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The identification and characterization of DNA-sensing

pathways has been a subject of intensive investigation for the

last decade. This interest, in part, is supported by the fact that

the main outcome of DNA-responses is production of type I

interferon (IFN-I), which, if produced in excessive amounts,

leads to various pathologies. STING (stimulator of interferon

genes) is positioned in the center of these responses and is

activated either via direct sensing of second messengers or via

interaction with upstream sensors of dsDNA. STING mediates

responses to pathogens as well as host-derived DNA and is,

therefore, linked to various autoimmune diseases, cancer

predisposition and ageing. Recent mouse models of DNA

damage showed the adaptor STING to be crucial for

heightened resting levels of IFN-I. In this review, we will focus

on recent advances in understanding the regulation of STING-

signaling and identification of its novel components.
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STING: a central player in the immune
response to cytosolic DNA
In eukaryotic cells, the DNA is packaged in the nucleus

or mitochondria. During infection or in response to a

variety of stress signals, DNA may be exposed within

the endosomal or cytoplasmic compartment, where it is

recognized by several DNA sensors that ultimately acti-

vate caspase-1 and signaling mediated by STING [1].

The name implies that the production of IFN-I as well as
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the subsequent activation of IFN-stimulated genes

(ISGs) [2] is the main outcome of STING activation.

STING (Tmem173/MPYS/MITA) is a tetraspanning

membrane-resident sensor that recognizes both bacterial

and host-derived cyclic di-nucleotides (CDNs) and cyto-

plasmic nucleic acids, either directly or via other cytosolic

DNA sensors, such as nuclear resident IFI16 (interferon

inducible 16) [3], a nucleotidyltransferase cGAS (cGAMP

(GMP-AMP) synthase) [4], and helicase DDX41 (DExD/

H-box) [5]. The amino-terminal domain (NTD) of

STING, which encompasses approximately the first

130 amino acids, contains four transmembrane domains,

while the final 250 amino acids comprise a globular

carboxy-terminal domain (CTD), several crystal struc-

tures of which have been reported.

The STING CTD resides in the cytosol and provides a

platform that directs TBK1 (tank binding kinase) [6] to

phosphorylate and activate IRF3 (interferon regulatory

factor 3) [7]. The phosphorylation of IRF3 appears to be

a conserved mechanism that selectively recruits IRF3 to

activate IFN-I [7]. The activation of STING triggers con-

formational changes in its CTD, which serves as a platform

for the recruitment and auto-phosphorylation of the serine-

threonine kinase TBK1. This kinase, in turn, phosphory-

lates and activates the transcription factor IRF3. IRF3 then

travels to the nucleus, where it initiates IFN-I production

and directly promotes the expression of multiple ISGs,

many of which are activated via the IFN-I ab receptor

(IFNAR) pathway. The growing interest in STING-medi-

ated DNA responses is based on the importance of IFN-I

for the host defenses against DNA viruses, such as herpes

viruses, and intracellular bacteria, such as Listeria
monocytogenes. Another subject of interest is the regulation

of IFN-I by STING; namely, tight regulation of IFN-I is

essential, since excessive production of this cytokine leads

to the development of autoimmunity [8�,9], chronic inflam-

mation [10��,11], or sepsis. Not surprisingly, STING is a

critical component in tissue repair and tumorigenesis [12].

While recent studies have highlighted the functional

importance of the STING CTD [13], particularly in

the recruitment and activation of the serine-threonine

kinase TBK1 and the transcription factor IRF3, less is

known about the function of the NTD, although some

NTD mutations have been described in humans; for

example, a potentially nonfunctional allele, referred to

as HAQ (R71H-G230A-R293Q), was found to be homo-

zygous in �3% of two American cohorts [14]. Additional
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evidence has been reported from murine studies, where a

hypomorphic allele of STING with detrimental muta-

tions confined to the NTD is seen in wild-derived mice

[15]. However, the role of the STING NTD in its

interaction with recently discovered additional compo-

nents and pathways requires further analysis.

Conceptual advances in the definition of the
STING signaling pathway
Given a central role of STING in IFN-I production and

regulation, it would not be surprising if additional ligands

exist that activate STING-signaling. Some of these li-

gands, such as mitochondrial DNA (mtDNA), easily fit

into the DNA-damage based model of STING-activation

[16], which is counterbalanced by caspases [17]. Other

ligands, such as those activated downstream of lipid

membrane [18], have yet to be identified. Finally, the

STING signaling pathway could converge at some level

with other pathways, downstream of STING.

Mitochondrial stress protects against viral infection

Mitochondria are known to respond to stress by DNA

leakage, a process that induces innate immune responses

[19]. Not surprisingly, stressed mitochondria release

DNA in response to HSV-1 (herpes simplex virus) and,

thus, provide protection against infection [20�]. Hemi-

zygosity for Tfam (transcription factor a mitochondrial),

which encodes an abundant mitochondrial protein re-

sponsible for nucleoid maintenance and architecture,

keeps the mitochondria intact, but leads to a 50% loss

of mtDNA. This results in IRF3 nuclear translocation and

elevation of several IFNs and ISGs in a STING-depen-

dent manner. IFN production is also dependent on cGAS,

which is co-localized with mtDNA, suggesting that cGAS

binds mtDNA.

Accordingly, Tfam-hemizygous MEFs (mouse embryonic

fibroblasts) showed resistance to VSV (vesicular stomatitis

virus) and HSV-1 infection and lower viral loads, whereas

inhibition of release of mtDNA promoted viral replica-

tion. Although the authors identified the viral protein

UL12.5 as responsible for mitochondrial stress induction,

it seems counterintuitive that the virus activates an anti-

viral mechanism of defense, particularly since numerous

other viral homologues of UL12.5 induce mitochondrial

stress. It is possible that a synergy exists between mito-

chondrial stress and induction of other, independent of

DNA-damage, immune responses [21], that is, a for

potential engagement and cross-talk with other pathways.

Altogether, this work supports the theory that mitochon-

dria serve as important sensors of particular pathogens.

Two pathways are required for resistance to the

smallpox virus infection

In support of alternative and synergistic ways of IFN-

production, He et al. report [22] that TLR9, MyD88,

STING and IRF7 are required for resistance to mouse
www.sciencedirect.com 
smallpox virus and for the production of IFN in draining

lymph nodes (dLN). Either STING-deficiency or

MyD88-deficiency leads to a decrease in IFN-I produc-

tion and to an increase in mortality in infected mice. The

authors show that inflammatory monocytes (iMos)

recruited into the dLN are the main producers of IFN-

I in response to infection and use STING to activate

IRF7 and NF-kB for production of IFN-I. However, it

remains to be determined which particular DNA sensor

activates STING signaling in iMos. For example, there

could be a specialized sensor that stimulates STING in an

exclusive manner in these cells. It would also be inter-

esting to see whether STING activates IRF7 directly in

iMos or through TLR9-IRF7-STING interaction.

Posttranslational modifications provide additional regula-

tion of STING signaling. For example, IFI16 is a DNA

sensor that resides in the nucleus and binds to the sugar-

phosphate backbone of dsDNA. The details of how IFI16

moves to the cytosol of infected cells and activates

STING have been clarified in a recently published report,

which shows that acetylation regulates IFI16 trafficking

and DNA binding [23]. A key molecular step is the

acetylation of DNA-bound nuclear IFI16 via p300, which

decreases DNA-IFI16 binding with the viral genome and

expels IFI16 from the DNA, changes its conformation,

exposes nuclear import signals, and binds STING in the

cytosol. Thus, IFI16 acetylation defines IFI16 location

and allows this sensor to switch from BRCA1-assisted [24]

binding the viral DNA to interacting with STING. These

findings contradict the canonical paradigm that the nu-

cleus is ‘immune privileged’ with regard to sensing for-

eign DNA and suggest that both cytoplasmic and nuclear

IFI16 participate in viral DNA surveillance.

A second STING-mediated pathway is targeted by the

influenza virus

In an intriguing extension of their previous report [25],

Holm et al. now describe the interference of the influenza

virus with, presumably, a second pathway that is mediat-

ed by STING in a DNA-independent manner [26��];
namely, they show that infection with enveloped RNA

viruses leads to STING-dependent, but cGAS-indepen-

dent, IFN-I production, a discovery that is surprising,

since it suggests the existence of another (unknown)

sensor located upstream of STING. In this study, STING

co-localized with viral hemagglutinin (HA) and physically

interacted with the NTD of the HA fusion protein (FP)

via STING’s173-163 region. The FP inhibited STING

dimerization and translocation in response to the activa-

tion of cells with fusogenic liposomes [26��]. The same

team made another exciting discovery when they identi-

fied Arg168 of STING to be important in fusion-mediat-

ed, but not ligand-induced, IFN-I production, thus

functionally separating the two pathways. It is tempting

to speculate that another, novel cytosolic component,

possibly related to a Ca2+ related membrane perturbation
Current Opinion in Microbiology 2016, 32:144–150
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[27�], transduces the activation signal from the lipid

membrane to STING. It also suggests that enveloped

viruses and fusogenic liposomes both mediate STING-

dependent, ligand-independent IFN-I response inde-

pendently of cGAS; whether this second pathway evolved

for better recognition of viruses or enveloped viruses

developed additional tools for interfering with the host

response remains to be further investigated.

Novel mechanistic insights in the regulation of
the STING-pathway
Several activation steps in STING-signaling have recent-

ly been identified, such as the interaction of STING with

TRAF2 (TNF receptor associated factor 2) and the

ubiquitin ligase TRAF3, as well as phosphorylation on

several residues, including Ser358 [28]. Ubiquitination by

TRIM56 (tripartite motif) and TRIM32 plays an impor-

tant role in regulating expression of STING [29]. In

addition to recruitment of TBK1 and IRF3, the

STING-CTD also recruits STAT6 [30]. Tight regulation

of IFN-production is achieved via inhibitory steps such as

AKT-mediated inhibition of cGAS [31] or via TRM30a-

mediated degradation of STING [32].

BTK1 phosphorylates DDX41 for activation of STING

The DNA-sensor DDX41 was known to activate the

STING signaling pathway, but the specific mechanism

of this activation was poorly understood. Now, Lee et al.
report the importance of the BTK1 kinase in this activa-

tion [33]. BTK1-deficient cells lack phosphorylation of

IRF3 and TBK1 and exhibit low levels of IFN-I. Accord-

ing to their model, the DEAD-box domain of DDX41

binds BTK’s kinase domain, whereas the SH3/SH2 do-

main of BTK1 binds the transmembrane domain of

STING. BTK1-mediated phosphorylation of DDX41

at Tyr414 increases the affinity of DDX41 towards

dsDNA and STING and stabilizes DDX41-STING

interactions, thus inducing oligomerization of STING

and ultimate activation of TBK1/IRF3 and production

of IFN-I. The proposed model suggests that TBK1

functions as an adaptor as well as a kinase. Although a

second tyrosine at 364 is critical for the activation of

STING, it is not phosphorylated by BTK1, thus leaving

its role in STING activation for further investigations.

PPM1A (protein phosphatase Mg2+/Mn2+ dependent 1A)

is a negative regulator of STING-activation

The phosphatase PPM1A directly interacts with STING

and removes the phosphate groups from both STING and

TBK1 [34], thereby acting as a negative regulator of

STING signaling. This interaction prevents further olig-

omerization of STING and IFNb production in response

to HSV-1. Using exogenously expressed proteins, the

authors show that TBK1-mediated phosphorylation of

STING at Ser358 is a prerequisite for STING polymeri-

zation and efficient phosphorylation of IRF3 byTBK1.
Current Opinion in Microbiology 2016, 32:144–150 
The ER (endoplasmic reticulum) adaptor SCAP (SREBP

cleavage activating protein) recruits IRF3 to STING

The mechanism of IRF3 recruitment to STING was

poorly understood, but Hansen et al. now provide mech-

anistic insight into this process [26��]. Specifically, they

show that silencing of SCAP, but not TBK1, abolishes

IRF3 recruitment to STING and IFNb production, but

does not abolish STING translocation, thus providing

evidence, for the first time, that IRF3 activation and

STING translocation are mechanistically separated.

The N-terminal (8-pass) transmembrane of SCAP inter-

acts with the transmembrane of STING (1-175), and the

C-terminus of SCAP binds IRF3 in an activation depen-

dent mode. SCAP-deficient mice are more sensitive to

HSV-1 infection than WT mice. A major question

remains as to what initiates the association of SCAP

and STING at the ER upon stimulation. It is also still

a mystery what regulates the STING/SCAP exit from the

ER.

Diversity of DNA-sensors that confer responses to

Listeria

In many instances, DNA-sensors cooperate to activate

STING signaling [28]. An example of such diverse DNA-

responses is recognition of Listeria [35,36]. Although the

role of cGAS in mediating responses to Listeria in mice is

well established, the nature of the DNA-sensor of Listeria

in human cells was unclear, since human cells are neither

dependent on cGAS, nor on a pump that transports CDNs

into the host cytoplasm. Now Hansen et al. show [37] that

cGAS, STING, and IFI16, but not DDX41, are important

for sensing the bacterial DNA, and that it is DNA, rather

than Listeria CDNs, that activates the STING-pathway

in human myeloid cells. One likely explanation is that

human STING is 500 times less responsive to bacterial-

derived CDNs with 3050 linkage than 203’cGAMP. In

addition, humans may have evolved to process DNA

better. These data suggest a role for IFI16 in the amplifi-

cation of cGAS-dependent DNA-driven responses.

NLRX1 sequesters STING to negatively regulate the

interferon response

Several nod-like receptors (NLRs) have been character-

ized as negative regulators of the IFN-I in response to

DNA [38]. Guo et al. now describe a mechanism by which

NLRX1 blocks IFN-I responses and promotes early HIV

infection [39]. NLRX1 facilitates its effect via binding the

C-terminus of STING, which disrupts the STING-TBK1

interaction. The fact that NLRX1 resides in the mito-

chondria, whereas STING is located in the ER, chal-

lenges these findings. Furthermore, previously observed

interactions between mitochondrial and ER proteins do

not provide the reason for interaction between mitochon-

drial and ER proteins. One possibility might be that

STING-signaling is specifically prohibited in MAMs

(mitochondria associated membrane) and gets disrupted

once STING accidently translocates to the mitochondria.
www.sciencedirect.com
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Thus, the described negative regulation of STING by

NLRX1 could be restricted to certain cellular compart-

ments.

TRIM9s promotes the IFN-I response by recruiting

GSK3b to TBK1

A short isoform of TRIM9, TRIM9s, was identified as a

novel positive regulator of IFN-I signaling downstream of

MAVS and STING signaling [40]. Knockdown of

TRIM9s resulted in higher cellular viral loads of RNA

and DNA viruses. It was shown that TRIM9s binds

directly to GSK3b and TBK1 and facilitates the interac-

tion between GSK3b and TBK1. Binding of TRIM9s to

TBK1 enhances IRF3 activation after viral infection.

Finally, the authors determined that TRIM9s has E3

ligase activity and is able to auto-ubiquitinate itself in

order to recruit TBK1 and GSK3b. The negative effect of

TRIM9s on IL6 and TNF-activation is likely to be linked

to GSK3b and could be confirmed by analysis of IL-10

production, which is promoted by GSK3b.

Figure 1 summarizes some of the STING-regulatory

pathways that were discussed here. The effects of these

pathways are confined to phosphorylation and de-phos-

phorylation, or direct interactions that antagonize

STING-signaling or synergize with it. The specific tim-

ing and intracellular location of these interactions is not

always known but, as in case with NLRX1, spatial re-

quirement might define specificity of the effects.

Viral interference with STING signaling
Having apparently arisen as a sensor of self-DNA and

stress-signals [41�], the STING-pathway has evolved to

counteract viral infections. It is, therefore, not surprising

that viruses have developed various mechanisms to neu-

tralize STING signaling [42,43]. In this section, we will

discuss some of the recent advances in the characteriza-

tion of viral strategies to hijack the STING-pathway.
Figure 1
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HBV (hepatitis B virus) polymerase disrupts K63-linked

ubiquitination of STING

To clarify the effect of HBV on the innate immune

response, Liu et al. infected primary human hepatocytes

with virus from HBV-positive sera to observe downregu-

lation of STING-specific IFN-I production [44]. They

report that viral polymerase (Pol) inhibits STING-medi-

ated IRF3 activation and IFN-I production. They also

mapped the inhibitory effect of Pol to its RT and RNA-

seH domains. Pol seems to physically interact with

STING and does not affect expression, but rather ubi-

quitination, of STING via its RT domain.

KSHV (Kaposi Sarcoma Herpes Virus) targets cGAS

In the first description of viral strategy targeting cGAS,

Wu et al. characterize ORF52 of Kaposi Sarcoma Herpes

Virus (KSHV) as an inhibitor of cGAS. When overex-

pressed, ORF52 inhibited cGAS and IRF3 dimerization

[45]. Because the inhibitory effect of ORF52 was attenu-

ated by increased amounts of the DNA, this suggested

that ORF52 competes with cGAS for DNA. ORF52

inhibited STING-mediated responses, but not AIM2-

mediated responses. The inhibitory effect was specific

for DNA, but not RNA-viruses, which altogether sup-

ported direct interaction between ORF52 and cGAS.

Indeed, the authors mapped the region of ORF52 respon-

sible for binding cGAS. Ability of ORF52 to bind both

DNA and cGAS provides high specificity of the inhibitory

effect. The rationale behind the strategy used by herpes

viruses is that DNA accounts for 10–20% of their mass,

thus making it necessary for the virus to develop a

mechanism that prevents recognition of DNA. This is

particularly true for KSHV, which goes through lytic

cycles that release viral DNA into the cytosol. Interest-

ingly, ORF52-deficient virus showed little difference in

elicited IFN-response compared with the wild type

strain, suggesting redundancy in the inhibitory effects

of KSHV ORFs on IFN-I production.
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Table 1

Interference of viral proteins with components of STING signaling pathway.

Virus Viral protein Pathway inhibited Ref.

KSHV vIRF1 Blocks STING interaction with TBK1 [46]

Adenovirus E1a Blocks unknown NTD STING mediated signal [48]

HSV1 VP24 Interacts with IRF3 and blocks phosphorylation of IRF3 by TBK1 [49]

IAV HA2 fusion peptide Inhibits STING dimerization in response to membrane fusion [26��]

HTLV-1 Tax Inhibits TBK1 phosphorylation of IRF3 by interactions with TBK1 [50]

HCV NS4B Inhibits STING accumulation by direct interaction with STING [47]

KSHV ORF52 Blocks cGAS binding of DNA [45]

HBV Pol Blocks K63 ubiquitination of STING by binding STING [44]

Coronavirus PLP2-TM Induces STING–Beclin1 interactions to degrade STING [51]

SARS PLpro-TM Inhibits TRAF3/TBK1/STING interactions [52]
KSHV protein disrupts TBK1-STING interaction

In support of the ‘redundancy model’ Ma et al. [46]

searched for the KSHV ORFs responsible for the inhibi-

tory effect and identified vIRF1 as the most efficient

among the tested ORFs in disrupting the TBK1-STING

interaction and attenuation of IFN-production. Concor-

dantly, depletion of vIRF1 elevated IFN-production in

response to KSHV and prevented efficient viral replica-

tion. During their lifelong persistence in the host, which

includes cycles of latency and lytic activation, the herpes

viruses can release their DNA into the cytoplasm or in the

nucleus, or induce mitochondrial stress. Thus, KSHV

viruses developed various strategies to block multiple

nodes in the DNA-sensing pathway.

HCV (hepatitis C virus) protein targets STING for

degradation

A similar disruption of the STING-mediated pathway has

been recently reported for the proteins of HCV [47],

which is, similar to Influenza virus, a ssRNA virus. Using

two different viral replicons, Yi et al. identified a trans-

membrane domain in NS4B that inhibited responses to

cGAMP. Concordantly, activation with cGAMP inhibited

replication of the HCV-cassette at the mRNA and protein

level in a STING-specific manner. At the mechanistic

level, NS4B induced degradation of STING, which is

termed ‘downregulation of STING accumulation’. Why

would an RNA virus develop a strategy of interfering with

STING? It is possible that STING degradation is an

underlying mechanism that explains earlier reports of

NS4B disrupting interaction of STING with TBK1 and

MAVS.

HSV-1 serine protease VP24 inhibits DNA-response by

blocking IRF3 activation

The VP24 protein is a serine protease of HSV-1 that is

necessary for capsid formation of the virus. In this paper

VP24 was found to dampen the interferon response to

DNA by blocking the interaction between TBK1 and

IRF3 and subsequent inhibition of IRF3 activation [47].

The authors show a lack of IRF3 dimerization, during

HSV-1 infection that increased after the knockdown of

VP24.
Current Opinion in Microbiology 2016, 32:144–150 
A summary of the discussed above viral strategies of

interfering with the STING-mediates signaling is provid-

ed in Table 1. Interestingly, viruses use direct physical

interaction with the components of the STING-pathway

rather than enzymatic modification. Another apparent

conclusion from these data is that viral strategies cover

all of the main components of STING-signaling thus

suggesting that there are probably some unknown inter-

ferences with some (yet) unknown components. There-

fore it seems promising to study the viral strategies of

interfering with the host immune response.

In conclusion, STING is positioned as the main regulator

of responses to host and pathogen-derived DNA. In

addition, experimental data implicate STING in the

regulation of DNA-responses in homeostasis (basal inter-

feron), as well as in autoimmune models.
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