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a b s t r a c t 

Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mi-

tochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can

be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior

use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including

electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation

of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight

into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the

cybrid technique and subsequent data obtained from cybrid applications. 
c © 2014 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license
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Mitochondria are an essential cellular reticulum driving the

molecular reduction of oxygen into the energy molecule ATP. The

presence of a separate mitochondrial genome was discovered in 1963

[ 1 , 2 ]. The mitochondrial genome is comprised of circular double-

stranded DNA containing 16,569 base pairs. While not all compo-

nents of the electron transport chain (ETC) are encoded by the mito-

chondrial genome, its integrity is vastly important for ETC function.

The mitochondrial genome encodes 11 components of the ETC and

two subunits of ATP synthase ( Fig. 1 ). In addition, the mitochondrial

genome contains 24 tRNA / rRNA genes, which are required for trans-

lation of mitochondrial proteins ( Fig. 1 ). The importance of mtDNA

is highlighted by findings of mtDNA mutations and mitochondrial

dysfunction in diseases associated with aging [ 3 –5 ]. 

The cybrid technique 

Rho zero cells 

To facilitate cybrid generation, cells devoid of mtDNA are com-

monly utilized. These cells are termed ρ0 cell lines because prior to

identification of the mitochondrial genome the DNA found in the cyto-

plasm of cells was termed “ρ-DNA” [ 6 ]. The ability to deplete mtDNA

was first discovered in yeast models where natural mtDNA depletion

occurred under conditions in which glycolysis was favored over mito-

chondrial respiration. This led to artificial techniques to deplete cells
* Correspondence to: Department of Neurology, 3901 Rainbow Blvd MS 2012, Uni- 

versity of Kansas Medical Center, Kansas City, KS 66160, USA. 

E-mail address: rswerdlow@kumc.edu (R.H. Swerdlow). 

 

 

 

 

2213-2317/ $ - see front matter c © 2014 The Authors. Published by Elsevier B.V. This is an

licenses / by-nc-nd / 3.0 / ). 

http://dx.doi.org/10.1016/j.redox.2014.03.006 
of mtDNA, the oldest of which is the use of the DNA-intercalating

agent ethidium bromide (EtBr). EtBr, a positively charged aromatic

compound, is attracted to negatively charged DNA molecules located

within negatively charged mitochondrial matrices. Intercalation of

EtBr into DNA results in the failure of DNA replication by DNA poly-

merase. The use of EtBr in yeast cells culminated in partial and com-

plete mtDNA depletion [ 7 –9 ]. 

When extended to vertebrate cells, the development of mtDNA de-

pletion protocols proved more difficult. In one reported early attempt,

while treatment with EtBr did result in almost complete depletion of

mtDNA from the VA 2 B human cell line, the high concentrations of

EtBr that were used were toxic. Additionally, immediately following

removal of EtBr, mtDNA was replenished [ 10 ]. 

The first successful vertebrate ρ0 cell lines were made in chicken

embryo fibroblast cells using EtBr. The investigators determined the

resulting cells were auxotrophic for the pyrimidine nucleoside uri-

dine [ 11 ]. The basis for this can be explained by the function of di-

hydroorotate dehydrogenase. This mitochondrial enzyme is required

for the synthesis of pyrimidines and relies upon the ETC to func-

tion [ 12 ]. Therefore, depletion of mtDNA and subsequent ETC fail-

ure will disrupt pyrimidine synthesis. Supplementing mtDNA- de-

pleted cells with uridine bypasses the ETC-dependent, dihydroorotate

dehydrogenase-catalyzed step in the pyrimidine synthesis pathway.

An avian ρ0 cell line was subsequently generated using the same

protocol, reducing mtDNA copy number from 300 per cell to unde-

tectable levels [ 13 ]. It is important to emphasize, though, that ρ0 cells

retain mitochondria [ 14 ]. These mitochondria are not respiration-

competent, but they do retain a membrane potential, presumably

by operating their ATP synthase in reverse. Although their structure
 open access article under the CC BY-NC-ND license ( http: // creativecommons.org / 
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Fig. 1. The mitochondrial genome. This figure depicts the circular mitochondrial genome. Structural genes are shown in yellow. rRNA genes are shown in blue, while tRNA genes 

are shown in black. The regulatory region, D-loop, is shown in red. CO = cytochrome oxidase, ND = NADH dehydrogenase. 
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Table 1 

Reported ρ0 cell lines. 

ρ0 cell line Reference 

143B osteosarcoma [ 16 ] 

HeLa cervical carcinoma [ 18 ] 

A549 lung carcinoma [ 19 ] 

Lymphoblastoid, Wal2A [ 20 , 21 ] 

SH-SY5Y neuroblastoma [ 22 ] 

NT2 teratocarcinoma [ 23 , 24 ] 

U251 glioma [ 25 ] 

Fibroblast / transformed fibroblast [ 26 ] 

LL / 2-m21 mouse [ 27 ] 

T-cell lymphoblastic leukemia, 

molt-4 

[ 28 ] 
s altered they undergo proliferation and receive nuclear-encoded 

itochondrial proteins. These respiration-incompetent mitochondria 

ave been colloquially referred to by some authors as “mitoids” [ 15 ]. 

In 1989, the human osteosarcoma 143B cell line was depleted of 

tDNA. The ρ0 clones (143B101 and 143B106) were auxotrophic 

or both uridine and pyruvate [ 16 ]. The necessity for pyruvate sup- 

lementation was hypothesized to be required for the maintenance 

f cellular redox status [ 17 ]. Cells devoid of mtDNA rely upon gly- 

olysis for ATP production. Under physiological conditions, glycoly- 

is increases NADH levels, while mitochondrial respiration produces 

AD 

+ . Therefore, the absence of mitochondrial respiration signifi- 

antly increases the NADH: NAD 

+ ratio, interfering with glycolytic 

apacity. Supplementation with pyruvate leads to the formation of 

actate, which generates NAD 

+ , thus allowing glycolytic function and 

TP production. Additional cell lines have been depleted of mtDNA 

ver the course of time. Table 1 provides a list of currently reported 

0 cell lines. 

To understand the mechanisms of mtDNA depletion, it is impor- 

ant to understand that the depletion of mtDNA occurs in two steps. 

irst is the cessation of mtDNA replication. This step does not elimi- 

ate existing mtDNA molecules, but terminates their ability to repli- 

ate the mtDNA. As the cells divide, the mtDNA is divided among the 

ew cells, leading to continuous dilution of the mtDNA pool. This cre- 

tes a cell population in which some cells contain mtDNA while other 
cells lack the mtDNA—and are now “ρ0”. The second step begins at 

this point, in which ρ0 cells are isolated and expanded, or mtDNA 

depletion continues until all mtDNA is degraded. 

Further development of techniques to deplete cells of mtDNA have 

moved away from the use of EtBr. The mitochondrial DNA polymerase 

γ inhibitor, ditercalinium, or expression of a dominant negative mito- 

chondrial DNA polymerase γ construct have been used successfully to 

create ρ0 cell lines [ 29 , 30 ]. Exposure to dideoxynucleoside analogues, 

which interfere with mtDNA replication, leads to mtDNA depletion 

myopathy and is another technique for creating ρ0 cell lines [ 31 , 32 ]. 
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Rhodamine 6-G, first noted for its ability to interfere with mitochon-

drial ETC function, is an additional tool for the generation ρ0 cell

lines [ 33 –35 ]. More recent techniques to deplete mtDNA have used

the expression of mitochondrial targeted EcoRI, which is the focus of

a biotech company, Rho Zero Technologies [ 36 , 37 ]. 

The generation of ρ0 cell lines requires techniques to verify de-

pletion of the mtDNA. Several applications have been reported de-

scribing how to document ρ0 status. Techniques include southern

blotting, PCR of mtDNA, competitive PCR to ratio mtDNA and nuclear

pseudogenes, measurement of oxygen consumption and cytochrome

c oxidase activity, pico green staining, and uridine / pyruvate auxotro-

phy [ 18 , 19 , 21 –26 ]. The majority of these techniques depend upon the

demonstration of a negative result. Most of these techniques, there-

fore, are limited by the sensitivity of the mtDNA detection protocol.

Testing for uridine / pyruvate auxotrophy, however, is a practical ap-

proach which does not rely upon a negative result. A more recently

developed technique, competitive PCR, is more labor intensive but

also does not rely upon demonstration of a negative result. The com-

petitive PCR approach provides a means to statistically analyze the

probability of mtDNA depletion and that ρ0 status has been achieved

[ 25 ]. 

mtDNA Transfer 

During the development of mtDNA depletion techniques, methods

for transferring mtDNA into cells were simultaneously being estab-

lished. The first attempt, in 1972, led to the creation of a heterokaryon

hybrid cell, which used the Sendai virus to fuse cells together [ 38 ].

Two years later, a separate technique was carried out using mixtures

of nucleated cells and cytoplasts (non-nucleated cells) [ 39 ]. Bunn et

al. called the resulting cells “cybrid” cells, distinguishing them from

the term “hybrid”, which implies the mixture of two nucleated cells. 

The cybrid technique was first utilized in 1975, to determine if

chloramphenicol resistance was mediated by the cytoplasm in a hu-

man cell line [ 40 ]. Cytoplasts were generated from a chloramphenicol

resistant HeLa cell line fused with a chloramphenicol susceptible HeLa

cell line that was also thymidine kinase negative (TK 

−). The difference

in TK content allowed for a selection process to eliminate intact chlo-

ramphenicol resistant cells which may have failed the enucleation

procedure. This is important because both HeLa cell lines perpetuate,

and contamination with intact chloramphenicol-resistant cells could

lead to confounded results. It was ultimately concluded that the cy-

brid cells were chloramphenicol resistant, and that this characteristic

was dependent upon the cytoplasm of the cell. Fig. 2 depicts this type

of cybrid generation strategy, in which mitochondria are transferred

from one nuclear partner to another, even though the recipient nu-

cleated cell is not a ρ0 cell. 

A separate cybrid technique—first reported in 1989—fuses enucle-

ated cytoplasts with ρ0 cells. Cytoplasmic transfer to the ρ0 cell line

was mediated through the use of polyethylene glycol, as well as di-

rect injection of cytoplast mitochondria [ 16 ]. Repopulation of the ρ0

cell line with mtDNA was depicted through loss of uridine / pyruvate

auxotrophy and restoration of oxidative phosphorylation biochemi-

cal measurements. Fig. 2 shows a schematic for this cybrid generation

strategy. To further simplify the cybrid technique, Chomyn et al. [ 41 ]

used a procedure in which platelets were employed as cytoplasts.

Platelets do not contain a nucleus, therefore pre-fusion enucleation

of the cytoplasmic donor cell is not required. 

Two separate studies subsequently reported that synaptosomes

from brain tissue could also serve as cytoplasts for mtDNA fusion

[ 42 , 43 ]. However, the use of synaptosomes has overall proved chal-

lenging, because the efficiency of mtDNA transfer is low when fresh

brain extracts are used from mice and dismal when post-mortem

human brain tissue are used [ 44 ]. 
The use of cybrids to study mitochondrial genetics and mtDNA-nuclear 

DNA compatibility 

Early cybrid studies used fibroblast mitochondria which contained

mtDNA that harbored known pathogenic mutations. The major goal

of these initial studies was to understand the pathological mecha-

nisms underlying diseases associated with mtDNA mutations. To bet-

ter understand the power of cybrids for this application, it is worth

reviewing some basic mitochondrial genetic tenets. 

Cells contain numerous copies of mtDNA. Homoplasmy defines a

state in which the mtDNA sequence of different mtDNA molecules

within a cell is always the same. Homoplasmy is the mitochondrial

equivalent of nuclear homozygosity. However, it is reasonably com-

mon for mtDNA molecules within a cell, tissue, or organism to exhibit

sequence heterogeneity. This state is called heteroplasmy. Hetero-

plasmy can be considered to loosely correspond to nuclear heterozy-

gosity, but in reality it is far more complex. Because mtDNA is not

a binary system like nuclear DNA, different ratios of wild-type and

mutant mtDNA molecules can reside within a single mitochondrion

or a single cell. Therefore, a heteroplasmic mutation can be present

in varying degrees, and in either low or high abundance. 

Threshold refers to the mtDNA mutational load that is required

within a cell to cause a biochemical or phenotypic consequence. It

is reasonable to hypothesize that the more pathogenic the mtDNA

mutation, the lower abundance is necessary to reach a threshold that

changes mitochondrial and, therefore, cell physiology. A schematic

depicting the use of cybrids to study mtDNA heteroplasmy is shown

in Fig. 3 A. 

The A3243G mtDNA mutation associated with the mitochondrial

encephalopathy, lactic acidosis, and stroke-like episodes syndrome

(MELAS) was studied using the cybrid model. mtDNA nucleotide 3243

is located within one of the two mtDNA genes that encodes a leucine

tRNA (tRNA Leu 

UUR ). This mutation does not produce an aberrant

protein because the gene product is synthetic and not structural in

nature. MELAS cybrids were made using osteosarcoma ρ0 cell lines,

and found that a high mutational burden of 85% was required be-

fore phenotypic consequences were observed [ 45 –48 ]. The mecha-

nism leading to biochemical changes with this mtDNA mutation is

related to translation deficiency of mtDNA-encoded structural pro-

teins [ 45 , 49 ]. Following these initial studies, it became apparent that

the nuclear background of the ρ0 cell used influenced the mitochon-

drial genotype–phenotype relationship. In the osteosarcoma MELAS

cybrid model, a 90% mutational burden resulted in a 30% decrease in

cytochrome oxidase activity, while an A549 lung carcinoma MELAS

cybrid model required only a 55% mutational burden to observe a

50% reduction in cytochrome oxidase activity [ 50 ]. Both cybrid mod-

els required substantial mtDNA mutation load to alter biochemical

endpoints compared to those required in human muscle [ 51 , 52 ]. Fi-

nally, nuclear differences in mutational drift were observed over time.

For example, one nuclear background led to drift away from the mu-

tant mtDNA, while a separate nuclear background led to drift toward

the mutant mtDNA [ 50 , 53 , 54 ]. 

Other cybrid studies have examined mtDNA transfer from people

with Leber ’ s hereditary optic neuropathy (LHON). LHON is associ-

ated with mutations in mtDNA structural genes, unlike the synthetic

gene mutations observed in MELAS. No single mutation leads to the

LHON phenotype, as several distinct mutations have been reported.

All mutations that lead to the LHON phenotype are found in structural

genes, and mutations within the NADH dehydrogenase (ND) genes,

which encode for Complex I subunits, are most common. The most

frequently reported mutation is G11778A, which resides in the ND4

gene. LHON cybrid data suggests that biochemical consequences de-

pend upon the mutation and nuclear background of the ρ0 cell line

that is utilized. For example, LHON mutations that show no Com-

plex I defects in one nuclear background can show Complex I defects

in a separate nuclear background. The only consistent parameters
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Fig. 2. Cybrid generation techniques. Cybrids are produced by combining cytoplasm from nucleated cells with non-nucleated cells or cytoplasts. The nucleated cell can be unaltered, 

or could have undergone depletion of endogenous mtDNA before cytoplasmic mixing. In either case, the goal is to populate the nucleated cell with mtDNA from the non-nucleated 

cell. 
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mong various LHON cybrids are oxygen consumption deficits and 

 reduction in Complex I-dependent ATP synthesis. All phenotypic 

ifferences required a high mutational load, which is consistent with 

hat is observed in the clinical setting, where people afflicted with 

HON are homoplasmic or the mtDNA mutation is present at a high 

opy number [ 21 , 55 –61 ]. 

LHON cybrid studies using an osteosarcoma nuclear background 

ore recently reported that mitochondrial haplogroup status is also 

n important determining factor for the pathogenic potential of dif- 

erent LHON mutations [ 62 –64 ]. Mitochondrial haplogroups are de- 

ermined by ancestral hereditary. Mitochondrial haplogroup J and 

k are found at higher levels in persons afflicted with LHON, how- 

ver haplogroup H is under represented in the incidence of LHON. 

ybrids from different human mitochondrial haplogroups were gen- 

rated using platelets fused on the osteosarcoma nuclear background. 

aplogroup Uk and J have decreased mtDNA, mitochondrial RNA and 

itochondrial protein translation products compared to haplogroup 

. In addition, haplogroups Uk and J have lower oxygen consump- 

ion, ATP production, and mitochondrial membrane potential when 

ompared to haplogroup H. In particular, LHON osteosarcoma cybrids 

ad accumulations of low-molecular weight sub-complexes, partic- 

larly from Complex I structural proteins. However, polymorphisms 
in mtDNA, or specific mitochondrial haplogroups, influenced the as- 

sembly rates and stability of Complex I, III, and IV [ 62 ]. Overall, cybrid 

studies have contributed and will continue to be important to the 

understanding of how haplogroups influence multifactorial diseases, 

such as LHON. 

Further LHON cybrid studies used the teratocarcinoma NT2 cell 

line as a nuclear background donor [ 35 ]. From a modeling perspec- 

tive, the use of this ρ0 cell line to generate LHON cybrids may be 

argued to be more closely related to the disease itself, since NT2 cells 

display “neuronal-like” features and can be differentiated into neu- 

rons using retinoic acid [ 65 ]. It was found that undifferentiated LHON 

NT2 cybrids did not have altered biochemical parameters, but upon 

differentiation parametric differences could be observed. The pheno- 

typic differences observed in the LHON NT2 cybrids were diminished 

efficiency in the differentiation protocol and production of higher lev- 

els of reactive oxygen species (ROS) when compared to control NT2 

cybrids. An additional study using LHON NT2 cybrids depicted these 

cells were more sensitive to H 2 O 2 , displayed no change in superoxide 

dismutase (SOD) activity, but had decreased glutathione (GSH) lev- 

els [ 66 ]. However, these data again depict the importance of nuclear 

background, as similar LHON cybrids generated on an osteosarcoma 
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Fig. 3. Applications of the cybrid model. Cybrids can be used to (A) evaluate heteroplasmy-threshold corrections. It is unknown whether heteroplasmic mtDNA changes are found 

at the cellular level or the level of each mitochondrion. Such that, a single mitochondria could contain both wild-type and mutated mtDNA, or a cell could contain a population of 

mitochondria which have wild-type mtDNA and a population of mitochondria which have mutant mtDNA. Beyond that, a particular cell could contain all wild-type mtDNA, while 

a separate cell contains all mutant mtDNA. (B) Test mtDNA–nuclear DNA compatibility and (C) screen for mtDNA-determined functional differences between cell lines containing 

mtDNA from different sources. 
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ackground showed increased ROS production, decreased SOD activ- 

ty, but no reduction in GSH levels [ 67 ]. 

Other diseases with known mtDNA mutations have been stud- 

ed using the cybrid technique. These include myoclonic epilepsy 

nd ragged red fiber disease (MERRF), Leigh ’ s disease due to 

tDNA mutation / neuropathy, ataxia, retinitis pigmentosa (NARP), 

nd Kearns–Sayre Syndrome [ 41 , 68 –73 ]. Kearns–Sayre Syndrome in- 

olves deletions of mtDNA, and cybrid work has resulted in notable 

ndings [ 72 ]. One important finding is that large mtDNA deletions 

esult in mitochondrial respiration failure, but mtDNA duplications 

o not. In addition, osteosarcoma cybrid cell lines, it appears, prefer 

o maintain a stable mtDNA total amount, as opposed to maintain- 

ng a constant mtDNA copy number. When osteosarcoma cells are 

redominately populated with mtDNA that contains large deletions, 

tDNA copy number increases to compensate, which ultimately re- 

ults in an amount of total mtDNA that is equivalent, in mass to that 

f cells without large deletions. 

Studies examining mtDNA-nuclear DNA compatibility have also 

tilized the cybrid approach. These studies generated xenomitochon- 

rial cell lines, where cytoplasts from primate fibroblasts were fused 

ith a human osteosarcoma ρ0 cell line [ 74 , 75 ]. This mtDNA trans- 

er gave rise to viable cybrid cell lines when the transferred mtDNA 

as derived from common chimpanzee, pigmy chimpanzee or go- 

illa fibroblasts. Orangutan, Old-world monkey, New-world monkey, 

nd Lemur mtDNA were not compatible with the human osteosar- 

oma nuclear background, as no viable cybrid cells resulted. Cybrids 

xpressing common chimpanzee mtDNA displayed a 20% lower oxy- 

en consumption rate, while cybrids expressing pigmy chimpanzee 

tDNA had 34% reduced oxygen consumption, and cybrids express- 

ng gorilla mtDNA had 27% less oxygen consumption. No deficits were 

ound for any of the xenomitochondrial cybrids with respect to Com- 

lex II, III, or IV activities. However, cybrids expressing common chim- 

anzee mtDNA showed a 41% reduction in Complex I activity, while 

ybrids expressing pigmy chimpanzee mtDNA had a 43% reduction 

n Complex I activity, and cybrids expressing gorilla mtDNA had 45% 

ower complex I activity. These are findings of interest because there 

re 159 amino acid differences between human and common chim- 

anzee mtDNA coding, 155 amino acid differences between human 

nd pigmy chimpanzee mtDNA coding, 195 amino acid differences 

etween human and gorilla mtDNA coding, and 411 amino acid dif- 

erences between human and orangutan mtDNA coding. The conclu- 

ions drawn from this study are that primates which evolved longer 

han approx. 18 million years ago cannot function to replace human 

tDNA. Fig. 3 B shows a schematic of this cybrid application. 

he use of cybrids as a Model for Mitochondriopathy-Associated 

poradic diseases 

Cybrid models have also been applied to test mitochondrial and 

ell physiology alterations arising from un-sequenced mtDNA. Here, 

tDNA is transferred from an individual with a particular condition 

r disease, as shown in Fig. 3 C. The resulting cybrid cell lines are ex- 

anded and used to measure biochemical and molecular endpoints, 

nd compared to cybrid cell lines derived from control patients. Due 

o the nuclear background and environment (i.e. cell culture param- 

ters) being constant, the differences observed in measured indices 

re assumed to reflect differences in mtDNA [ 76 ]. However, several 

riticisms of this cybrid application have arisen. 

Most controversy surrounding this cybrid application is due to 

ts assumption that the functional differences in cybrid cell lines are 

ue to differences in mtDNA. Because the cybrid technique does not 

olely transfer isolated mtDNA, this assumption of differences being 

olely due to mtDNA is a leap of faith in some aspects. At a mini- 

um, whole mitochondrial transfer occurs from donor platelets or 

ytoplasts. However, during the time it takes to select for cells repop- 

lated with mtDNA, the cybrids pass through multiple cell division 
cycles, during which any possible non-perpetuating materials that 

were transferred are repeatedly diluted. For a case in which a dou- 

bling time of 24 h is expected, several weeks of cybrid selection and 

expansion would result in over a billion-fold dilution of any non- 

perpetuating material. Therefore, theoretically the only transferred 

cytoplast or platelet component that is self-perpetuating is mtDNA. 

Another common criticism of this cybrid application is verification 

of results. Presumably, if a goal of using cybrid models is to implicate 

the presence of mtDNA differences in structural, synthetic, or reg- 

ulatory genes (such as the D-loop), then actual nucleotide changes 

should be demonstrable. While this notion is conceptually correct, 

it is important to note that correlating specific nucleotide devia- 

tions to specific phenotype changes is challenging because mtDNA 

sequences between individuals tend to vary substantially. The ques- 

tion, therefore, is often not whether a particular mtDNA donor has 

sequence variations, but whether deviations that can be detected are 

functionally relevant. This differs from studies of Mendelian diseases, 

in which the functional relevance of a particular DNA sequence is 

generally resolved by tracking the suspect variation through family 

pedigrees; addressing whether the sequence variation is exclusive 

to a particular phenotype is relatively straightforward. However, the 

mitochondrial genome is not inherited through Mendelian patterns. 

mtDNA is normally inherited maternally, although rare cases of mu- 

tant mtDNA inheritance via sperm have been reported [ 77 ]. While 

some mtDNA-associated diseases do show recognizable maternal in- 

heritance patterns [ 78 ], it is increasingly suspected that a majority of 

the time mtDNA influences disease risk or development in a primar- 

ily sporadic or pseudo-sporadic fashion [ 79 , 80 ]. Overall, this limits 

the ability to associate mtDNA sequence variations with a particular 

disease state. 

When it comes to establishing mtDNA sequence-phenotype as- 

sociations, though, the greatest limiting factor may turn out to be 

mtDNA heteroplasmy. The traditional Sanger-based sequencing ap- 

proach is not designed to detect low abundance heteroplasmic muta- 

tions; if the mutational load is less than 20–30%, the ability to detect 

the mtDNA change is unreliable [ 81 , 82 ]. Further, recent data indicate 

mtDNA contains large numbers of low percentage, “microheteroplas- 

mic” sequence variations [ 3 , 83 –86 ]. It has been postulated that these 

microheteroplasmic variations are present at 1–2% abundance [ 87 ]. 

Microheteroplasmic variations within tissue also exist, and the pres- 

ence of “compound microheteroplasmy”, once postulated [ 88 ], has 

since been verified using next generation sequencing [ 86 ]. 

In addition to questions over the functional significance of mtDNA 

sequence deviations, the origin of especially heteroplasmic sequenc- 

ing deviations may be difficult to prove. mtDNA sequence mutations 

that are anatomically limited within an individual may arise from 

inherited mutations via mitotic segregation (the mtDNA correlate 

of mosaicism), or represent somatically acquired mutations. There- 

fore, we will consider cybrid studies that depict biochemical differ- 

ences between mtDNA donors as simply supporting the notion that 

functionally relevant mtDNA differences exist between the mtDNA 

donors, without concluding whether those differences are inherited 

or acquired. 

Cybrid models have been used to screen for mtDNA aberrancy in 

several neurodegenerative diseases, particularly Parkinson ’ s disease 

(PD) and Alzheimer ’ s disease (AD). When the first cybrid studies of PD 

and AD were performed, it was already known that people afflicted 

with these diseases had specific ETC deficits [ 89 , 90 ]. Many argue that 

mitochondrial defects are secondary pathologies and / or irrelevant to 

the phenotype of these diseases. However, the fact remains that mi- 

tochondrial function within these diseases is not normal. This has led 

to these diseases being classified as “neurodegenerative mitochon- 

driopathies” [ 91 ]. 

It has been repeatedly shown that Complex IV activity is reduced 

in AD subjects, and that Complex I activity is reduced in PD patients 

[ 76 , 92 –95 ]. These deficits are not only found in the brains of those 
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afflicted with AD and PD, but also systemically in platelet mitochon-

dria. The sporadic and systemic nature of these diseases makes the

cybrid model a good application for study [ 96 ]. The cybrid technique

seemed a reasonable approach to address the question of whether

mtDNA accounted for at least part of the lesions observed in AD and

PD. 

The first PD cybrid study used the human SH-SY5Y neuroblas-

toma (“neuron-like”) ρ0 cell line as the nuclear background. Platelets

from 24 PD subjects and 28 age-matched control subjects pro-

vided mtDNA [ 15 ]. ETC Vmax measurements were taken from post-

nuclear mitochondria enriched fractions from each cell line, 52 in

total. Absolute Vmax levels were corrected for total protein content

of mitochondrial-enriched fractions. The Complex I Vmax was de-

creased by 20% in the PD group compared to the control group. No

difference was observed in Complex IV Vmax measurements between

groups. This indicated mitochondrial repopulation was equivalent be-

tween PD and control groups. This study supports the notion that

Complex I deficits observed in sporadic PD patients are at least par-

tially determined by mtDNA. 

Deficits in Complex I activity in PD cybrids compared to control

cybrids were verified by four independent studies. One study used

the SH-SY5Y ρ0 cell line as the nuclear background, while the other

studies used the A549 lung carcinoma ρ0 cell line or the NT2 terato-

carcinoma cell line, respectively [ 97 –100 ]. A separate study was com-

pleted in which cybrids were generated from a large family in which

multiple members had PD [ 78 ]. The pattern of PD inheritance of this

family was consistent with maternal transmission. Cybrids generated

from family members afflicted with PD had decreased Complex I ac-

tivity when compared to cybrids generated from family members

not afflicted with PD. Furthermore, family members who had strict

maternal inheritance, but were younger than the age of onset for

PD within this family, had lower mean Complex I activity than their

paternally-descended cousins. In contrast, cybrids containing platelet

mtDNA from members of the Contursi kindred did not show reduced

Complex I activity [ 101 ]. In the Contursi kindred PD arises due to an

autosomal dominant mutation in the α-synuclein gene. This inheri-

tance pattern implies that the genetic etiology differs between those

with nuclear gene mutations and those with the more common spo-

radic form or forms. mtDNA would be more likely to contribute to

risk or onset in the sporadic cases. 

PD cybrids have been analyzed for a variety of biochemical and

molecular parameters. Increased ROS production and upregulation

of antioxidant enzyme activity have been observed [ 15 , 99 , 102 ]. PD

cybrids are more sensitive to H 2 O 2 exposure and have decreased

GSH content [ 103 ]. Bcl-2 and Bcl-XL levels are upregulated, NFkB is

activated, there is enhanced p38 and JNK activity, and PARP cleav-

age is increased [ 100 , 104 –106 ]. These findings are consistent with

increased oxidative stress, as signaling pathways involved in both

cell death and survival stress responses are enhanced in PD cybrids.

Furthermore, mitochondrial calcium levels are reduced [ 107 ]. Maxi-

mum respiration capacity was lowered in PD cybrids, and enhanced

proton leak was apparent [ 100 ]. Mitochondrial membrane potentials

were relatively depolarized [ 99 ]. ATP content was decreased and PD

cybrid cell lines released more LDH [ 99 ]. PD cybrids are more sus-

ceptible to MPP + induced cell death [ 15 , 100 ]. The ultrastructure of

mitochondria is altered and PD cybrids develop synuclein aggregation

indicative of the Lewy bodies observed in the substantia nigra of PD

subjects [ 78 , 108 –110 ]. 

One study isolated clones from PD cybrids which developed Lewy

Bodies, leading to the subcloning of three PD cybrid cell lines [ 110 ].

This approach yielded inconsistent results, as each subcloned PD cy-

brid exhibited different phenotypes. For example, in one clone mito-

chondrial respiration was decreased, in the second clone mitochon-

drial respiration was increased, while in the third clone mitochondrial

respiration went unchanged. However, the data did correspond to the
nucleoid content of each clone.  
A study of PD cybrids generated on the HeLa cervical carcinoma

ρ0 nuclear background did not find any reduction in Complex I ac-

tivity, n = 10 [ 111 ]. It is important to note this study, and it is fair

to assume data obtained from it are accurate. However, the results

from this study have little bearing on the numerous SH-SY5Y and

A549 ρ0 based PD cybrid studies, which have elucidated biochemical

differences between control and PD cybrid cell lines. 

In 1997, Davis et al. reported that, as a group, cybrid cell lines gen-

erated from AD subjects had a lower Complex IV activity than cybrid

cell lines generated from a demographically matched group of control

subjects [ 112 ]. This report was subsequently retracted due to an inter-

pretive error involving non-cybrid data that this manuscript also con-

tained [ 113 ]. The cybrids in this study were generated on an SH-SY5Y

neuroblastoma ρ0 nuclear background. Complex IV Vmax measure-

ments were completed using post-nuclear, mitochondrial enriched

fractions from AD 45 and 20 control cybrid cell lines. The AD cybrid

cell lines had a 20% reduction in Complex IV activity when compared

to the control subjects. Complex I Vmax was equivalent between the

two groups, suggesting that mitochondrial repopulation was compa-

rable. 

These initial AD cybrid data were recapitulated in subsequent

studies. In AD 76 and 111 control cybrid lines also generated against

an SH-SY5Y nuclear background, a 15% reduction in AD cybrid Com-

plex IV activity was observed [ 114 ]. Smaller AD cybrid studies that

used the SH-SY5Y nuclear background have also reported reduced

Complex IV activity [ 107 , 115 –117 ]. Two separate studies using the

NT2 ρ0 cell line to generate AD cybrids also found decreased Complex

IV activity. The first study compared AD 15 cybrid lines to 9 control

cybrid lines, and reported a 16% decrease in Complex IV activity [ 23 ].

The second study compared AD 6 cybrid lines to 5 control cybrid lines,

and reported a 22% decrease in Complex IV activity [ 118 ]. 

Cybrids generated from AD patients on both the SH-SY5Y and NT2

nuclear background show biochemical and molecular changes. In-

creased ROS production was demonstrated using fluorescence-based

peroxide measurements [ 23 , 112 , 118 ]. AD cybrids generated on the

NT2 nuclear background displayed increased antioxidant enzyme ac-

tivities, protein carbonyl markers, and lipid peroxidation markers

[ 23 , 118 ]. AD cybrids on both the NT2 and SH-SY5Y nuclear back-

grounds showed activation of MAPK, Akt, and NFkB with increased

caspase-3 activation and cytochrome c cytoplasmic levels [ 118 –121 ].

These findings are consistent with pathways associated with cell

death and stress responses. AD cybrids generated on the SH-SY5Y

nuclear background had decreased basal heat shock factor I (HSFI)

binding activity, increased phosphoinositide signaling, and low AP1

binding [ 122 , 123 ]. 

Decreased ATP levels (NT2 and SH-SY5Y AD cybrids), reduced mi-

tochondrial movement in neurites (SH-SY5Y AD cybrids), reduced

mitochondrial calcium (SH-SY5Y AD cybrids), reduced mitochondrial

membrane potential (both SH-SY5Y and NT2 AD cybrids), and reduced

mitochondrial “flickering” (SH-SY5Y AD cybrids) have been demon-

strated [ 115 , 117 –119 , 124 –126 ]. AD cybrids generated on the NT2

nuclear background were more susceptible to cell death induced by

β-amyloid exposure [ 118 ]. Mitochondrial ultrastructure is affected in

SH-SY5Y AD cybrid cell lines, and over time increased mitochondrial

proliferation is observed [ 108 , 116 ]. Finally, both intracellular and ex-

tracellular β-amyloid levels were increased in SH-SY5Y AD cybrid cell

lines [ 119 ]. Dense extracellular aggregates which stained positive for

A β1–40 and A β1–42 were also observed in the same study. 

A recently published, detailed examination of AD cybrid cell lines

also reported bioenergetic changes. In this study, 8 AD, 7 mild-

cognitive impairment (MCI, frequently a precursor AD state), and 7

age-matched control cybrid cell lines were generated using platelets

from human subjects and the SH-SY5Y ρ0 nuclear background [ 127 ].

Complex IV activity was significantly decreased when normalized to

cytochrome oxidase subunit 4 isoform 1 (COX4I1) protein in the AD

group. Both the MCI and AD cybrids displayed less glycolytic activity,
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hile the MCI cybrids had decreased basal mitochondrial oxygen con- 

umption and the AD cybrids showed an increased respiratory leak 

ate. Both AD and MCI cybrid cell lines had decreased NAD 

+ / NADH 

atios and the AD cybrids showed increased ADP / ATP ratios. Expres- 

ion of proteins involved in mitochondrial biogenesis and bioener- 

etic fluxes were found to be altered. In both the MCI and AD cybrid 

ell lines, HIF1 α protein was decreased, while its mRNA levels were 

levated. In contrast, PGC1- α expression was reduced in both MCI 

nd AD cybrids. Sirt1 cellular localization was altered, and phospho- 

ylated Sirt1 protein was decreased in AD cybrids. The AD cybrid 

ell lines displayed upregulated expression of phosphorylated AMPK, 

hosphorylated p38, Bax, DRP1, TFAM, cytochrome c, and Complex 

V subunits, and mtDNA levels were increased. mTOR expression was 

educed and phosphorylated DRP1 levels were decreased in the AD 

ybrid cell lines. Overall, bioenergetic fluxes, mitochondrial mass, mi- 

ochondrial morphology dynamics, and cell signaling pathways were 

ltered in the MCI and AD cybrid cell lines. 

An additional study independently examined the same set of AD 

nd control cybrid cell lines [ 128 ]. For the AD cybrid cell lines, a re- 

uction in Complex I, Complex III, and Complex IV activities, as well 

s reduced ATP levels, was reported. ROS production, phosphorylated 

RK, and mitochondrial DLP-1 levels were also increased in AD cy- 

rids. Mitochondrial density and length were decreased. 

A separate study generated AD, MCI, and age-matched control 

ybrid cell lines from human platelets and the NT2 ρ0 nuclear back- 

round [ 117 ]. It was found that both AD and MCI cybrid cell lines had 

ecreased Complex IV activity and mitochondrial membrane poten- 

ial. Increased lipid peroxidation, superoxide production, and protein 

arbonyls were observed in both AD and MCI cybrids. 

One published study of AD cybrids generated on the HeLa nuclear 

ackground is notable for not detecting differences between AD and 

ontrol cybrid line Complex IV activities [ 44 ]. Results from this study 

re confounded by the fact that mtDNA transfer from platelet, fibrob- 

ast, and synaptosomes were attempted, and the sources of mtDNA 

ere not matched between AD and control cybrid cell lines. When 

D and control cybrids generated from platelet mtDNA transfer are 

ompared, data from only three cell lines from each group were pro- 

ided. It is reasonable to take into account this study ’ s small sample 

ize when considering its conclusions. Regardless, even if this report ’ s 

reliminary findings were to be confirmed in an adequately powered 

eLa-based cybrid study, the relevance of this to the numerous posi- 

ive SH-SY5Y and NT2-based AD cybrid studies would be unclear. 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease 

hat has autosomal dominant and sporadic etiology. Sporadic ALS ac- 

ounts for approximately 90% of ALS cases and has a later age of onset. 

ased on the idea that mtDNA could act as a late onset, sporadic neu- 

odegenerative disease risk factor, the cybrid model was used to study 

tDNA in ALS [ 129 , 130 ]. Platelets from ALS patients were used as the 

tDNA donor and SH-SY5Y neuroblastoma ρ0 cells provided the nu- 

lear background. Eleven ALS cybrid cell lines and 12 age-matched 

ontrol cybrid cell lines were generated. Relative to the control cy- 

rid lines, post-nuclear mitochondrial enriched fractions from the ALS 

ybrid lines displayed trends for reductions in Complex III and Com- 

lex IV activities, and a statistically significant reduction in Complex 

 activity [ 131 ]. A subsequent study, interestingly, reported reduced 

omplex I activity in muscle tissue from ALS patients [ 132 ]. Although 

OS production in the form of cytoplasmic peroxide levels was not 

ncreased in ALS cybrids, an increase in antioxidant enzyme activi- 

ies was apparent [ 129 ]. ALS cybrid mitochondria also demonstrated 

educed mitochondrial calcium concentrations. 

A second ALS cybrid study used osteosarcoma ρ0 cells and 

latelets as the mitochondrial donor source [ 133 ]. This study gen- 

rated 13 ALS cybrids and 10 control cybrids. While no difference in 

itochondrial respiration was reported, this study did not directly 

ssay the Complex I Vmax (the parameter demonstrated to be differ- 

nt in the Swerdlow et al. study [ 129 ]). Similarly, no change in ROS 
production in the form of cytoplasmic peroxide was noted; antioxi- 

dant enzyme levels were not reported. It is difficult to generalize the 

findings of these studies because there is a lack of overlap between 

experimental parameters, and cybrids were generated using different 

nuclear backgrounds. 

Another late onset, sporadic neurodegenerative disease in which 

the cybrid model has been used is progressive supranuclear palsy 

(PSP). As early as 1994, PSP subjects were found to have reduced mus- 

cle oxidative metabolism [ 134 ]. In the initial PSP cybrid study, lines 

were generated using the SH-SY5Y nuclear background and platelet 

mitochondria from 15 PSP and 17 age-matched control subjects [ 135 ]. 

Compared to control cybrid lines, in the PSP cybrid lines the Com- 

plex I Vmax was reduced by 12.4%, while Complex IV activities were 

equivalent between the groups. Antioxidant enzyme activities were 

elevated (presumably upregulated) in the PSP cybrid group. Other 

investigators have used the same cybrid lines and have reported re- 

ductions in oxidative respiration, activity of Complexes I + III, and 

ATP levels in the PSP cybrids. Aconitase activity is reduced, suggesting 

increased mitochondrial oxidative stress. Exposure to ETC inhibitors 

also caused greater mitochondrial membrane depolarization in the 

PSP cybrids when compared to control cybrids. Treatment of cybrids 

with a Complex I inhibitor, rotenone, caused a more robust increase in 

PSP cybrid malondialdehyde (MDA) and hydroxynonenal (HNE) pro- 

duction than it did in control cybrid lines. Increased MDA and HNE in 

the PSP lines are consistent with a greater degree of rotenone-induced 

oxidative stress. On the other hand, MDA and HNE differences were 

not observed after treatment with malonate (a Complex II inhibitor) 

or cyanide (a Complex IV inhibitor) [ 136 , 137 ]. 

The cybrid model was used to study Huntington ’ s disease (HD), 

a strictly Mendelian, autosomal dominant neurodegenerative dis- 

ease [ 138 ]. While mitochondrial function is perturbed in HD, thereby 

qualifying it as a mitochondriopathy, based on its genetics there is 

no compelling reason to suspect the presence of functionally mean- 

ingful, disease-specific mtDNA variations (at least not from the per- 

spective of inherited mtDNA sequence deviations). Consistent with 

this prediction, while direct measurements of HD subject platelets 

show decreased Complex I activity [ 139 ], HD cybrid cell lines do not 

[ 138 , 140 , 141 ]. On the other hand, Fereira et al. did report HD cybrids

showed increased glycolysis, increased ATP production, increased 

peroxide production, and decreased mitochondrial NADH:NAD 

+ ra- 

tios [ 140 , 141 ]. If correct, the presence of a mutant Huntingtin gene 

may, therefore, give rise to somatic yet perpetually-sustained mtDNA 

modifications. 

Finally, the cybrid model has also been used to study mtDNA con- 

tributions to aging. In an initial study, fibroblast mtDNA was used 

to generate cybrids from 21 individuals on an osteosarcoma nuclear 

background [ 142 ]. The cybrid lines generated from these 21 individ- 

uals were subsequently sub-cloned, ultimately giving rise to a total 

of 356 uniquely expanded cybrid cell lines. Among these lines an in- 

verse correlation between mitochondrial respiration and the age of 

the mtDNA donor was observed; the older the mtDNA donor, the 

lower the respiration capacity of the resulting cybrid line. In con- 

trast to this, though, a separate, much smaller study using HeLa ρ0 

cells as the nuclear background did not report correlations between 

mtDNA donor age and respiration [ 143 ]. In this negative study, two 

cybrid cells lines were generated. In one line, mtDNA was obtained 

from fibroblasts from a 97-year old, and in the other mtDNA was 

obtained from fibroblasts from a fetus. This study also used a clonal 

approach, and a total of five clones were analyzed. Complex IV activity 

constituted the experimental endpoint, and among these five clones 

comparable Complex IV activities were observed. 

Aging cybrid clones were also generated on an osteosarcoma nu- 

clear background from a 100 year-old donor bearing a T414G mu- 

tation. This particular mutation, which is quantitatively associated 

with aging, is located within the mtDNA control region [ 144 ]. No 

differences in oxygen consumption or ETC activities were observed. 
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However, two different mutations in the 16S rRNA gene (T1843C

and A1940G) did associate with reduced oxygen consumption and

reduced ETC activities. Lastly, another study that used mouse mus-

cle and synaptosomes to generate cybrid cell lines on a mouse LL /
2-m21 nuclear background [ 27 ] found differences in cybrid lines de-

rived from young and old mtDNA donors. When muscle cytoplasts

were used, cybrids containing mtDNA from the old mice showed de-

creased Complex I and Complex III activities, less ATP production,

and reduced oxygen consumption (but no change in Complex IV ac-

tivity). When synaptosomes were used, cybrids containing mtDNA

form the old mice showed decreased Complex I activity and lowered

ATP levels. 

Methodological considerations 

It is necessary to clarify the point that cybrid methodology varies

significantly between individual studies, because these methodolog-

ical variations may potentially account for and / or contribute to con-

flicting findings. This section discusses these methodological dispar-

ities. 

Overall, the nuclear background of the ρ0 cell line used to gen-

erate cybrid cell lines influences study outcomes [ 50 , 59 , 71 , 145 , 146 ].

This finding is not surprising because mitochondrial physiology varies

among tissue types and nuclear DNA largely determines these vari-

ations [ 147 , 148 ]. There is no guarantee that mitochondria obtained

from a common source will similarly function within the context of

different nuclear backgrounds, or that mitochondria obtained from

different sources will consistently function in similar patterns when

expressed within the context of different nuclear backgrounds. 

The majority of ρ0 cell lines generated for use in cybrid models are

tumor cell lines. Tumor cell lines exhibit aneuploidy, and therefore do

not contain a normal chromosome complement. Thus, pieces of chro-

mosomes may be missing or translocated, or additional chromosomes

may be present. Aneuploidy varies significantly between different ρ0

cell lines [ 149 –153 ]. While it has not been resolved exactly how aneu-

ploidy impacts mitochondrial function, it could potentially affect nu-

clear DNA-mtDNA ETC subunit stoichiometry. This could cause some

ρ0 cell lines to become more or less sensitive in measurements of

mtDNA genotype–phenotype correlations. Moreover, it is important

to consider that these tumor cells lines are anaerobic at baseline.

Whether or not the aerobic versus anaerobic nature of the host cell

influences mtDNA genotype–phenotype correlations should be taken

into account. Data regarding this are limited, yet it seems reasonable

to assume cybrid models using ρ0 cell lines derived from more aer-

obic tumor lines may yield inconsistent results when compared with

cybrid studies in which ρ0 cells derive from more anaerobic tumor

lines. 

The majority of cybrid studies have utilized parental cell lines

depleted of mtDNA by exposure to EtBr. However, new techniques

for depleting mtDNA are becoming commercially available. Therefore,

in future cybrid studies it will be imperative to take into account the

method by which the parental cell lines were depleted of mtDNA. The

source of the mtDNA donation, pre-fusion handling of the mtDNA-

donating material, the post-fusion selection process, and variability

in cell culture methods can all potentially influence findings. Finally,

assay methodology, assay selection and sample sizes are all potential

variables that need to be considered. 

Reported findings using the cybrid model were obtained from

studies that used isolated cybrid clones and mixed populations of cy-

brid clones. When a particular assessment requires a homogeneous

population of cybrid cells, the preparation of clonal cybrids is a more

appropriate choice. Examples of such studies include those exam-

ining heteroplasmy-threshold relationships of known mtDNA mu-

tations. When cybrids are used to screen for functionally relevant

mtDNA differences between mtDNA from different mtDNA donors,
or when individually expanded clones from a cybrid line are bio-

chemically assayed, the mean value obtained from the independent

assay approximates the value obtained when the same cybrid is as-

sayed using a mixed culture[ 114 ]. In conclusion, when using the cy-

brid model to screen for mtDNA genotype–biochemical phenotype

correlations from unsequenced mtDNA, the use of mixed cybrid pop-

ulations would seem to be the more logical approach. 

The “best” endpoint to show functional differences in mtDNA-

related cybrid lines is unclear and not universal. However, data sug-

gests that radical production is a useful biochemical measure [ 154 ].

In clinical manifestations associated with oxidative stress, the cybrid

model can aid in addressing the origin of free radical generation. If cy-

brid cell lines expressing mtDNA from a group of subjects perpetuate

oxidative stress, this suggests mitochondria, and very likely mtDNA,

contribute to that oxidative stress. 

2. Conclusions 

Data generated using cybrid models have enabled investigators

to address questions related to mtDNA-induced mitochondrial biol-

ogy. Furthermore, cybrid studies have provided important insight into

how altered mitochondrial function influences cell physiology. Future

investigators should find the cybrid model useful when interrogating

nuclear–mitochondrial interactions. For studies investigating mtDNA

heteroplasmy-threshold analysis, the cybrid model provides straight-

forward data that appropriately illustrate fundamental mitochondrial

genetic principles. However, generalizing data to non-artificial bi-

ological models must proceed with caution, because critical differ-

ences exist between experimentally generated cybrid cell lines and

the actual systems they serve to model. 

Functional assessments of mitochondria with un-sequenced

mtDNA show mitochondria from different sources are functionally

unique. For several sporadic neurodegenerative diseases that do not

show Mendelian inheritance, and where mitochondrial dysfunction

occurs, mitochondrial transfer from individuals afflicted with those

diseases can generate cybrid cell lines which recapitulate and per-

petuate the same biochemical defects. The most straightforward in-

terpretation for these findings is that mtDNA at least partly drives

functional alterations observed in both the disease state and in cybrid

cell lines prepared via the transfer of mitochondria obtained from the

human subjects. While this interpretation has not been conclusively

confirmed, data to date do not support an alternative explanation. 

While cybrids remain a valuable technique and will continue

to inform mtDNA-oriented studies, it is worth noting that animal-

based models are also increasingly being used to elucidate mtDNA

genotype–phenotype correlations. In one example, female progeny

were backcrossed repeatedly with their original paternal strain [ 155 ].

Since mtDNA is maternally inherited, the mouse line that resulted

was one in which the nuclear background was almost exclusively

from the paternal strain, while the mtDNA was entirely from the

maternal strain. These mouse studies, which use the same nuclear

background with varying mtDNA show differences in oxidative phos-

phorylation phenotypes, which may be relevant to multifactorial dis-

eases [ 63 , 156 –158 ]. Other mouse models include those that express

mutated versions of genes used in mtDNA replication and mainte-

nance [ 159 –161 ]. Mitochondrial DNA transgenic mice have also been

generated, and review articles describing these advances have been

published [ 162 –165 ]. Finally, recent advances that allow for the trans-

fer of mitochondria between different mouse strains will very likely

advance our understanding of nuclear DNA–mtDNA functional rela-

tionships, as well as the impact of mtDNA variation on cell physiology

[ 166 ]. 
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