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Abstract

Wound healing is a complex process involving intrinsic dermal and epidermal cells, and infiltrating macrophages and
leukocytes. Excessive oxidative stress and associated inflammatory processes can impair wound healing, and antioxidants
have been reported to improve wound healing in animal models and human subjects. Uric acid (UA) is an efficient free
radical scavenger, but has a very low solubility and poor tissue penetrability. We recently developed novel UA analogs with
increased solubility and excellent free radical-scavenging properties and demonstrated their ability to protect neural cells
against oxidative damage. Here we show that the uric acid analog (6, 8 dithio-UA, but not equimolar concentrations of UA
or 1, 7 dimethyl-UA) modified the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in ways
consistent with enhancement of the wound healing functions of all three cell types. We further show that 6, 8 dithio-UA
significantly accelerates the wound healing process when applied topically (once daily) to full-thickness wounds in mice.
Levels of Cu/Zn superoxide dismutase were increased in wound tissue from mice treated with 6, 8 dithio-UA compared to
vehicle-treated mice, suggesting that the UA analog enhances endogenous cellular antioxidant defenses. These results
support an adverse role for oxidative stress in wound healing and tissue repair, and provide a rationale for the development
of UA analogs in the treatment of wounds and for modulation of angiogenesis in other pathological conditions.
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Introduction

The rapid and coordinated responses of several different cell

types, including circulating platelets and immune cells, and

intrinsic keratinocytes, fibroblasts and vascular endothelial cells,

are required for the proper healing of full-thickness wounds [1,2].

Within seconds to minutes of the injury, platelets are recruited to

the wound site to aid in clot formation, and inflammatory

processes mediated by innate molecular cascades and infiltrating

leukocytes occur. These rapid responses limit blood loss and guard

against infectious agents. During the ensuing days keratinocytes

migrate over the injured dermis and the granulation tissue and

proliferate to restore the barrier function of the skin. Concomi-

tantly, fibroblasts migrate into the clot and proliferate and

angiogenesis occurs at the wound edge. Then, in a slower process

that occurs over a period of months to several years, tissue

remodeling occurs and (in mammals) a scar is formed by collagen-

producing fibroblasts.

The cellular signaling mechanisms that regulate wound healing

are complex and poorly understood, but recent findings suggest

key roles for growth factors such as EGF, FGF2 and HGF, the

cytokine TGFb and the cell fate regulator Notch [2–7]. From a

clinical perspective, an attractive feature of full-thickness wounds is

that treatments can be applied topically, thus reducing or

eliminating adverse effects on other organs. Thus, topical

application of ligands for several growth factors have been

reported to enhance wound healing in animal models [3,4,7]

and, in some cases, in human subjects [8,9].

A rapid increase in oxygen free radical production and oxidative

damage to proteins, DNA and lipid occurs in cells within and

adjacent to the wound site [10–12]. Some reactive oxygen species

appear to serve beneficial signaling roles in the recruitment of

immune cells and clearance of cellular debris, for example [13].

However, oxidative stress is detrimental to multiple cellular

processes that occur during the period of tissue healing and

remodeling that occurs over a period of days to weeks after the

injury [14–16]. Reactive oxygen species (ROS) generated in

wounded dermal cells include superoxide, hydrogen peroxide,

hydroxyl radical (formed by the interaction of hydrogen peroxide

with Fe2+) and peroxynitrite (formed by the interaction of

superoxide with nitric oxide) [17]. These ROS result in membrane

lipid peroxidation, protein oxidation and damage to nucleic acids,

PLoS ONE | www.plosone.org 1 April 2010 | Volume 5 | Issue 4 | e10044



any of which may impair cellular processes involved in wound

healing including proliferation and migration of epidermal cells,

and angiogenesis [18]. The increased ROS levels experienced by

cells in wounded tissue may be exacerbated by the depletion of

antioxidant enzymes including Cu/Zn superoxide dismutase

(SOD1) and glutathione peroxidase [19].

Uric acid (UA) is perhaps best known for its central role in gout,

a disorder characterized by elevated levels of UA resulting in its

precipitation to form crystals that are deposited in joint tissues

where they cause inflammation and pain [20]. On the other hand,

low levels of uric acid are associated with several major disorders

including Alzheimer’s and Parkinson’s diseases, and multiple

sclerosis [21]. Soluble UA functions as a free radical scavenger of

hydroxyl radical and peroxynitrite and, in fact, UA is the most

prominent antioxidant in the blood of humans and birds [22,23].

Previous findings have demonstrated a benefit of intraperitoneal or

intravenous administration of UA in experimental models of

several disorders that involve increased oxidative stress including

multiple sclerosis [24], Alzheimer’s disease [25], stroke [26] and

spinal cord injury [27]. However, the relative insolubility of UA

and its ability to form toxic crystals reduces its clinical utility. We

recently reported on the development of novel UA analogs with

greatly increased solubility and potent antioxidant acitivity [28]. In

vitro and cell culture screening identified 1, 7-dimethyluric acid

and 6, 8-dithiouric acid as two analogs with high antioxidant and

neuroprotective activities. When administered intravenously in

mice, both UA analogs lessened damage to the brain and

improved functional outcome in an ischemia–reperfusion mouse

model of stroke [28]. In the present study we provide evidence that

topical administration of 6, 8-dithiouric acid accelerates wound

healing in mice by a mechanism that may involve actions of the

UA analog on fibroblasts, keratinocytes and vascular endothelial

cells. These findings show that soluble UA analogs can improve

wound healing and suggest novel therapeutic uses for UA analogs

in clinical settings.

Results

6, 8 dithio-uric acid enhances the motility and
proliferation of vascular endothelial cells

By producing microvessels that provide nutrients and oxygen to

growing dermal cells, angiogenesis plays a critical role in wound

healing [29]. We therefore determined whether UA analogs affect

angiogenic behaviors of cultured vascular endothelial cells.

Human microvascular endothelial cells (HMEC-1 cells) were

treated with vehicle (control), uric acid, 1, 7 dimethyl-uric acid

(UA1) or 6, 8 dithio-uric acid (UA2) and cell migration was

evaluated using a 24 well Transwell chamber chemoatraction

assay. The concentration of UA and UA analogs used (15 mM) was

chosen based on our previous studies [28] and preliminary dose-

findings experiments. UA2, but not UA or UA1, significantly

enhance vascular endothelial cell migration rate toward the

chemoatractant medium (Fig. 1A). We next employed a scrape

wound assay in which monolayers of cultured vascular endothelial

cells were mechanically wounded with a pipette tip. The migration

of cells across the substrate in the wound chasm was significantly

enhanced in cells treated with UA2 compared to those treated

with vehicle, UA or UA1 (Fig. 1B). The proliferation rate of the

endothelial cells during a 3 day period was significantly greater in

endothelial cells treated with UA2 than controls or cells treated

with UA or UA1 (Fig. 1C). These results suggest that UA2 can

enhance two behaviors of endothelial cells, proliferation and

directed cell migration, that are critical for angiogenesis in wound

healing. Blood vessel formation requires that endothelial cells

interact with each other to form tubes [30]. We found that the

ability of endothelial cells to form three dimensional tubes when

grown in matrigel was significantly increased by more than two-

fold in the presence of U2 (Fig. 1D, E). In contrast, UA had no

significant effect on endothelial cell tube formation and UA1

increased tube formation by only 25%.

6, 8 dithio-uric acid enhances the motility and
proliferation of fibroblasts and keratinocytes

The reformation of a functional germ and toxin-resistant dermis

and epidermis in a wound requires the proliferation and migration

of both fibroblasts and keratinocytes [31]. We first evaluated the

migration of keratinocytes and skin fibroblasts using the cell

monolayer/scratch wound assay. Treatment with UA2, but not

UA or UA2, significantly increased the rate of migration of both

keratinocytes and fibroblasts into the wound area compared to the

migration rates of these cells in control cultures (Fig. 2A, B). We

also found that U2 enhanced the proliferation of keratinocytes and

fibroblasts, whereas UA and UA1 did not affect cell proliferation

significantly (Fig. 2C, D).

6, 8 dithio-uric acid accelerates the healing of full-
thickness wounds in mice

Because UA2, but not UA or UA1, affected the behaviors of

cultured fibroblasts, keratinocytes and vascular endothelial cells in

ways that would be expected to enhance wound healing in vivo.

We therefore employed a mouse model to determine whether

topical application of UA2 would modify the healing of full-

thickness dermal wounds. Two full-thickness wounds were induced

in young adult male C57BL/6 mice and then UA2 or vehicle was

applied topically to the wounds once daily. Images of the wounds

were acquired on post-injury days 1, 3, 5, 8 and 13 and wound

sizes were quantified. On post-injury day 1 the size of wounds in

UA2-treated mice was approximately 15% smaller than wound

size in control mice (Fig. 3A, B). Subsequently, there was a rapid

acceleration of wound healing in the UA2-treated mice such that

on days 3 and 5 the wounds were approximately 50% and 80%

smaller than controls, respectively. By day 8 the wounds of UA2-

treated mice were completely closed, whereas the wounds of

control mice had not yet healed completely (Fig. 3B). We observed

no adverse effects of topical UA2 treatment on the body weight,

general health or behavior of the mice.

In a parallel experiment, we euthanized mice in UA2-treated and

control groups at post-injury days 1, 3, 5, 8 and 13 and then

performed a histological evaluation of skin tissue sections stained

with hematoxylin and eosin. UA-treated mice exhibited enhanced

restoration of dermal and epidermal tissues in the wound (Figs. 4, 5

and see File S1 for a detailed description of histological changes in

the different groups of mice). Examination of the skin tissue sections

revealed that, in addition to accelerating the closure of the wounds,

UA2 treatment resulted in restoration of a near-normal dermis and

epidermis by post-injury days 8 and 13 (Figs. 4, 5). In contrast, the

skin tissue in the closed wounds of control mice (post-injury day 13)

had not been restored and exhibited acellularity, vacuolation and

accumulations of cell debris. Based on our histological evaluation it

is clear that at days 8 and 13 denser and extended granulation tissue

is seen in the UA2-treated group compared to the control group.

While this is clearly beneficial for the healing process, it remains to

be seen whether this may also result in temporary hypertrophic scar

formation. Since enhanced myofibroblast differentiation may

explain the acceleration of wound closure in UA2-treated mice,

we stained wound tissues at post injury days 5, 8 and 13 with an

antibody against alpha smooth muscle actin, a differentiation

Uric Acid and Wound Healing
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marker of smooth muscle cells (Fig. 4B, C). The results revealed that

enhanced myofibroblast differentiation occurred in the UA2-treated

wounds. Histomorphometric analysis (Fig. 5A, B) showed that UA2-

treated wounds on day 5 had more infiltrated mononuclear

inflammatory cells and new blood vessels compared to vehicle-

treated wounds (Fig. 5A, B).

UA2 treatment results in increased levels of SOD1, and
decreased accumulation of protein carbonyls and
nitrated proteins, in the wound tissue

Elevated levels of oxidative stress in cells within and surrounding

the damaged tissue in a wound are believed to impair the wound

healing process [10] which may result, in part, from depletion of

antioxidant enzymes [11]. We therefore measured relative levels of

Cu/Zn-superoxide dismutase (SOD1) in dermal wound tissue

from control and UA2-treated mice. SOD1 levels were two-fold

greater in the wound tissue of UA2-treated mice on all post-injury

days examined (days, 1, 3, 5, 8 and 13) (Figs. 6, 7). In addition to

SOD-1 levels, to measure severity of oxidative stress at the wound

site, we also performed oxyblot analysis with protein lysates from

wound tissue from control and UA2-treated mice to determine the

levels of oxidized proteins, which are characterized by the

presence of carbonyl groups. In four independent experiments

with different wound lysates, at days 1, 3, 5, 8 and 13, wound

samples from control mice had a consistently higher protein

carbonyl content compared with samples from UA2-treated mice

(Fig. 6C, D). As another indicator of oxidative damage, we

immunostained wound tissue sections with an antibody against

nitrotyrosine, which reflects interaction of proteins with peroxini-

trite, a toxic reactive oxygen species formed by the interaction of

nitric oxide with superoxide anion radicals. The analysis showed

that there were significantly more nitrotyrosine immunoreactive

cells in the wounds of mice in the control group compared to those

in the UA2-treated group (Fig. 7A, B).

Discussion

Impaired wound healing continues to be a major health

problem that predisposes to infections, long-term morbidity and

Figure 1. A uric acid analog enhances the motility and proliferation of human vascular endothelial cells. A. Cultured HMEC-1 were
treated with vehicle (control), uric acid, 1, 7 dimethyl-uric acid (UA1) or 6, 8 dithio-uric acid (UA2) (15 mM) in conditioned medium and plated into
chemo-attractant medium consisting of regular growth medium supplemented with 10% fetal bovine serum and other growth factors, and cell
migration was evaluated using a 24 well Transwell chamber assay. (values are the mean and SEM for cells per 1006field; n = 3–4). **p,0.01 compared
to control values. B. HMEC-1 monolayers were mechanically wounded with a sterile tip of 20–200 ml pipette tip following treatment without
(control) or with UA, UA1 or UA2 (15 mM). Values are the mean and SEM (n = 3 separate experiments). *p,0.001. C. Cultured HMEC-1 were treated with
vehicle, UA, UA1 or UA2 (15 mM) for the indicated time relative cell numbers were quantified by O.D readings (n = 4–6 experiments), *p,0.01. D&E.
HMEC-1 cells were seeded on Matrigel-precoated wells and cultured in the presence of low-serum medium with vehicle (control), UA, UA1 or UA2
(15 mM). Tube formation, designated as the number of branch points/100X field) was evaluated 18 h after cell plating. Representative images are
shown in D and quantitative data in E. Values are the mean and SEM (n = 12–16 cultures). *p,0.05; *p,0.001. Scale bars represent 100 mm.
doi:10.1371/journal.pone.0010044.g001
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mortality, particularly in high risk patients including those with

diabetes or suppressed immune function, and the elderly [32–34].

In a previous study we screened a panel of soluble UA analogs to

establish their antioxidant and neuroprotective properties and

identified 1, 7 dimethyl-uric acid (UA1) and 6, 8 dithio-uric acid

(UA2) as being the most effective [28]. In the present study we

found that UA2 was much more effective than UA or UA1 in

promoting the proliferation and migration of dermal fibroblasts,

keratinocytes and vascular endothelial cells. We then tested the

therapeutic potential of UA2 in a mouse model of wound healing

and found that, indeed, topical application of UA greatly

accelerated wound healing and enhanced the restoration of

normal dermal and epidermal tissue structure in the wound area.

These findings suggest a potential use of UA2 or related UA

analogs in the treatment of wounds humans.

Previous findings have suggested a potential for the use of

antioxidants to treat wounds. For example, Serarslan et al. [35]

reported that caffeic acid phenethyl ester reduces oxidative stress

and accelerates cutaneous wound healing in a rat model, and

Alleva et al. [36] reported that dietary supplementation with

alpha-lipoic acid enhanced wound healing in human subjects

undergoing hyperbaric oxygen treatment. In addition, overex-

pression of manganese SOD enhanced wound healing in diabetic

mice [37] and a recent study showed that application of a wound

dressing with curcumin-loaded nanofibers enhanced diabetic

wound healing [38]. The free radical-scavenging property of

UA2 likely contributes to its beneficial effects in the in vivo and cell

culture models of wound healing. Indeed, we found that levels of

protein carbonyls and nitrated proteins were significantly lower in

wounded tissue from UA2-treated mice compared to wounded

tissue from vehicle-treated control mice. UA and some UA

analogs, including UA2, have been shown to scavenge free radicals

including hydroxyl radical and peroxynitrite [22,23,28]. Consis-

tent with this mechanism, we previously found that UA2 was more

effective than UA or UA1 in scavenging free radicals [28].

However, in the latter study UA1 and UA2 were similarly effective

in reducing brain damage and improving functional outcome in a

mouse model of stroke. It will therefore be of interest to evaluate

the efficacy of a range of doses of UA and more soluble UA

analogs in wound healing models.

We found that UA2 enhanced the proliferation and migration of

vascular endothelial cells, and also accelerated the formation of vessel-

like tubes by endothelial cells grown in a three-dimensional matrix.

The importance of angiogenesis in wound healing [29] and our

Figure 2. A uric acid analog enhances the motility and proliferation of keratinocytes and fibroblasts. A–D. Monolayers of cultured
keratinocytes (A) or fibroblasts (B) were treated with vehicle (Control), UA, UA1 or UA2 (15 mM) and were then subjected to scratch wounding.
Eighteen hours after wounding, images of the wound area were acquired and the number of cells per field that had migrated into the cell-free
wound zone was determined for each culture. Quantitative data A&B are shown. Values are the mean and SEM (n = 3 separate experiments). *p,0.05.
C and D. Cultured keratinocytes (C) and fibroblasts (D) were treated with vehicle (Control), UA, UA1 or UA2 (15 mM) for the indicated time periods and
relative cell numbers were estimated by O.D readings, p,0.01. Values are the mean and SEM (n = 4–6 experiments).
doi:10.1371/journal.pone.0010044.g002
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findings in the present study, suggest that similar actions of UA2 on

vascular endothelial cells play an important role in the accelerated

and cytoarchitecturally superior healing of full-thickness wounds

treated with UA2. It remains to be determined whether antioxidant

actions of UA2 account for its ability to enhance angiogenesis, or

whether UA2 has other biological activities that enhance vessel

formation by endothelial cells. It will be of considerable interest to

determine whether UA2 might also have beneficial effects in other

clinical settings where angiogenesis is impaired.

Materials and Methods

Uric acid analogues
In a previous study (28) we described the process for the

synthesis of water soluble uric acid analogues, and characterization

and preclinical development of several different UA analogs

including dtUA (6, 8-dithiouricacid). In vitro and cell culture

screening showed that this dtUA has high a antioxidant activity

and is cytoprotective in cell culture and in vivo.

Cell Cultures
Keratinocytes. Human keratinocyte cells were obtained

from ATCC (# CRL-2309TM) and grown in keratinocyte

complete growth medium containing 0.05 mg/ml bovine

pituitary extract (BPE) and 5 ng/ml epidermal growth factor

(EGF) (GIBCO, Invitrogen USA). Cells were grown as a

monolayer.

Human Micro Vascular Endothelial Cells (HMEC-1). Human

microvascular endothelial cells (HMEC-1) are Simian vacuolating virus

40 Tag (SV40 LT) transformed stable cell line provided by Dr.

Fransisco Candal (Center for Disease Control, Atlanta, GA), were

maintained in MCDB 131 formula (GIBCO, Invitrogen, San Diego,

CA) supplemented with 10% fetal bovine serum (FBS), epidermal

growth factor (EGF, 10 ng/mL), hydrocortisone (1 mg/mL), and L-

glutamine (10 mmol/L).

Primary culture of fibroblasts. Dermal explants from the

skin of young adult mice were used to harvest fibroblasts. Dermal

tissue specimens were cut into ,5 mm pieces. These fragments

were placed on the surface of 100 mm Petri dishes for 40–50

Figure 3. Topical application of 6, 8 dithio-uric acid accelerates the healing of full-thickness wounds in mice. Two full-thickness
wounds were induced in vehicle- and UA2-treated (100 mM solution) mice. A. Images of a representative mouse from each group taken on post-injury
days 1, 3, 5, 8 and 13 are shown. B. Wound sizes at the indicated time points in Control and UA2 (15 mM) topical treated mice. Values are the mean
and SEM (n = 6 mice per group). ***p,0.001, **p,0.01, *p,0.05 #p,0.01 compared to the control value. Scale bar = 4 mm.
doi:10.1371/journal.pone.0010044.g003
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minutes to allow adherence of the tissue to the culture surface.

10 ml of DMEM with 20% fetal bovine serum, penicillin (100 UI/

ml) and streptomycin (100 mg/ml) (pH 7.6), at 37uC, was gently

added to the culture dishes.

Cultures were maintained in a humidified incubator at 37uC in

a 5% CO2/95% air atmosphere.

Cultures were passaged on reaching 80% confluence, using

0.05% trypsin/EDTA (GIBCO, Invitrogen) and the media was

changed every two days, for this rate enables the maintenance of

ideal conditions of pH between 7.6 and 7.8 without non-

physiologic upheavals. Cells were used at passage 4 or 5 for cell

migration or proliferation assays in order to minimize the

influence of genetic alterations and senescent changes in the

cellular morphology.

Full-thickness wounds and quantification of healing
These methods were similar to those described previously [4].

All experiments were performed using 3–4 month-old male

C57BL/6 mice. Mice were anesthetized using 2 to 2.5% vaporized

inhaled isoflurane and the dorsal skin was cleansed with Betadine.

Two full-thickness wounds were created in the skin on the back of

each mouse using a 4 mm diameter biopsy punch (Miltex

Instrument, York, PA, USA) and a biotome (Acu Punch, Acuderm

Inc., Fort Lauderdale, FL, USA). Mice were treated with vehicle

(10 ml of dimethylsulfoxide) or 100 mM of either UA, UA2 or UA2

applied directly to the wound site once daily in a blinded manner.

Some mice in each group were euthanized on days 1, 3, 5, 8 and

13 post wounding, and skin tissue samples from the wound site

were collected from all of the mice for histological and biochemical

analyses. Some mice from each genotype/treatment group (n = 6–

8) were evaluated daily for 13 days following wounding. Digital

photographs of the injury site were taken with a standard-sized dot

placed beside the wound; wound size was expressed as the ratio of

the wound area to the dot measurement.

Measurement of wound healing rate
Measurements of length and width were done using a caliper.

The first post-incision wound measurement was made on day 0.

The measurements were done without knowledge of the treatment

history of the mice. Wound area was calculated using digital

planimetry. Linear healing progress (LHP) was determined using

the following formula [39]

Figure 4. Histological features of wound healing in mice treated with UA2 or vehicle. A. Images of skin tissue sections stained with
hematoxylin and eosin showing histological changes during the wound healing process in control mice, with uric acid analog at post-injury days 1, 3,
5, 8 and 13. UA2 treated mice exhibited enhanced restoration of dermal and epidermal tissues in the wound. See File S1 for a detailed description of
histological changes in the different groups of mice. Scale bar = 1 mm. These images are representative of 12 wounds in 6 mice for each treatment
group. B. Immunostaining for a smooth muscle actin showing wound healing tissues on days 5, 8 and 13 in mice treated with UA2 or vehicle.
Pictures showing enhanced myofibroblast differentiation in UA2 treated groups compared to controls in days 5, 8 (**p,0.01) and 13 ((*p,0.05).
Scale bar = 25 mm. C. Quantification of alpha smooth muscle actin positive staining.
doi:10.1371/journal.pone.0010044.g004
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LHP~DA
�

Pavg

where, DA represents change in wound area between first and last

days of healing period and Pavg stands for the mean wound

perimeter at the same days:

DA~ A2{A1ð Þ

Pavg~ P1zP2ð Þ=2

Linear healing rate (LHR, mm/day) was measured using the next

equation:

LHR~LHP=t

where, t represents the healing period in days [39].

Tissue preparation and examination
The biopsy specimens involving the central part of the wounds

(Days 1, 3 5, 8 and 13) were obtained perpendicularly to the

dorsal midline from mice for light microscopy. Skin specimens

were fixed in formalin, dehydrated through a graded series of

ethanols, cleared in xylene, and embedded in paraffin wax. 5 mm

thick sections were prepared and stained with hematoxylin-

eosin. The histomorphometric method was an adaptation of the

point-counting procedure. The counting procedure in each

section was performed at a total magnification of 200 in 3

random fields per section limited to the wounded area. Two

components of each section were examined in specimens

associated with 4 mice per time interval: mononuclear

inflammatory cells (MICs) and blood vessels on days 5. After

transferring the images to the computer, a 252-square graticule

was superimposed on the screen over the wounded site to

facilitate counting. The epithelium was assessed on days 5

standard histologic grading system.

Histology
To assess cellular infiltration into the wounded area, samples

from three mice per group were collected on days 1, 3, 5, 8 and 13

during the healing process. To obtain skin samples from the

biopsied areas, mice were euthanized with an overdose of sodium

pentobarbital and the tissues were subsequently removed by

dissection. Formalin-fixed samples were sectioned at 4 mm and

stained with hematoxylin and eosin. All the slides were evaluated

by two veterinary pathologists (S. C. and S. P.) in blinded manner.

Immunoblot analysis
Tissue protein was extracted using T-PER tissue protein extraction

buffer with protease inhibitor cocktail (Sigma). Methods for protein

quantitation, electrophoretic separation, and transfer to nitrocellulose

membranes were as described previously [40]. Membranes were

incubated in blocking solution (5% milk in Tween Tris-buffered

saline; TTBS) overnight at 4uC followed by a 1 h incubation in

primary antibody diluted in blocking solution at room temperature.

Membranes were then incubated for 1 h in secondary antibody

conjugated to horseradish peroxidase and bands were visualized

using a chemiluminiscence detection kit (ECL, Amersham). The

primary antibodies were. SOD1 (Abcam, Cambridge, MA USA) and

an actin antibody (Sigma St. Louis, MO USA).

Detection of Protein Carbonyls by Oxyblot
Protein carbonyls in tissue protein were assayed with a protein

oxidation detection kit (Oxyblot; Cell Biolabs, San Diego, CA).

The tissue protein samples were prepared for electrophoresis with

4X reducing SDS sample buffer. The gel proteins were transferred

to a PVDF membrane. The membrane was immersed in 100%

methanol and dried at room temperature and then equilibrated

with TBS containing 20% methanol. After washing with 2 N HCl

the derivatization of the carbonyl groups of proteins by

Dinitrophenyl hydrazine (DNPH) was performed on 20 mg of

tissue proteins for 5 minutes at room temperature. The reaction

was stopped with 2 N HCl and the membrane was washed two

times with 100% methanol. The blocking was one hour with 5%

Figure 5. Wounds treated with a uric acid analog exhibit enhanced infiltration of immune cells and enhanced growth of blood
vessels. A. Numbers of mononuclear immune cells in wound tissue 5 days after the injury in control and UA2-treated mice. B. Numbers of blood
vessels in wound tissue 5 days after the injury in control and UA2-treated mice. Values are the mean and SEM (n = 6 mice). *p,0.05.
doi:10.1371/journal.pone.0010044.g005
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non fat dry milk in TBST and incubated with Rabbit anti-DNP

antibody (1:1000) at 4uC overnight. The membrane was washed

three times and then incubated with secondary antibody goat anti-

rabbit IgG, HRP-conjugate (1:3000) for one hour at room

temperature and then washed with TBST. The oxidized proteins

were detected by chemiluminescence (ECL Thermoscientific).

Immunofluorescence
4-mm punch biopsy wounds, including the wound edge, were

harvested on days 1, 3, 5, 8, and 13 from control and UA2 treated

mice. Skin tissue was embedded in Optimal Cutting Temperature

(OCT) compound and frozen. Sections (6 mm) were cut with a

cryostat and fixed in acetone. Subsequently sections were blocked

with 10% goat serum before being incubated with rabbit anti- alpha

smooth muscle actin (1:200; Abcam) and mouse anti- nitrotyrosine

(1:200; Zymed) overnight at 4uC. After being washed, the sections

were incubated in anti-rabbit and anti mouse IgG conjugated to

Alexa 568 and 488 respectively for 45 min at room temperature

(both 1:200). Sections were counterstained with Hoechst 33342

(Invitrogen) visualized under a Nikon Eclipse 80i microscope.

Quantification of immunohistochemistry
Using spatially calibrated images with the automated measure-

ment tools in IP lab software (BD Biosciences Bio-imaging,

Rockville, MD) total area of positive pixel intensity was measured

and analyzed with two-way ANOVA using GraphPad Prism

version 5.00 for Windows, GraphPad Software, San Diego

California USA.

Endothelial cell scratch wound healing assay
Human Microvascular Endothelial Cells (HMEC-1 cells), human

keratinocytes and mouse fibroblasts were seeded into 60 mm plates

and grown to confluency. After 24 hours of serum starvation

(DMEM supplemented with 1% FBS), cells were treated with either

Figure 6. Levels of Cu/Zn superoxide dismutase (SOD1) are increased in wound tissue from mice treated with UA2 (n = 4). A. Mice
were treated with vehicle (control) or UA2 for the indicated number of days post-injury along with unwounded skin tissue. Wound tissue samples
were then removed and were subjected to immunoblot analysis (40 mg protein/lane) using antibodies to SOD1, and actin (44 kDa). B. Densitometric
analysis of band intensity (Image J, NIH) of immunoblots showed a significantly increased level of SOD in the skin tissue at 1, 3, 5, 8, 13 days in UA2
treated mice compared to control mice. * P,0.01 compared to values for each of the other groups. Statistical comparisons were made using ANOVA
with Newman-Keuls post hoc tests for pair wise comparisons using GraphPad Prism version 5.00 for Windows, GraphPad Software, San Diego
California USA, www.graphpad.com. C. Enhanced oxidative stress in control wound tissues compared to UA2 treated at days 1,3,5,8 and 13. Lysates
(20 mg of total protein) were analyzed for the presence of oxidized proteins by oxyblot analysis. The membrane was re-probed with an antibody to b-
actin (n = 4). D. Densitometric analysis of band intensity (Image J, NIH) of oxyblot showing significant decrease in carbonyl protein groups in UA2
treated group, ** P,0.01, * P,0.05.
doi:10.1371/journal.pone.0010044.g006

Uric Acid and Wound Healing

PLoS ONE | www.plosone.org 8 April 2010 | Volume 5 | Issue 4 | e10044



vehicle, UA, UA1 or UA2 (15 mM). The cell monolayer was then

subjected to a mechanical scratch-wound induced using a sterile

pipette tip. Cells were then cultured for additional period of

24 hours in a serum-free basal medium in the continued presence of

vehicle, UA, UA1 or UA2. Cells were then fixed in a solution of 4%

paraformaldehyde in PBS and stained with crystal violet. Cells in

the injury area were visualized under phase-contrast optics (10X

objective) and the number of cells which had migrated into the

initially cell-free scratch area was counted.

Endothelial tube formation and chemotaxis cell
migration assays

HMEC-1 cells (16103 cells/well) were dispensed to Matrigel-

coated 8-well chamber slides (Lab-Tek, Nalge Nunc International,

Rochester, NY, USA) in 125 ml of EGM-2 containing either vehicle,

UA, UA1 or UA2 (15 mM) and incubated for 18 hours. The cells

were then visualized by microscopy and tube formation was scored

as described previously [4,41]. Cell migration analysis was

performed using Transwell membrane filters (Corning, Costar)

containing a polycarbonate filter with 8 mm pores. The bottom

chamber was filled with complete growth medium containing

chemoattractant growth factors. Cells (56104 in 100 ml) were

seeded into each transwell with EGM containing 0.2% fetal bovine

serum with vehicle, UA, UA1 or UA2 (15 mM) and allowed to

migrate for 6 hours. At the end of the incubation, non-migrated

cells remaining in the transwell insert were removed. The migrated

cells (on the outer bottom of the transwell) were fixed with methanol

and stained with hematoxylin and eosin, and the stained cells were

counted in 5 or more random 100X fields. Each experiment was

performed in triplicate, and the experiment was repeated twice.

Growth correction was not applied because no increase in the cell

number was observed during the incubation period of 6 hours.

Quantification of cell proliferation
The proliferation of cultured endothelial cells, keratinocytes and

fibroblasts was measured using a colorimetric assay. Cells (16104)

were incubated with either vehicle, UA, UA1 or UA2 (15 mM) for

24, 48 and 72 hours. Then 10 ml of 3-(4, 5dimethylthiazol-2-yl)-

2,5-diphenyl-2H-tetrazolium bromide (MTT) solution (R&D

Systems Inc. Minneapolis, MN) was added to each well and the

cells were incubated for a further 4 hours at 37uC. After the cells

were washed 3 times with PBS (pH 7.4), the insoluble formazan

product was dissolved by incubation with 100 ml detergent for

2 hours. The absorbance of each well was measured on an

Figure 7. Eight wound halves, control vs. UA2 treated were analyzed by immunofluorescence for the presence of nitrotyrosine
positive cells in indicated number of days post-injury. A. Representative images of staining. Nitrotyrosine-positive cells are green in color.
Nuclei were counterstained with Hoechst 33342. Scale ba r = 50 mm. B. Graph showing the quantification of immunostaining. The percentage of
nitrotyrosine positive cells was determined using the IP lab software (BD Biosciences). Statistical analysis was performed two- way ANOVA using
GraphPad Prism version 5.00. D. (*P,0.001).
doi:10.1371/journal.pone.0010044.g007
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enzyme-linked immunosorbent assay (ELISA) micro-plate reader

at 570 nm. Each experiment was performed in quadruplicate. The

proliferation rate was calculated as follows: (absorbance experi-

mental/Absorbance control-1) 6100.
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