the CYP1A2’s heme and the nearest carbon atom of the dioxin [31]. (It was sug-

gested by Lonsdale et al. [32] that the distance between the CpdI oxygen and the ligand should

range within 3-5Å to enable hydroxylation to occur. The distances between the oxygen atom

of the enzyme’s heme and a particular dioxin (DiCDD or TCDD) oscillated around 3–3.5Å.

Such a small distance implies the potential of being hydroxylated by pCYP1A2. Similar results

were obtained for hCYP1A2 (S4 Fig). On the other hand, the values of measured angles

between CYP1A2 and DiCDD or TCDD exceeded the values described by Lonsdale et al. [32]

as being effective in incorporating a hydroxyl group into the aromatic ring. Moreover, apart

Fig 7. The access channels of the pCYP1A2 molecule shown in two different spatial enzyme orientations (a). Channel S is depicted in blue, channel 2c in orange,

channel 2a in red and the heme molecule is shown in black. The F-G (green) and B-C (violet) loops are of particular importance for the state of the channel (open vs.
closed). Dioxin-induced changes in the availability of the access channels identified within the pCYP1A2 molecule (b); Apo–substrate free form of pCYP1A2.

https://doi.org/10.1371/journal.pone.0267162.g007
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from the enzyme’s hydroxylating potential, the successful biodegradation of dioxins also

requires an effective evacuation of the polar product from the active site [20, 33]. We found

that access channels S and 2a remained closed during the MD simulation of the two dioxins,

while the 2c channel was opened only by DiCDD. The results suggest that after binding, both

dioxins remain locked within the CYP1A2 active site, making hydroxylation impossible to

proceed and also blocking the enzyme for other ligands. Moreover, the sequestration of TCDD

within the pCYP1A2 may foreclose the dioxin molecule from being detoxified by other

enzymes, which may be partially responsible for high toxicity of TCDD [24].

Analysis of binding free energy revealed that pCYP1A2 demonstrated the highest affinity

towards both DiCDD and TCDD compared to previously analyzed pCYP1 enzymes (S3 Table;

[12, 19]). The measured distances of DiCDD or TCDD from CYP1A2 heme’s oxygen atom

were smaller than in CYP1A1 or CYP1B1, reflecting higher potential of being hydroxylated by

the enzyme and suggesting a greater contribution of CYP1A2 to dioxin biodegradation. This

assumption seems to be supported by the hepatic localization of pig CYP1A2 [21, 22, 34].

Some interesting differences were also noted in the behavior of the substrate channels after

dioxin binding to different CYP1 molecules. Binding of DiCDD or TCDD to CYP1A2 resulted

in a rapid closure of channel 2a, and channel S remained closed through the entire simulation

time. In CYP1A1, the binding of TCDD resulted in channel S closure, however channel S

remained open after binding DiCDD (S5 Fig; [12]). Similarly, both dioxins opened channel S

after binding to CYP1B1 (S6 Fig; [19]). This seems particularly important since channel S is

considered to be an exit channel from the enzyme’s active site. It cannot be excluded that the

unavailability of channel S overcomes the impact of favorable affinity and the hydroxylating

potential, and results in the ineffective biodegradation of TCDD by CYP1A2.

A few studies reported the formation of primary metabolites of TCDD in animal organisms

as an indication of their biodegradation [25–27]. No research, however, demonstrated the

occurrence of further stages of biodegradation or provided any reliable reasons for the lack of

TCDD detoxification. In the current study, we analyzed molecular interactions between

CYP1A2 and four dioxin metabolites. 3OH-DiCDD, a primary metabolite of DiCDD [11] and

8OH-TriCDD, a TCDD metabolite [14] showed a lower affinity to CYP1A2 than the respective

Table 4. The features of the two most accessible access channels of pCYP1A2.

Name Availability of the channela Mean bottleneck radius (Å) Maximal bottleneck radius (Å) Mean pathway length (Å)

Channel 2c

APO 25.35% 1.35±0.13 1.87 23.95

DiCDD 63.30% 1.35±0.12 1.85 23.67

3OH-DiCDD 26.80% 1.31±0.09 1.70 22.71

TCDD 19.60% 1.28±0.07 1.57 23.07

8OH-TriCDD 35.68% 1.31±0.08 1.64 24.93

1OH-TCDD 2.03% 1.28±0.08 1.55 26.25

2OH-TCDD 1.00% 1.26±0.07 1.50 26.47

Channel 2a

APO 74.42% 1.48±0.15 2.07 23.22

DiCDD 0.13% 1.24±0.03 1.32 30.37

3OH-DiCDD 5.45% 1.27±0.06 1.53 28.45

TCDD 1.95% 1.25±0.05 1.44 29.18

8OH-TriCDD 4.35% 1.25±0.05 1.44 28.32

1OH-TCDD 5.08% 1.26±0.06 1.48 25.38

2OH-TCDD 0.62% 1.23±0.03 1.32 26.58

https://doi.org/10.1371/journal.pone.0267162.t004
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original dioxin. However, the remaining TCDD metabolites i.e., 1OH-TCDD [26] and

2OH-TCDD [14] showed higher affinity to the pCYP1A2 active site than TCDD. Interestingly,

the molecules of the two latter metabolites have more chlorine atoms than 8OH-TriCDD or

3OH-DiCDD. Numerous studies demonstrated that the increase in the binding affinity was

accompanied by the greater number of chlorine atoms [28, 30]. To determine the probability

of a hydroxylated product to be released from the active site, the distances between the iron

atom of the heme and a particular dioxin metabolite were estimated. It should be emphasized

that all calculated distances exceeded 5 Å (5.35–6.13 Å), strongly suggesting that the hydroxyl-

ated metabolites should not remain within the CYP1A2 active site [32]. The analysis of access

channels revealed that channel 2c was opened only by 8OH-TriCDD. None of the metabolites

bound to CYP1A2 promoted the opening of channel S. Contrary to the distances between the

metabolites and the pCYP1A2 active site, the channel data suggest that the hydroxylated prod-

ucts are probably not capable of leaving the active site, which results in the blockage of the

enzyme.

The active sites of pCYP1A2, CYP1A1 and CYP1B1formed by 12 canonical α-helices and 6

β-sheets were demonstrated to be deeply buried in the CYP molecule (the current study; [12,

19]). Similar to other CYP1 enzymes, the analysis of pCYP1A2 active site demonstrated the

presence of a narrow and planar active site embedded in the enzyme molecule. The cavity vol-

ume of the CYP1A2 active site was close to that of CYP1A1 and considerably bigger than that

of CYP1B1. The size and specific shape of the CYP1 active site affects hydroxylation of hydro-

phobic and planar compounds like PCDDs [11, 12]. The results of our previous study demon-

strated, that smaller active site may result in the immobilization of a ligand, forcing a certain

spatial orientation which may inhibit hydroxylation [19]. It is suggested, that enlarging the

binding pocket through mutagenesis-derived specific changes in amino acids forming the heli-

ces of the enzyme’s active site, may ease TCDD biodegradation [9]. In summary, pCYP1A2

demonstrated the highest affinity towards both DiCDD and TCDD compared to other mem-

bers of the pCYP1 family. Similar to the pCYP1A1 or pCYP1B1, all dioxin-pCYP1A2 com-

plexes were found to be stabilized by hydrophobic interactions including π-stacking

interactions. The distances between the heme oxygen atom and the dioxin carbon atom that is

nearest to the oxygen indicated high hydroxylating potential of the enzyme–higher than those

of other pCYP1 enzymes. Also, the distances from the heme iron atom did not suggest difficul-

ties with metabolite egressing the active site. However, we also demonstrated that the binding

of all dioxins resulted in a closure of access channel 2a, and the presence of metabolites did not

promote opening of exit channel S. It is possible that such behavior of pCYP1A2 substrate

channels overcomes the impact of the favorable affinity and hydroxylating potential of the

enzyme, and results in the ineffective biodegradation of TCDD by CYP1A2.The presented

data partially explain the molecular mechanisms underlying the slow and non-efficient degra-

dation of TCDD by CYP enzymes. Although the results of the current study shed some light

on the matter of CYP-mediated dioxin biodegradation, there are still more questions than

answers.

4. Materials & methods

All stages of the study were performed for two dioxin congeners, characterized by distinctively

different toxicity and susceptibility to biodegradation, i.e., DiCDD–less toxic and easily

degraded, and TCDD–highly toxic and resistant to biodegradation. We also examined four

dioxin metabolites: 3OH-DiCDD, 8OH-TriCDD, 1OH-TCDD and 2OH-TCDD. Chemical

formulas of both dioxins and their metabolites are presented in Fig 8. Porcine CYP1A2 cDNA

sequence was established experimentally by next generation sequencing (NGS; [6]). In our
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previous experiment, total RNA was isolated from porcine liver and tested for concentration,

quality and integrity. Next, cDNA strands were synthesized and DNA libraries were amplified

and quantified. Finally, libraries were sequenced on llumina HiSeq2500 high throughput

sequencing instrument (OpenExome, Poland) with 100 paired-end (PE) sequencing [6]. The

porcine CYP1A2 (pCYP1A2) sequence was localized in the transcriptome, trimmed and sub-

mitted to GenBank under the following accession number: AIY35109.1. The nucleotide (nt)

sequence was then translated to amino acid (aa) sequence.

4.1. Homology modeling of the pCYP1A2 catalytic domain

The amino acid sequence of pCYP1A2 protein was used to perform homology modeling of the

enzyme catalytic domain (aa 34–516). The crystalline structure of human CYP1A2 (PDB ID:

2HI4) was chosen as a template. The sequence alignment between pCYP1A2 and the template

was performed with the use of MUSCLE software [35]. A tertiary structure of pCYP1A2 was

generated using Modeller 9v14 software [36]. Models with the lowest Discrete Optimized Pro-

tein Energy (DOPE) score were selected for further analysis. The reliability of the constructed

models was evaluated with the use of PROCHECK, ProSA-web and VERIFY3D [37–40]. The

model with the best validation scores was selected to be further analyzed. The cavity volume of

the pCYP1A2 active site was calculated using VOIDOO software [41]. The analysis was carried

out with the probe-occupied algorithm. The probe radius and primary grid spacing were set to

1.4 Å and 0.33 Å, respectively. Other calculation parameters were set to default values.

Fig 8. Chemical formulae of DiCDD and TCDD as well as their potential metabolites.

https://doi.org/10.1371/journal.pone.0267162.g008
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4.2. Molecular docking of dioxins to the pCYP1A2 active site

Spatial structures of the two selected dioxin congeners (DiCDD and TCDD) and their metabo-

lites (8OH-TriCDD, 3OH-DiCDD,2OH-TCDD,1OH-TCDD) were obtained from ZINC data-

base [42]. Prior to dioxin docking, hydrogen atoms and charges were added to the modeled

structure of pCYP1A2 with the use of MGL Tools 1.5.4 [43]. The parameters of the ferric heme

were applied [44]. The molecular docking was performed using AutoDock Vina 1.1.2 program

[45]. The grid box was constructed around the active site of pCYP1A2 protein with X, Y, Z

parameters set to 15, 15 and 15 Å. The docking analysis was performed with exhaustiveness of

32. Other parameters were set to default values. The program generated 20 results reflecting

the best spatial positions of a dioxin molecule within the pCYP1A2 active site. For each dioxin,

the complex with the lowest energetic binding score was chosen as the most energetically

favorable, and was used to perform the subsequent molecular dynamics (MD) simulation. To

confirm the high reliability of the constructed homology model of porcine CYP1A2, a corre-

sponding analysis was performed for the crystalline structure of human CYP1A2 (PDB ID:

2HI4).

4.3. Molecular dynamics simulation of the PCDD-pCYP1A2 complexes

Molecular dynamics simulations were carried out with GROMACS 4.6.7 software using ffam-

ber99sb force field [46, 47]. The heme parameters were applied following [44], using the heme

Compound I intermediate (CpdI). To obtain force fields of the examined dioxins, the spatial

geometry of their structure was optimized with the use of Gaussian 09 software, applying

B3LYP/6-31G(d) level of theory [48]. Afterwards, the partial charges were obtained by the

restrained electrostatic potential fitting technique (RESP) based on electrostatic potentials

(Gaussian 09 software) and applying Hartree-Fock (HF) SCF/6-31G(d) level of theory [49].

For MD simulation, a rhombic dodecahedron box of explicit TIP3P water molecules was con-

structed around the examined complexes in a 10 Å distance from every peripheral residue.

Sodium and chlorine ions were added to neutralize the system [50].

Each PCDD-pCYP1A2 complex was relaxed using a harmonic constant of 1000 J�mol−1�nm−1

with restraints on protein heavy atoms. The energy minimization was conducted with the stee-

pest-descent algorithm through 5000 steps. The system was first heated from 0 to 300 K for 500 ps

under NVT (constant number of particles, volume and temperature) conditions. Next, the system

was equilibrated under NPT (constant number of particles, pressure and temperature) conditions

for 1 ns. The relaxed dioxin-pCYP1A2 complexes underwent a 300 ns MD simulation under

NPT conditions. Periodic boundary conditions and 12 Å cut-off for non-bonded van der Waals

(vdW) interactions were applied. Particle Mesh Ewald (PME) algorithm was used to calculate the

long-range electrostatic interactions between atoms. All bonds involving hydrogen atoms were

constrained by LINCS algorithm [51]. The time step for MD simulation was set to 2 fs. In addi-

tion, MD simulation of the substrate-free form (APO) of porcine CYP1A2 was performed to

exclude the effect of substrate binding on protein structure.

4.4. Binding free energy of the PCDD-pCYP1A2 complexes

In the present study we used two different methods to predict binding free energy, i.e., absolute

binding free energy (ABF) and thermodynamic integration (TI). ABF was employed to esti-

mate the binding affinity of dioxin molecules to the pCYP1A2 active site [52]. TI was used to

determine the impact of selected aa residues on a dioxin stabilization within the pCYP1A2

active site [53].

4.4.1. Absolute binding free energy. Calculations of ABF for the PCDD-CYP1A2 com-

plexes were performed with the use of a non-physical thermodynamic cycle depicted in S7 Fig.
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Two systems were analyzed in the cycle in the presence of water molecules: 1/ PCDD molecule

was bound to the active site of pCYP1A2 and 2/ unbound PCDD molecule. To estimate the

ABF between a PCDD and the pCYP1A2 active site, the ligand van der Waals and electrostatic

interactions were decoupled (Δλ = 0.05) and annihilated (Δλ = 0.1), respectively (S7 Fig,

A!B). Next, the relative position and orientation of the PCDD bound to the pCYP1A2 were

restrained by harmonic potential using a harmonic constant (4184.0J�mol−1�nm−1for dis-

tances; 41.84 J�mol−1�nm−1for angles). These restraints were executed by twelve non-uniformly

distributed λ states ranged from 0 to 1 (0.000, 0.010, 0.025, 0.050, 0.075, 0.100, 0.150, 0.200,

0.300, 0.500, 0.750, 1.000). The relaxation of the systems for each λ-state was performed as

described in Section 2.3 (Molecular dynamics simulation of the PCDD-pCYP1A2 complexes)
with the use of GROMACS 5.1.4. Calculations of ABF were performed during 40 ns with a 2 fs

time-step. A soft-core potential was employed to improve the transformation of van der Waals

interactions. Particle Mesh Ewald (PME) algorithm was used to calculate the long-range elec-

trostatic interactions between atoms. All bonds involving hydrogen atoms were constrained by

P-LINCS algorithm. The g_bar tool (GROMACS package) implementing the Bennet’s accep-

tance ratio method (BAR) was used to estimate the ABF of PCDD bound to the pCYP1A2

active site. To reach an equilibrium, the first 10 ns of each simulation was discarded.

4.4.2. Thermodynamic integration. To determine the impact of selected aa residues on a

dioxin stabilization within the pCYP1A2 active site, the residues were mutated during TI cal-

culation. Calculations of binding free energy for PCDD-pCYP1A2 complexes were performed

with the use of the thermodynamic cycle depicted in S2 Fig. The residues important for a

dioxin stabilization within the enzyme active site (wild-type; WT) were designated for muta-

tion (Mut) following the MD simulations. Briefly, the difference in binding free energy

between aPCDD-pCYP1A2WT complex and aPCDD-pCYP1A2MUT complex was estimated

on the basis of an alchemical transformation with the use of λ parameter coupling. The total

energy of each state is described by its Hamiltonian (H) i.e., H0 and H1 for thePCDD-pCY-

P1A2WT complex and thePCDD-pCYP1A2MUT complex, respectively. The transformation

between the two states is described by adding the λ parameter to the H. The intermediate val-

ues of the λ parameter represent intermediate states of the transformation. The integration of

the free energy values along a continuous path connecting the initial (H0) and final (H1) state

was used to estimate the difference in binding free energy as follows:

DGbinding A! Bð Þ ¼

Z 1

0

h
dHðq; p; lÞ

dl
i
l
dl

where, q stands for the atomic position, p stands for the linear momentum, and the angular

bracket stands for a Boltzmann-weighted ensemble average at a particular λ value. The differ-

ence in the relative binding free energy (ΔΔG) between the PCDD-pCYP1A2WT complex and

the PCDD-pCYP1A2MUT complex can be calculated with the use of a thermodynamic cycle

(S8 Fig). Based on the cycle, the ΔΔG can be calculated according to the following equation:

DDGðWT!MutÞ ¼ DGbindingðWTÞ � DGbindingðMutÞ ¼ DGboundðWT!MutÞ þ DGunboundðWT!MutÞ

where, DGboundðWT!MutÞ stands for alchemical transformation of the ligand-bound form ofwild-

type pCYP1A2 to the mutated pCYP1A2, DGunboundðWT!MutÞ represents alchemical transforma-

tion of the ligand free-form of wild-type the pCYP1A2 to the mutated pCYP1A2 protein.

For calculation of ΔΔG, the wild-type of pCYP1A2 was used as a reference. Two systems

were analyzed in the cycle in the presence of water molecules: 1/ a PCDD molecule bound to

the active site of pCYP1A2 and 2/ ligand-free form of the pCYP1A2 protein; thirty λ-states

were established in each system. The relaxation of the complexes for each λ-state was
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performed as described in Section 2.3 (Molecular dynamics simulation of the PCDD-pCYP1A2
complexes). The free energy calculation was performed during 30 ns with the use of Hamilto-

nian replica exchange dynamics with a 2 fs time-step. According to the Gibbs sampling

scheme, 3 million swaps between any state pair were performed for every 1000 time steps. The

g_bar tool (GROMACS package) implementing the Bennet’s acceptance ratio method (BAR)

was used to estimate the difference in relative binding free energy (ΔΔG) between wild-type

and mutant pCYP1A2 protein bound TCDD or DiCDD within the enzyme active site. To

reach equilibrium, the first 10 ns of each simulation was discarded. These differences reflect

the importance of particular residues in dioxin stabilization. The obtained positive/negative

values denote that the interactions between the substituted residues and a dioxin were weaker/

stronger, respectively, than those of the corresponding “wild type” residues.

4.5. Access channels analysis

Access channels of pCYP1A2 molecule were analyzed using CAVER 3.0.1 software [54]. The

snapshots of MD simulation trajectories of the dioxin-pCYP1A2 complexes as well as the

unbound CYP1A2 were extracted at every 50 ps from 100 to 300 ns. The probe radius and clus-

tering threshold of each channel were set to 1.2 Å and 3.5 Å, respectively. Default settings for

other parameters were used throughout the calculations. The beginning of each channel was

localized 3 Å above the iron atom of the heme molecule. The tunnels were visualized with the

use of PyMOL software [55]. To extend the knowledge concerning a potential ability of por-

cine CYP1A2 enzyme to hydroxylate a dioxin molecule, a corresponding analysis was per-

formed for dioxin metabolites bound within the enzyme active site.

Supporting information

S1 Table. The protein sequence identity between the CYP1A2 of the pig and other species.

(XLSX)

S2 Table. The average root-mean-square deviation (RMSD) values for the examined

dioxin-CYP1A2 complexes during MD simulations.

(DOCX)

S3 Table. The absolute binding free energy (kcal�mol-1) calculated for the PCDD-CYP1

complexes.

(DOCX)

S1 Fig. The amino acid sequence alignment between catalytic domains of porcine CYP1A2

and human CYP1A2 templates. Yellow background and red or black letters indicate that the

sequence homology is high, medium or low, respectively. Spirals represent α-helices, arrows

represent β-strands, blue stars indicate amino acids involved in the ligand binding to the

enzyme active site.

(TIF)

S2 Fig. Ramachandran plot for the generated homology-based model of pCYP1A2.

(TIF)

S3 Fig. The visualization of a dioxin position in the active site of pCYP1A2 after molecular

docking. Side chains of pCYP1A2 amino acids interacting with each of the examined dioxin

are depicted in yellow; heme is black; DiCDD is beige, TCDD is lavender, 3OH-DiCDD is

green, 8OH-TriCDD is pale pink, 1OH-TCDD is pale willow-green and 2OH-TCDD as

orange.

(TIF)
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S4 Fig. Time-dependent changes in the distance between the hCYP1A2 heme oxygen and the

dioxin carbon atom that is nearest to the oxygen (a, b) and in the angle between the hCYP1A2

heme iron, oxygen and the dioxin carbon atom that is nearest to the oxygen (c, d).

(TIF)

S5 Fig. Dioxin-induced changes in the availability of the access channels identified within

the pCYP1A1 molecule; APO–substrate free form of pCYP1A1.

(TIF)

S6 Fig. Dioxin-induced changes in the availability of the access channels identified within

the pCYP1B1 molecule; APO–substrate free form of pCYP1B1.

(TIF)

S7 Fig. The thermodynamic cycle used to estimate the absolute binding free energy of a

dioxin bound to pCYP1A2. Ligand of the pCYP1A2 is shown either as bound to the active

site of the enzyme (right panel) or unbound (left panel) in the environment of water molecules

(bluish background). A) The PCDD molecule (blue), fully able to interact with water molecules

is alchemically transformed into B) non-interacting molecule (white). This transformation

ðDGsolv
elecþvdwÞ was conducted with a series of simulations in which electrostatic (elec) and van der

Waals (vdw) interactions between the ligand and water molecules are scaled to zero. C) Next, a

non-interacting PCDD molecule was restrained (red pin). This transformation ðDGsolv
restÞ led to

the state which is equivalent to D) non-interacting PCDD molecule restrained within the

pCYP1A2 active site. E) Then, the elec and vdw interactions of the restrained PCDD molecule

bound to the pCYP1A2 active site were gradually reinstated (DGprot
elecþvdw).F) Finally, the posi-

tional restraints of PCDD molecule bound to the pCYP1A2 active site were removed, and the

unrestrained dioxin is fully able to interact with the enzyme (DGprot
rest ).

(TIF)

S8 Fig. The thermodynamic cycle used to determine the impact of particular amino acid

residues on dioxin stabilization within the pCYP1A2 active site.

(TIF)
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