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Introduction. ANoninvasive diagnosis model for digestive diseases is the vital issue for the current clinical research. Our systematic
review is aimed at demonstrating diagnosis accuracy between the BP-ANN algorithm and linear regression in digestive disease
patients, including their activation function and data structure. Methods. We reported the systematic review according to the
PRISMA guidelines. We searched related articles from seven electronic scholarly databases for comparison of the diagnosis
accuracy focusing on BP-ANN and linear regression. The characteristics, patient number, input/output marker, diagnosis
accuracy, and results/conclusions related to comparison were extracted independently based on inclusion criteria. Results. Nine
articles met all the criteria and were enrolled in our review. Of those enrolled articles, the publishing year ranged from 1991 to
2017. The sample size ranged from 42 to 3222 digestive disease patients, and all of the patients showed comparable biomarkers
between the BP-ANN algorithm and linear regression. According to our study, 8 literature demonstrated that the BP-ANN
model is superior to linear regression in predicting the disease outcome based on AUROC results. One literature reported linear
regression to be superior to BP-ANN for the early diagnosis of colorectal cancer. Conclusion. The BP-ANN algorithm and linear
regression both had high capacity in fitting the diagnostic model and BP-ANN displayed more prediction accuracy for the
noninvasive diagnosis model of digestive diseases. We compared the activation functions and data structure between BP-ANN
and linear regression for fitting the diagnosis model, and the data suggested that BP-ANN was a comprehensive
recommendation algorithm.

1. Introduction

Digestive disease involves the tube from the esophagus to the
stomach and intestines as well as various organs connected to
this tube such as the liver and pancreas, which are very compli-
cated medical situations involving multiple-organ systems and
biochemistry, immunology, and pathology mechanisms [1].
Based on the 2015 China Health Statistics Annuals, the two-
week prevalence and chronic disease prevalence of digestive dis-
eases were 15‰ and 24.9‰, respectively [2]. American Centers
for Disease Control and Prevention (CDC) reported almost 60
to 70 million people being affected by all kinds of digestive dis-

eases in 2001, and 9.3% (18.9 million) of noninstitutionalized
adults were diagnosed with digestive disorders annually (Sum-
mary Health Statistics for US Adults, 2001, NCHS, CDC) [3].
Economists estimated $912,443,000 being spent in public hos-
pitals on digestive system diseases in Australia from 2001 to
2002 (AIHW National Hospital Morbidity Database, Austra-
lia’s Health 2004, AIHW) [4] (https://www.rightdiagnosis
.com/d/digest/stats.htm). The five-year survival of most diges-
tive diseases is more than 80% if patients could be diagnosed
or treated at an early stage [5].

In a previous study, many researchers extracted noninva-
sive biomarkers for constructing diagnosis or a predictive
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model at an early disease stage in digestive disease patients,
especially in tumors that have shown a great value for medi-
cal practice due to the rapid test and convenient sampling of
these biomarkers [6]. WHO (World Health Organization)
guidelines recommended that APRI and FIB-4 could be
applied in HBV-reduced fibrosis assessment instead of inva-
sive examinations in limited medical resource countries [7].
And the Lok score performed well in diagnosing portal
hypertension using transient elastography (TE) [8]. Gurung
et al. used AST/ALT (the AST-to-ALT ratio) to elevate in
the alcoholic liver disease pattern in patients with hepatitis
C who progressed to liver cirrhosis [9]. Lin et al. constructed
the noninvasive diagnosis of nonalcoholic fatty liver disease
and quantification of liver fat using a new quantitative ultra-
sound technique [10]. Characteristic information, hemato-
logical examination, biochemical detection, endoscopic
ultrasonography, and pathology score were used in mathe-
matical modeling to predict the disease outcome accurately
[11–14]. A well-designed model can estimate the compli-
cated, undefined relationship between risk factors as input
biomarkers and the probability of occurrence of digestive dis-
ease as the output variable [15].

In the most common multivariate statistical model for
diagnosis or prediction, biomarkers were extracted as depen-
dent variables in order to derive the linear influence relation-
ship between biomarkers and response variables [16–18].
However, these high-dimensional data collected from differ-
ent visits were complicated for linear regression and collin-
earity between correlated biomarkers could not be detected
or solved in the linear model [19]. A sophisticated artificial
neural network (ANN) algorithm, the backpropagation
ANN model, was able to construct vague and nonlinear con-
nections between input biomarkers and the target biomarker
through the simulation of complicated processing neurons.
The correlation between input variables and target data could
be learned by the ANN after training several times [20, 21].
The ANN model mimicked signal transmission in human
brains through a set of processing units which consist of neu-
rons, and these neurons were interconnected via the weight
connections which make signal transmission in parallel and
series [22–24]. The most representative construction of
ANN consisted of three layers [25]. For clinicians and statis-
ticians, the input layer represented the observed biomarkers
of serum biochemical and auxiliary examinations [26, 27].
The output layer was the indicator of clinical outcomes.
The processing of ANN was driven by input data, and the
decision making was achieved with minimum adjustments
by human [28–30]. In the modeling process, training data
were analyzed and then the decision was made through out-
put neurons when new input variables were put in [31]. In
most of the ANNmodels, the backpropagation (BP) network
was the commonly used solution in dealing with the nonlin-
ear relationship between input variables and output variables
by constantly adapting the connection weight value between
neurons and the error threshold in each layer to make the
output variables approximately towards the expected out-
come [32–36]. The BP algorithm was based on error gradient
descent (Figure 1), which was aimed at finding the minimum
error by adjusting weights of connections between neurons in

the direction of lowest error [37]. The error was estimated
from the output variable and backcalculated to converge to
the optimum solutions [38].

In linear regression, we assume that the input medical
biomarkers and the clinical outcomes would be connected
through a nonlinear link function. The BP algorithm demon-
strates the modification of weights between synaptic neurons
during learning, and the connection would be changed
according to an error term computed for neurons throughout
each layer. Each computed weight is corrected by the param-
eters of the activity of the neuron and the error term of the
neuron it projects to. We could establish the complicated
mathematical model between the input medical biomarkers
and each matching output variables. In view of these benefits
and limitations, the algorithm with a more accurate calcula-
tion and more concise demonstration would be the optimum
solution for medical decision. However, the appropriate
choice either linear regression or BP-ANN has not been
reported in the recent publications and whether the BP-
ANN algorithm is always more accurate versus linear regres-
sion is controversial. Therefore, our research will try to dis-
cuss the following questions based on a systematic review:

(1) The characteristics of current studies using the BP-
ANN algorithm and linear regression

(2) The correlations between the BP-ANN algorithm
and linear regression

(3) Comparison of diagnosis accuracy between the BP-
ANN algorithm and linear regression for digestive
diseases

2. Methods

2.1. Correlations between the BP-ANN Algorithm and Linear
Regression. In respect of linear principal component
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Figure 1: The gradient descent of error Ek was calculated for the
updated parameters in the BP-ANN algorithm process.
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structure data, linear regression could be interpreted as a
one-layer perceptron neural structure model, which included
input variables and output variables (Figure 2). The input
layer transmitted the input clinical biomarkers directly to
the output variable through sigmoid function, which would
calculate the weight of each input variable in linear regres-
sion, that is equal to the regression coefficient using the least
square method [39, 40].

The activation function is a very important issue because
it is the direct bridge between input variables and the clinical
outcome, which greatly affect the prediction accuracy.
According to the activation function, nonlinearity correla-
tion would be transformed to linear regression, which is an
effective solution for calculating the parameters in the hidden
layer [41]. Different types of activation functions may lead to
different neural network parameters, and the commonly used
activation functions include the sigmoid function, tanh func-
tion, and Gaussian function [42–44].

h xð Þ = 1
1 + e− ax+bð Þ ,

tan h xð Þ = sin h xð Þ
cos h xð Þ ,

h xð Þ = e− x−ωið Þ2/ρ2i :

ð1Þ

The input variables were fitted by linear regression
before the activation function was applied, as shown in
Figure 2, where Figures 2(a) and 2(b) represented the inter-
cept and the coefficient, respectively. In the sigmoid func-
tion, variables transformed to the “s” curve and its value is
between 0 and 1. In the tanh function, the value transformed
between −1 and 1. In the Gaussian function, ωi and ρi were
the center and length, respectively. As seen in equation (1),
the activation functions were complex for researchers to
determine the optimal function because of the change of
parameters; therefore, the machine learning algorithm is
used to help optimize and fit an activation function for the
neural network [45].

2.2. Error Propagation in BP-ANN and Linear Regression.
The linear regression for principal component analysis fitted
the straight line which crosses the hidden layer in the neural
network, and the next process was to generalize this straight
line to a curve. Based on the principal component analysis,
the BP-ANNmodel could fix nonlinear principal component
data and the algorithm was backpropagation for mean square
error (MSE) and composed of a gradient descent method
which was widely used in numerical minimization of a prees-
tablished cost function [38, 46]. According to the gradient
trends, the BP model could update parameters between hid-
den layers and the input layer [47]. Combined with the BP
network structure, the process of error propagation started
from the output layer as follows:

E =〠
k

Ek =〠
k

1
2 dk − okð Þ2, ð2Þ

where E is the total error and Ek is the error for the k
th output

neuron, which is the deviation between the actual output ok
and expected output dk of the k

th output neuron.
If the above error definition formula is extended to hid-

den layer neurons, where yj represents the output of the jth

hidden layer neuron and ωjk represents the weight of the con-

nection between the jth hidden layer neuron and the kth out-
put neuron, then
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where f is the activation function.
If the function extended to input neurons, where xn rep-

resents the output of the nth input neuron and vnj represents

the weight of the connections between the nth input neuron
and the jth hidden layer neuron, then

E = 1
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According to the above formula, the total error E of the
network is the function of every connection weight value
ωjk, vnj, so the error E can be reduced by adjusting the weight
value of connections.

Based on the total error, the optimal weight could be
solved by calculating partial derivatives.

Δωjk = −η
∂E
∂wjk

,

Δvnj = −η
∂E
∂vnj

:

ð5Þ
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Figure 2: The linear regression algorithm process, which was
interpreted as the one-layer perceptron neural structure model Y
= a + b1x1 + b2x2.
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If we do

βk =〠ωjkyj,

αn =〠vnjxn,
ð6Þ

then, equation (5) could be written as follows:

Δωjk = −η
∂E
∂wjk

= −η
∂E
∂βk

∂βk

∂wjk
= −η

∂E
∂βk

yj,

Δvnj = −η
∂E
∂vnj

= −η
∂E
∂αn

∂αn
∂vnj

= −η
∂E
∂αn

xn:

ð7Þ

After each iteration, the weights were adjusted by adding
the change Δωjk or Δvnj to the original weights to minimize
the total error. A parameter “η”, the learning rate, was used to
define the weight change along with the gradient descent algo-
rithm. Based on the above formula, the weight change is nega-
tive when the gradient is positive and vice versa, which would
maintain the solutions towards the least error [39, 48–51].

2.3. Search Strategy for Related Studies. In our study, we
searched related articles from the following databases: MED-
LINE, Embase, Cochrane Library, Chinese Biomedical Liter-
ature Database, Wanfang, and CNKI, covering the publish
period between January 1, 1966 and May 1, 2019. The search
strategy was as follows: “(digestive disease OR digestive sys-
tem) AND (linear regression OR logistic regression OR logit
model) AND (ANN OR back propagation ANN OR BP-
ANN) AND (prediction OR diagnostic OR diagnosis).” The
titles and abstracts of relevant studies were screened based
on eligibility criteria and classified to different groups: (1)
duplicated, (2) not relevant, and (3) relevant. Full texts of
enrolled studies were assessed by Wei and Yang. Our study
was carried out and reported following the recommendations
of the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA statement) [52].

2.4. Selection Criteria for Enrolled Studies. Studies were
enrolled if (1) patients were aged from 18 to 65 years and diag-
nosed with digestive diseases for more than 6 months.
Hospital-based or community-based participants were all
enrolled; (2) diagnostic or predictive trials were performed
compared with linear regression (multiple linear regression,
logistic regression, and Poisson regression) and the BP-ANN
model simultaneously. The input variables were consistent in
linear regression and the BP-ANN model; and (3) outcomes
of model accuracy were assessed with following indicators:
the area under the receiver operating characteristic curve
(AUROC), sensitivity (SEN), specificity (SPE), false-positive
rate (FPR), false-negative rate (FNR), and prediction accuracy
= ðno:of true classified patients/no:of all the patientsÞ ∗ 100%
= ðSEN + SPEÞ/ðSEN + SPE + FPR + FNRÞ ∗ 100% [53].

The exclusion criteria were (1) patients who complicated
with severe cardiovascular and cerebrovascular disease, (2)
patients who have psychological disorder, and (3) patients
who suffered malignant digestive tumor and with an
expected survival time of less than one year.

The methodological quality of enrolled cohort studies
was assessed with the Newcastle-Ottawa quality assessment
scale, an established composite score from 3 items: (1) repre-
sentativeness of exposed and nonexposed patients and the
ascertainment of exposure, (2) comparability of cohorts on
the basis of the study, and (3) assessment of the outcome
and the follow-up was long enough for the outcome to occur.

3. Results and Discussion

3.1. Characteristics of Included Studies. A total of 319 articles
were retrieved from the search strategy, and 43 of them were
removed based on screening of titles and abstracts. Two hun-
dred and seventy-six articles were assessed for eligibility and
267 articles were excluded. Nine articles met all the criteria
and were enrolled in our review. The flowchart of literature
search and the selection process was shown in Figure 3. Of
those enrolled articles, the publish year ranged from 1991 to
2017. Seven articles were from China (containing Taiwan
Province), one article from Austria, and 1 from Korea. The
sample size ranged from 42 to 3222 digestive disease patients,
and all of the patients showed comparable biomarkers between
the BP-ANN algorithm and linear regression (Table 1).

3.2. Diagnosis Accuracy Comparison between the BP-ANN
Algorithm and Linear Regression for Digestive Diseases.
According to our systematic review, 8 literature demon-
strated that the BP-ANN model is superior to linear regres-
sion in predicting the disease outcome based on AUROC
results (Table 1). Other researchers [63–66] identically dem-
onstrated that the BP-ANN model had great abilities in
information processing, high parallelism related to nonline-
arity input variables, generalization, and the fault-tolerant
capabilities as the nonparametric algorithm, which is widely
used for classification, clustering, regression, and dimension-
ality reduction in several disease fields. The BP-ANN model
was superior to linear regression because of its extraordinary
processing ability for dealing with the hidden nonlinear

319 studies included 
according to the search 

strategy

43 studies excluded:
Not human (n = 10)

Other languages (n = 28)
Duplicated (n = 5)

276 studies assessed for 
eligibility

267 studies excluded:
Only reported ANN (n = 77)

No outcome (n = 178)
No relevant data (n = 12)

9 studies enrolled

Figure 3: Flow chart of literature search and the extraction process.
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Table 1: Characteristics of enrolled studies.

First author Country
Patient
no.

Output marker Input markers Algorithm Results or conclusions

Reibnegger,
1991 [54]

Austria 42
Different liver disease
(FL = 1, CPH = 2, and

CAH = 3)
Neopterin, AST, ALT, and

AST/ALT ratio

Comparison
with linear
discriminant
analysis and

with CART and
BP-ANN

Compared with the other
two techniques, BP-ANN
showed a unique ability to
detect features hidden in the

input data.

Gao, 2004
[55]

China 3222
DM (DM= 1, healthy =

0)

Pulse, family history,
nephropathy, waist-to-hip
ratio, hypertension, exercise,

and age

BP-ANN vs.
logistic

regression

BP-ANN could assimilate
more complicated

relationships and is better
than logistic regression.

Kim, 2005
[56]

Korea 94

US images of donor liver
with respect to
macrosteatosis

(moderate or severe
steatosis = 1, normal or

mild steatosis = 0)

ALP, GPT, GOT, γ-GGT,
hepatorenal ratio of

echogenicity, tail area ratio,
and tail length of portal vein

wall echogenicity

BP-ANN vs.
ordinal logistic
regression

The area under ROC curve of
ANN was significantly
greater than that of

radiologists (P < 0:05).

Liew, 2007
[57]

China
(Taiwan)

117
Gallbladder disease

(with gallstone = 1, no
gallstone = 0)

Gender, age, BMI, waist
circumference, hip

circumference, SBP, DBP,
sugar, CHO, TG, UA, AST,

ALT, Alb, WBC,
haemoglobin, MCV, insulin,
hsCRP, total protein, HDL-
C, HbA1C, HOMA, acute
inflammation, chronic

inflammation, eosinophil,
cholesterolosis, cholesterol
polyp, and gastric metaplasia

BP-ANN vs.
logistic

regression

The average correct
classification rate of ANNs
was higher than that of

logistic regression (97.14%
vs. 88.2%)

Chuang,
2011 [58]

China
(Taiwan)

166
Liver disease

(diseased = 1, healthy =
0)

HBsAg, HBeAg, anti-HBs,
anti-HBe, anti-HBc, anti-

HCV, AST, ALT, TBil, ALB,
ALP, r-GT, AFP, gender,
marriage, blood type, age,
education, occupation,

tattoo, smoking, chewing
betel nut, alcohol, fatigue,

sleep, nap, exercise,
breakfast, vegetables, fruits,

food date mark, food
composition, low salt,
healthy status, weight,

physical discomfort, healthy
examination, acupuncture,

and blood donation

A comparison
of BP-ANN,
CART, logistic
regression, and

DA

BP-ANN was the best model
for liver disease with the
accuracy of 95%. The

accuracy rates of CART,
logistic regression, and DA
were 91%, 86%, and 84%,

respectively.

Zhang, 2016
[59]

China 120

Pathology diagnosis
results of colorectal
disease (colorectal

patients = 1, benign = 0)

CEA, CA50, HSP60,
CYFRA21-1, TPA, AFP,
CA199, CA242, CA724,
CA125, CA153, and

UGT1A8

BP-ANN vs.
forward logistic

stepwise
regression vs.

SVM

The AUROC of combined
detection was 0.988, in
logistic regression. The

detection rate was 75% in the
BP-ANN model.

Fei, 2017
[60]

China 79
PSMVT (positive or

negative)

Age, sex, Hct, PT, FBG, D-
dimer, Ca, TG, AMY,
APACHEII score, and

Ranson score

One-layer BP-
ANN vs.
logistic

regression

The ANN model was more
accurate than logistic

regression in predicting the
occurrence of PSMVT.

Ma, 2017
[61]

China 575
BMI (overweight = 1,

healthy = 0)
Weight, height, age, fs-TG,

fs-TC, and fs-GLU

BP-ANN vs.
multiple linear
regression

The BP-ANN models
achieved higher prediction

accuracy than linear
regression.
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relationship between input markers and the clinical outcome,
which might be ignored by linear regression and statisticians
[67–70].

The self-learning and adaptive capacity of BP-ANN is
one of the advantages compared with linear regression [71].
In the two-phase process of training neural networks, the rea-
sonable rules between input and output variables could be
automatically extracted through backpropagation self-learn-
ing, which would be remembered and then translated to the
neuron weights in networks based on adaptive capacity
[72–76]. The self-learning phases were commonly repeated
for more than 10000 times; the weighted values and error
threshold tended to be optimized until the model converges
[77]. For most clinicians, a well estimated noninvasive diag-
nostic model or disease outcome classifier would help to
make a correct decision instead of invasive detection. Based
on these clinical demands, the BP-ANN training process
had the ability to deal with unrecognized confounders for
constructing the more accurate classifier, which could trans-
fer training achievements to the unknown information
between input variables and clinical outcomes [78–80].

Meanwhile, due to the current availability of big data in
multicenter clinical research, enhanced computing power
with graphics processing units, and new algorithms to fit
neural networks, a computer-aided system could handle
thousands of input variables as well as recognize hidden
information and made more accurate decisions than fitting
in linear regression [81].

The extrapolation performance of the BP-ANNmodel was
a noteworthy development; from the mathematical perspec-
tive, BP-ANN could achieve an optimal method that locally
searches the global solutions [82–84]. In this process, the
weights between neurons were adjusted gradually according
to the direction of local improvement, which may enable the
algorithm and the weights into local extremum convergence
[85]. In addition, BP-ANN was sensitive to initial weights in
the network and different initialized networks tend to con-
verge to the related local minimum andmany researchers con-
structed different models after training [79, 86–89].

One literature reported linear regression to be superior to
BP-ANN for the early diagnosis of colorectal cancer, in
which the input variables were only serum tumor markers,
including CEA, CA199, CA242, et al. [46]. Compared with
the BP-ANN diagnosis model, logistic regression analysis
showed better results, which was related to a multiparameter
used within a certain range [90]. The success of the linear
regression method in the development of the interpretative

and diagnosis model algorithm required the representative
and homogeneous of the data structure, elimination of
redundancy input variables, appropriate ratio between the
number of input variables and the output variables, and
accomplishment of strict validation procedures [91–93].

4. Conclusions

The noninvasive diagnostic model is one of the vital issues for
digestive clinicians and statisticians. Based on our systematic
review, the BP-ANN algorithm and linear regression had high
capacity in fitting the diagnostic model and BP-ANN displayed
more prediction accuracy in most of enrolled studies. To elab-
orate the situations, we compared the activation functions and
data structure between BP-ANN and linear regression for fit-
ting the diagnosis model and the data suggested that BP-
ANN was a comprehensive recommendation algorithm.

Based on the traditional three-layer neural networks, stat-
isticians have developed a set of deep learning algorithms with
different approaches [94]. Deep learning neural networks
(DNN) have extended the depth of layers to four or more
layers and performed better than traditional neural networks
in diagnosis and prediction when the neural network con-
struction become complex [95–97]. Hinton et al. used an
unsupervised restricted Boltzmann machine with deep layers
in neural architecture to overcome the limitations of local
minimum and overfitting [98]. Also, the convolutional neural
network (CNN) encompasses a multilayer of computational
connections with minimized processing which performed well
in recent research [99–102]. Therefore, further research may
focus on the correlations between the traditional neural net-
work and other machine learning algorithms, including deep
learning neural networks, convolutional neural networks,
and support vector machine method, to select the appropriate
algorithm for digestive diseases.

Abbreviations

ANN: Artificial neural network
AUROC: Area under the receiver operating characteristic

curve
BP: Backpropagation
CAH: Chronic aggressive non-A, non-B hepatitis
CART: Classification and regression tree
CDC: American Centers for Disease Control and

Prevention
CPH: Chronic persistent non-A, non-B hepatitis

Table 1: Continued.

First author Country
Patient
no.

Output marker Input markers Algorithm Results or conclusions

Shao, 2017
[62]

China 288 Inoperable HCA

Sex, age, stage, diameter, liver
metastasis, ascites, prior
abdominal surgery,

comorbidity, and bismuth
stage

BP-ANN vs.
logistic

regression
model

The AUC of the BP-ANN
had larger AUC than the

multivariate logistic
regression model
(P = 0:02142).
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DA: Discriminatory analysis
DM: Diabetes mellitus
FL: Fatty liver
FNR: False-negative rate
FPR: False-positive rate
HCA: Hilar cholangiocarcinoma
MSE: Mean square error
PSMVT: Portosplenomesenteric venous thrombosis
PPU: Perforated peptic ulcer
SEN: Sensitivity
SPE: Specificity
TE: Transient elastography
WHO: World Health Organization.
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