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Abstract

Structural variants (SVs), genomic rearrangements of >50 bp, are an important source of genetic 

diversity and have been linked to many diseases. However, it remains unclear how they modulate 

human brain function and disease risk. Here, we report 170,996 SVs discovered using 1,760 

short-read whole genomes from aged adults and Alzheimer’s disease individuals. By applying 

quantitative trait locus (SV-xQTL) analyses, we quantified the impact of cis-acting SVs on 

histone modifications, gene expression, splicing, and protein abundance in post-mortem brain 

tissues. More than 3,200 SVs were associated with at least one molecular phenotype. We found 

reproducibility of 65–99% SV-eQTLs across cohorts and brain regions. SV associations with 

mRNA and proteins shared the same direction of effect in more than 87% of SV-gene pairs. 

Mediation analysis showed ~8% of SV-eQTLs mediated by histone acetylation, and ~11% 

by splicing. Additionally, associations of SVs with progressive supranuclear palsy identified 

previously known and novel SVs.
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Introduction

Structural variants (SVs) are defined as genomic rearrangements ranging from fifty to 

thousands of base pairs1–3. These rearrangements can be classified as unbalanced (e.g., 

deletions, duplications, and insertions), balanced (e.g., inversions and translocations), or 

any complex combination of SV classes. SVs are widespread in the human genome and 

provide an important source of variation during evolution4,5. In contrast to single-nucleotide 

polymorphisms (SNPs) and small indels, SVs can affect a higher fraction of the human 

genome6, suggesting that they may have more significant, or at least similar, consequences 

for phenotypic variation and evolution4,5. Current estimates based on short-read sequencing 

data suggest that a human genome harbors around 7 to 9 thousand SVs3,7,8 compared to 

the reference genome, however novel long read sequencing technologies have been showing 

that these numbers can go up to 27,000 SVs7,9. With the increasing number of short-read 

WGS data produced, the number of genome-wide studies of SVs have been escalating in 

the past few years, jumping from 2,504 human genomes analyzed in the 1000 Genome 

Project1 to 14,891 in GnomAD3 and 17,795 in NHGRI Centers for Common Disease2. 

Nevertheless, we are still far from a complete and comprehensive population-scale human 

structural variation catalog.

The contribution of SVs in brain-related disorders and traits such as schizophrenia10–12, 

autism spectrum disorder (ASD)13–15, and cognition16,17 is notable. However, most studies 

on the impact of SVs so far have been restricted to non-brain tissues or to mRNA expression 

level only18–20. Large cohort studies, like the GTEx consortium, have already started 

mapping the impact of common and rare SVs on RNA expression from brain tissues 

with relatively small sample size21,22. Genes expressed in brain tissues have complex 

features, with one of the highest expression levels and transcriptome complexity23, the 

longest introns24, more alternatively spliced intron clusters19, along with complex regulatory 

architecture25, making them especially vulnerable to SVs of all types. The effects of genetic 

variants can be modulated at different levels of gene regulation18–20. Therefore, identifying 

the impact of SVs on different molecular phenotypes in the brain is crucial to understanding 

their functional outcome and role in diseases.

Here, we discovered SVs from whole-genome sequencing (WGS) data of 1,760 individuals 

from four aging cohort studies: the Religious Orders Study (ROS) and Memory and Aging 

Project (MAP)26,27, Mayo Clinic28, and Mount Sinai Brain Bank (MSBB)29, all made 

available to the research community through the Accelerating Medicines Partnership in 

Alzheimer’s Disease (AMP-AD) Knowledge Portal30. Then, by integrating multi-omics data 

sets consisted of histone acetylation (H3K9ac, ChIP-seq), RNA (RNA-seq), and proteomics 

(TMT-Mass Spectrometry) measured in brain tissues for subsets of the same donors, we 

mapped the impact of common SVs into multiple molecular phenotypes. We measured 

the main SVs features associated with each phenotype and the propagation of effects 

through the regulatory cascade (Figure 1). We also identified pathogenic SVs related to 

neurodegenerative diseases and the impact of rare SVs on RNA and protein levels.
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Results

Structural variation discovery and quality assessment

We analyzed 1,881 human samples with WGS data generated from four cohorts (ROS/

MAP, MSBB, and Mayo Clinic). To identify SVs in each group, we run a combination of 

seven different tools to capture the main classes of variation, including deletions (DEL), 

duplications (DUP), insertions (INS), inversions (INV), mobile element insertions (MEI), 

and complex rearrangements (CPX). These variants were further merged and genotyped 

at the group level (Supplementary Figure S1). After pre- and post-discovery quality 

control (QC; Supplementary Table S1, Supplementary Figure S2), a total of 170,966 

‘high-confidence’ SVs were identified in 1,760 samples that were used for all subsequent 

downstream analyses (Figure 2a). As expected, more SVs were detected in the ROS/MAP 

cohorts due to the larger sample size (n=1,106). More SVs were detected in MSBB 

compared to Mayo, due to ancestry differences1,3 as the Mayo data is composed of 

European ancestry individuals only, while MSBB has more diverse populations, including 

individuals of African and Admixed American ancestry (Supplementary Figure S3). Most 

SVs were small (median size of 280 bp), comprised by mostly deletions and insertions, with 

a decreasing frequency as the variants increased in size and with a high number of Alu, 

SVA, and LINE1 mobile element insertions identified (Figure 2b).

To assess the quality of SVs discovered, we first measured the reproducibility of our 

calls compared to other large datasets, including dbVar31, Centers for Common Disease 

Genomics (CCDG)2, Database of Genomic Variants (DGV)32, Deciphering Developmental 

Disorders (DDD)33, GnomAD-SV3, and 1000 Genomes Project1. We found about 30% 

of novel SVs and, as expected, the highest proportion of these SVs were discovered as 

singletons (Figure 2c). Overall, 89% of deletions and 92% of insertions were reproducible 

across AMP-AD cohorts, while around 56% of duplications and inversions found in 

ROS/MAP were also identified in Mayo or MSBB. Comparing external cohorts, we 

observed considerable reproducibility for deletions, with 62% of SVs discovered in 

ROS/MAP also being mapped in gnomAD and 44% in the 1000 Genomes Project, 

followed by insertions (55% and 34%, respectively). Duplications and inversions were 

less reproducible (Supplementary Figure S4). Further, allele frequency comparisons of 

SVs in common with the 1000 Genomes Project and gnomAD-SV showed high overall 

reproducibility with R2 equal to 0.75 and 0.71, respectively (Supplementary Figure S5). We 

also observed that about 75% of SVs were in Hardy–Weinberg equilibrium depending on 

the study (Supplementary Figure S6). In addition, we generated long-read WGS with PacBio 

for two ROS/MAP samples. We performed in silico confirmation of 3,581 SVs identified 

with short-reads and accessed a confirmation of 84.3% of them (Figure 2d, Supplementary 

Figure S7). Together, these analyses provided sufficient evidence for the quality of the SVs 

discovered across all samples.

In accordance with previous studies1,3,21,34,35, a substantial proportion of SVs detected 

were rare (71%, minor allele frequency (MAF) < 0.05). More than 30% of SVs were 

observed in only one individual (Extended Data Fig. 1a). Additionally, by overlapping 

SVs with genomic annotations, we observed that singletons were more likely to occur 
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in coding and regulatory regions compared to all other SVs (Extended Data Fig. 1b). 

Moreover, constrained genes, such as morbid genes, loss-of-function (LoF) intolerant, and 

haploinsufficient genes, were more likely to be disrupted by singletons and ultra-rare SVs, 

reflecting the effects of purifying selection (Extended Data Fig. 1c–e). These analyses 

demonstrate that the structural variants found here conform with principles of population 

genetics and highlight the importance of large sample sizes to improve the characterization 

of rare and pathogenic variants.

Effects of SVs on gene expression

We performed associations of common SVs with gene expression in cis for the available 

brain regions (Figure 3a). The number of associations was highly correlated with the sample 

size (Pearson’s r 0.98, P-value 5 × 10−5). DELs and SVA transposons were more likely to be 

associated with changes in expression, while INS were less likely (Figure 3b). Pseudogenes, 

long non-coding RNAs (lncRNAs), and TEC (To be Experimentally Confirmed) were 

significantly more likely to be associated with SVs, and their overall effect sizes were 

higher compared to protein-coding genes (Figure 3c–d). Such differences support evidence 

that less constrained genes are more likely to be eGenes in agreement with results previously 

observed for SV and SNV eQTLs35,36. The direction of effects (β) of SV-eQTLs was mostly 

distributed in both directions, except when the SVs were overlapping the exons (3.6%) 

(Figure 3e), in these cases, the observed differences could be also attributed to technical 

artifacts in the quantification (e.g., duplicated exons resulting in increased expression).

Comparison between different brain regions showed 98% of shared SV-eQTL with the same 

direction of effect (β) (Supplementary Figure S8). The reproducibility of SV-eQTL across 

studies, as measured by Storey’s π1 and mashR37, showed substantial sharing of effects 

on brain gene expression (Extended Data Fig. 2). The highest reproducibility was observed 

within regions from the same studies, as a consequence of repeated donors (77,1% and 

86.7% of donors from Mayo Clinic and MSBB, respectively, had RNA-seq for more than 

one brain region). However, regional effects were also observed when comparing different 

studies, for example, TCX and DLPFC shared more effects than DLPFC and CBE (0.81 and 

0.74, respectively) (Figure 3f), suggesting some degree of regional specificity.

To measure brain specific effects, we also mapped SV-eQTL using RNA-seq from 

CD14+CD16− isolated monocytes generated from ROS/MAP samples (n=177, with 41 

samples overlapping the DLPFC RNA-seq). We observed a replication of 0.72 (Storey’s π1) 

in DLPFC. Majority of effects were concordant (Pearson’s r = 0.6) but considerably lower 

than between brain regions (Extended Data Fig. 3). We also compared the SV-eQTLs from 

AMP-AD with other tissues from GTEx21,22. Due to differences in SV discovery pipelines 

and RNA-seq tissues, cross mapping between the two datasets was limited. A total of 210 

SV-eQTL could be mapped significantly associated in both datasets. (Supplementary Figure 

S9).

In order to infer possible causality of SVs in each locus we performed joint eQTL with 

SV and SNPs for the ROS/MAP cohort finding a total of 7,787 eQTL where 95 (1.2%) 

had SVs as lead variant. We also performed fine-mapping using CAVIAR38 to access the 

causality probability of each variant tested while accounting for LD structure as previously 
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performed21. As result, 86/2519 (3.41%) showed CAVIAR probabilities higher or equal than 

SNPs (Figure 3g). While the true causal variant at these loci is unknown, these data suggest 

that a substantial number of eQTLs that can be identified using SNVs may be explained 

by SVs. Among these, we can identify cases where SNPs are found in high LD with the 

lead SV highlighting that possible causal haplotype association, as for example for the gene 

MPC2 (Figure 3h), in a locus previously associated with schizophrenia39. While in some 

cases, the effects seem to be caused by SVs with no detectable SNPs in high LD such as 

for the gene FAM66C (Figure 3i) where a 29 kb duplication is associated with expression 

changes, suggesting an example of eQTL only found through SV mapping. Although, we 

expect that these number are underestimated due to typically higher genotyping errors for 

SVs and limited SV discovery using short-reads compared to SNPs and small indels21.

Mapping of SVs that affect the gene-regulatory cascade

We mapped associations of 25,421 SVs with MAF ≥ 0.01 in the ROS/MAP cohorts to four 

different molecular phenotypes in the DLPFC. These molecular phenotypes were measured 

for a partially overlapping set of samples (Supplementary Figure S10) and included gene 

expression for 15,582 genes (n=456), 110,092 splicing junctions proportions measured by 

“percent spliced in” values (PSI) (n=505), histone acetylation (H3K9ac) peaks (n=571), 

and proteomic data for 7,960 proteins (n=272). We refer to these analyses as SV-xQTL, 

in which we map differences in measurements of each molecular phenotype associated 

with specific SV’s (Figure 1). Therefore, each SV-xQTL is an SV-phenotype pair (i.e., 

SV-eQTL, SV-sQTL, SV-haQTL, or SV-pQTL). All phenotype measurements were adjusted 

prior to associations to account for known (e.g., sex and ancestry principal components) and 

unknown covariates, and the allele alternative to the genome of reference was considered 

as effect allele. This identified 3,191 SV-eQTL, 2,866 SV-sQTL, 399 SV-pQTL, and 1,454 

SV-haQTL (FDR < 0.05) (Figure 4a, Extended Data Fig. 4).

The majority of SVs associated with one or more molecular traits were found near gene 

bodies. For instance, more than 87% of SVs associated with H3K9ac peaks (haSVs) 

had at least one breakpoint within 500 kb of the closest gene, while more than 93% of 

splicing associated SVs (sSV) were found within 50 kb of the respective gene bodies 

(Supplementary Figure S11). Additionally, the direction of effect for the associations (β) 

were usually distributed in both directions for SV-xQTLs, independently of SV class, 

reflecting possibly complex enhancing and repressing regulatory effects or loci with SVs 

in linkage disequilibrium (LD) with the true causal variants. The biological assumption 

that gene dosage effects (e.g. gene duplications) are likely to cause increased total 

level of expression usually relies on the duplication of regulatory regions as well, these 

duplications tend to relax the level of selection on these genes and subsequently result 

in “subfunctionalization”40. As has been observed by other SV studies21,41, since gene-

level expression values are normalized to the reference transcript length42, partial exonic 

duplications altering the transcript length are expected to modulate expression values even 

if the absolute number of transcripts remained stable. This could be observed when the 

SVs overlapped the phenotypes (e.g., exonic region or histone peak) where the effects 

of deletions and MEIs were mostly negative, while duplications were mostly positive 

(Extended Data Fig. 5).
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By measuring associations for each SV class separately, we observed that specific classes 

were more likely to be associated than others in each phenotype. Deletions in particular 

showed enrichment of associations compared to all classes together, while insertions were 

depleted. Alu elements, despite being known to promote alternative splicing43,44, were 

enriched in eQTLs and pQTLs but not in the other two traits, while SVA elements were 

enriched in eQTL, pQTL and sQTLs (Figure 4b). SVAs are considerably less frequent than 

other transposable elements and their effects on splicing, expression, and protein could 

be due to SVAs acting as novel promoters45 or exon-trapping46. Additionally, SV-xQTLs 

were enriched in relevant functional annotations similarly across all molecular phenotypes 

(Figure 4c). However, some specific phenotypes showed stronger enrichment than others. 

For instance, haSVs were strongly enriched in regulatory regions, such as promoters, 

enhancers, and CTCF sites.

We identified 667 SV-gene pairs associated with at least two phenotypes with highly 

concordant effects. The correlation of effect sizes between eQTLs and pQTLs was 0.71 

(Pearson correlation) and between pQTLs and haQTLs 0.77, while eQTLs and haQTLs 

showed slightly weaker correlation (Pearson correlation = 0.59) (Figure 4d, Supplementary 

Figure S12). In addition, 241 SVs were found affecting at least three phenotypes, and 25 

SVs affecting all four measured phenotypes in several loci such as HLA, GSTM, GSTT, 
RBM, BPHL, VARS2, CAB39L, RLBP1, GCSH, DECR2, and PHYHD1. No statistically 

significant differences were found between these SV affecting all phenotypes compared to 

rest (SVs associated with one to three phenotypes) in terms of length (t-test, P-value = 0.78) 

or SV class (chi-squared test, P-value = 0.47). Although, effect sizes of SVs affecting all 

four phenotypes had significant slightly lower absolute values compared to the rest of SVs 

(t-test, P-value = 0.008). Moreover, more than 62% of SVs associated with proteins (pSVs) 

were also associated with differential RNA expression (Figure 4e). While the majority 

(87%) of the SV-pQTLs and SV-eQTLs were concordant (Figure 4d), few had discordant 

effects; for example, in the gene UROS, a 411 bp duplication located in the promoter 

region of the gene was associated with lower RNA expression, but higher protein expression, 

suggesting some complex regulatory mechanism (Figure 4f). Additionally, 25.5% and 23.7% 

of pSVs were also associated with histone markers and splicing, respectively, suggesting 

distinct mechanisms for gene regulation, while 28% were found associated with proteins 

only (Figure 4e). By contrast, 50% and 47% of splicing and histone associated SVs were 

also SV-eQTLs, respectively (Supplementary Figure S13).

To get a better understanding of how each SV-xQTL layer relates to each other, we also 

performed mediation analysis using bmediatR47. Three causal models were tested: complete 

mediation, partial mediation, and co-local (SV independently affects two phenotypes) 

(Figure 5a). We considered either RNA or proteins genes found associated at FDR 5% 

(i.e., 2,518 eGenes and 329 pGenes) as outcome and the other phenotypes as mediators. 

Samples were matched in each pairwise comparison. H3K9ac and splicing mediation effects 

on proteins were found less prominent than the effects on RNA, with a lower proportion 

of pQTLs explained through complete or partial mediation. For instance, considering RNA 

levels as outcome, 7.94% of eQTLs were mediated (complete and partial) by H3K9ac, 

while 11.72% were mediated via splicing (Figure 5b), while for proteins as outcome, only 

2.43% and 4.86% were mediated though these mechanisms respectively (Figure 5b). This 
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difference might be caused by the smaller sample size with proteomics data (approximately 

4-fold difference, compared to RNA). Overall, a large proportion of SV-xQTLs were 

independent (co-local effects), explaining ~8–18% of eGenes and ~10–14% of pGenes. 

reflecting the weak correlation between phenotypes. Effects where complete mediation was 

observed were rarer, but still observable, like the mediation of RP11–33B1 SV-eQTL by 

SV-haQTL (Figure 5d). Additionally, similarly as observed for SNP-eQTLs and -pQTLs48, 

a considerable proportion of proteins were mediated by RNA levels (14.29%, complete 

and partial), while around 13% showed independent associations. We also measured the 

mediation of the genetic effects on mRNA by protein and identified a few cases (3.22%) 

where the effects of SV-eQTL could be explained by SV-pQTLs. Around 30% of SV-eQTL 

were completely or partially mediated by different SV-pQTL genes. For example, a 3.7 kb 

deletion associated with ACOT11 SV-pQTL seems to mediate the SV-eQTL of MROH7 
(complete mediation posterior probability = 0.59) just downstream (Extended Data Fig. 6).

Effects of rare SVs

In contrast to common variants which are widespread in a population and have been 

subjected to a long process of natural selection, rare variants are usually much more recent 

and their impact on phenotypes more deleterious21,49. Due to their low frequencies, the 

impact of rare variants is usually measured indirectly by looking for enrichments within 

outliers, instead of performing standard association tests49,50. To assess the impact of rare 

SVs in gene expression first mapped gene-sample expression outliers for RNA and protein 

levels measured in ROS/MAP and we assessed the enrichment of rare variant carriers nearby 

those genes.

We identified 1,551 and 1,747 gene-sample outlier pairs for RNA expression and protein 

levels, respectively. A higher proportion of outliers was observed in proteins compared to 

RNA when considering samples and genes measured in common (112 samples and 7,546 

genes) (Figure 6a). Additionally, only 43 (5%) gene-sample pairs were replicated between 

both phenotypes, reflecting the modest correlation (Spearman’s ⍴ = 0.38) observed between 

average RNA expression and protein levels (Supplementary Figure S14).

Next, we measured the enrichment of rare SVs (MAF < 1%) overlapping gene bodies 

of outliers (for RNAs and proteins, separately). We found significant enrichment of SV 

classes in these conditions, especially deletions and duplications, with stronger enrichments 

in RNA compared to proteins (Figure 6b). This could be due to smaller sample sizes and the 

smaller number of genes tested. The direction of differential expression correlated with the 

expected dosage alteration effect (Figure 6c), but we still observed many cases in opposite 

directions suggesting more complex regulatory effects (Figure 6d). Six gene-sample outliers 

with overlapping rare SVs were found with effects on RNA and protein levels, including a 

homozygous rare 103 kb duplication causing overexpression of C19orf12 and a homozygous 

136 bp deletion causing underexpression of TLN2 in the respective variant carriers (Figure 

6e).
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Characterizing pathogenic SVs in neurodegenerative diseases

Since SVs are not usually included in GWAS, their association with neurodegenerative 

diseases and complex traits has been overlooked. We investigated SVs tagging GWAS 

variants, by measuring the LD between SVs with SNVs in ROS/MAP and comparing 

them with EBI GWAS Catalog variants. We found 802 common SVs by proxy associated 

(R2>0.8 between the SV and the SNPs) with 534 traits (GWAS P-value < 5×10−8). Among 

these SVs, 344 SVs were associated to some molecular phenotype in the brain and 47 

SVs were found in LD with brain related GWAS, including schizophrenia, autism, bipolar 

disorder, multiple sclerosis, corticobasal degeneration (CBD) and progressive supranuclear 

palsy (PSP). These associations might help the understanding of the genetic mechanism 

involved in these risk loci. For example, we mapped a 129 bp deletion upstream of SRR, 
a gene involved in glutamatergic neurotransmission and synaptic plasticity, which is in LD 

with GWAS variants for schizophrenia (rs8070345, R2 = 0.94)51. This deletion was also 

found associated with a H3K9ac peak, and with reduced expression of SRR at RNA and 

protein levels (Extended Data Fig. 7). Another 5 kb deletion in chromosome 3, was also in 

LD with another schizophrenia GWAS SNP (rs66691851, R2 = 0.95). The deletion was an 

SV-eQTL the gene PCCB and also showed association with a H3K9ac peak in the promoter 

region of STAG1, possibly distally linked by a CTCF disruption (Extended Data Fig. 8). We 

also identified an 82 bp insertion in LD with an Alzheimer’s disease loci (rs73045691, R2 

= 0.80), with associations with changes in expression of ACOC1 and splicing of APOC2 
(Extended Data Fig. 9).

In addition, we also performed one of the first genome-wide SV associations with 

Alzheimer’s disease (AD) and progressive supranuclear palsy (PSP). By combining all SVs 

across AMP-AD cohorts, we generated a combined call set with 29,177 SVs (22,007 with 

MAF > 1%) in 1,757 samples. In AD (539 cases, and 368 controls) no SVs were associated 

with the disease, however, some suggestive hits were observed (Supplementary Figure S15). 

By contrast, for PSP (83 cases, 368 controls), identified four SVs after Bonferroni correction 

(Figure 7a). These variant alleles were highly correlated with each other and tagged known 

distinct haplotypes at the 17q21.31 locus defined by an almost 1 Mb inversion (Figure 

7b). These haplotypes were previously reported to be associated with PSP and Parkinson’s 

disease, with the inverted haplotype being protective in both diseases (Odds ratio of 0.2 and 

0.8 respectively)52–54. In addition, many of these SVs showed associations with changes in 

gene expression and other molecular phenotypes (Figure 7c). Of the associations replicated 

in at least one brain region across studies, we found higher expression of DND1P1, 

KANSL1, ARL17A, LRRC37A in the inverted haplotypes (Figure 7c) and differences 

in MAPT splicing junctions and several histone acetylation markers could be detected 

in ROS/MAP (Figure 7c). Recently a mechanism involving neuron-specific changes in 

chromatin accessibility and 3D interaction has been proposed55. However, additional studies 

are needed to demonstrate these effects on regulatory interactions.

Discussion

By integrating whole-genome sequencing with multi-omics data, we measured the impact of 

structural variation in the human brain. We reported over 170 thousand SVs constructed 
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using 1,760 short-read whole genomes from aging cohorts. We performed SV-xQTL 

analyses to quantify the impact of cis-acting SVs on H3K9ac histone modification, mRNA 

expression, mRNA splicing, and protein abundance. We showed that SV-eQTL effects are 

mostly shared across different brain regions and that many effects can be mediated through 

the regulatory cascade. We also identified pathogenic SVs related to neurodegenerative 

diseases and the impact of rare SVs on RNA and protein levels.

Detecting SVs accurately is a challenging task and limitations due to sample size and 

sequencing read length are the main challenges to the field56. Our results showed improved 

sensitivity of SV detection compared to single algorithmic approaches (Extended Data Fig. 

10) as well as high orthogonal discovery confirmation on selected samples. Given the 

limitations of short-read data, SV discovery sensitivity is still underestimated for some SV 

classes, such as large insertions and complex configurations. However, we not only observed 

high reproducibility of SVs compared to independent large SV cohort studies and databases, 

but we also identified novel variants emphasizing the improvement of discovering SVs from 

novel samples and diverse populations.

Most studies on the impact of SVs have been restricted to the level of mRNA 

expression1,21,35,41. However, mRNA is not the only determinant of cellular functions57. 

Previous studies based on SNVs and small indels found that QTL effects can be 

modulated at different levels of gene regulation18–20. Here, we identified properties of 

SVs affecting different molecular phenotypes, identified regions and genes more susceptible 

to associations, and correlated their effects on phenotypes in terms of both common and 

rare SVs. Our SV-xQTLs results recapitulated similar trends from SNVs. For example, the 

majority of SVs associated with proteins were also SV-eQTLs, similar to what has been 

observed with SNV QTLs18, and over 14% of SV-pQTLs showed evidence of mediation 

through SV-eQTLs. Although sQTLs and eQTLs tend to have independent lead variants in 

SNVs19, for SVs we observed that half of splicing SVs were also expression SVs, with 

a modest negative correlation between effect sizes. Additionally, many effects seemed to 

be specific to a phenotype with about 28% in SVs associated at protein level only which 

is 3-fold more than SNVs18. These data suggest that distinct mechanisms are involved in 

translating genotype to phenotype.

Interestingly, distinct SV classes seem to have different functional impacts on gene 

regulation. Transposable elements were shown to contribute to almost half of open 

chromatin regions58 and affect more than three fourths of promoter regions, with particular 

enrichment of short interspersed nuclear elements (SINE) (e.g., Alu elements)59. Here we 

found that Alu and SVA (composed of SINE-VNTR-Alu) elements are more likely to affect 

gene and protein expression compared to other SV classes. SVA elements in particular 

are more evolutionarily recent than other TEs and many are human-specific45,60–62. Their 

importance for gene expression were described both in vitro and in vivo63–66. Our results 

support an important role for SVA in gene regulation, with more than 2-fold greater chance 

of being associated with either gene expression, splicing, and protein levels (Figure 4b).

While most of the common SV-xQTL associations can be confounded by LD with actual 

causal SNVs21, rare SVs impacting expression outliers at RNA and protein levels can 
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provide a better sense of SV causality50. Here we expand previous analysis21,49 mapping 

expression outlier genes in individuals carrying rare SVs, not only at mRNA but also at 

protein levels. We found more than 10% of mRNA outliers being overlapped by a rare 

SV, with clear causal resulting effect (e.g., deletions causing reduced expression while 

duplications causing increased expression). Interestingly, rare and common Alu elements 

seemed to have opposite effects on mRNA expression. Rare Alu insertions were found 

only in overexpression outliers (Figure 6d), while common Alu carriers were mostly 

associated with decreased expression (Figure 3e). Additionally, effects of rare SVs seem 

to be attenuated at protein levels, given a lower proportion of outliers explained by nearby 

SVs and an even lower proportion of effects shared between RNA and proteins, reflecting 

low correlation observed in the expression levels (Supplementary Figure S14).

It is also important to highlight the limitations in our study. Differences in SV discovery 

and genotyping methods might introduce specific biases67. Therefore, some SVs may show 

discrepancies in terms of allele frequencies compared to other studies1,3. Additionally, 

differences in sample size, and as consequence discovery power, among the different 

phenotypes might create bias toward specific relationships depending on how results are 

interpreted. For example, the sample size for proteomics (n=272) is roughly half the size 

of H3K9ac (n=571) and RNA-seq (n=456) data. Although it is reasonable to expect that 

effect size observed with smaller sample sizes to be reproduced in large sample sizes, the 

number of SV-xQTLs are not directly comparable. Particularly for the mediation analysis, 

the sample sizes were matched according to the outcome analyzed, therefore sample size 

is less of an issue. However, for other analysis in the manuscript we approached the 

differences in sample size by either comparing P-value distributions (using Storey’s π1) 

or by meta-analysis (using MASH37) instead of using significance thresholds.

In summary, our study expands the catalog of high-quality SVs by measuring their impact 

through a gene regulatory cascade and provide a powerful resource for understanding 

mechanisms underlying neurological diseases.

METHODS

Study cohorts

In our analysis, we included samples from four cohorts (ROS/MAP26,27, MSBB29, and 

Mayo Clinic28) from the Accelerating Medicines Partnership in Alzheimer’s Disease (AMP-

AD) consortium30. These aging cohorts provide an extensive collection of multi-omics data, 

that includes deep whole-genome sequencing (WGS) from 1,860 subjects and allow us to 

identify SVs and characterize their functional impact. Each cohort is briefly described in 

the Supplementary Methods). The original study data was obtained from each subject and 

the ROS/MAP were approved by an Institutional Review Board (IRB) of Rush University 

Medical Center. WGS data were processed with an NYGC automated pipeline. Paired-end 

150 bp reads were aligned to the GRCh37 human reference using the Burrows-Wheeler 

Aligner (BWA-MEM v0.7.8) and processed using the GATK best-practices workflow (more 

details in the Supplementary Methods).
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SV discovery pipeline

Structural variation discovery was performed running a combination of seven different tools 

per sample: Delly v0.7.968, LUMPY v0.2.1369, Manta v1.5.070, BreakDancer v1.4.571, 

CNVnator v0.3.372, BreakSeq v2.273, and MELT v2.1.574. These variants were further 

merged at the individual level using SURVIVOR75 and genotyped at the cohort level using 

smoove. After pre- and post-discovery quality control were identified 46,197 SVs in Mayo 

Clinic (349 samples), 52,451 SVs in MSBB (305 samples), and 72,348 SVs in ROS/MAP 

(1,106 samples), totaling 170,966 across 1,760 samples. Detailed description of the pipeline 

and quality control is described in the Supplementary Methods.

Linkage disequilibrium between SVs and SNPs

Small variant calls from ROS/MAP samples were generated according to methods described 

elsewhere 26. Briefly, WGS reads were aligned to the GRCh37 reference genome using 

BWA-mem and variant calling was performed using GATK pipeline. Resulting VCF files 

were obtained from Synapse portal (syn11707419) and then variants were filtered using 

PLINK v2 keeping biallelic SNPs with call rate > 95%, minor allele frequency (MAF) > 

1%, Hardy-Weinberg equilibrium (HWE) P-value > 1 × 10–6, and sample call rate > 95%. 

Additionally, variants were annotated with dbSNP (All_20180423.vcf.gz). Resulting VCFs 

files where then merged with SV calls resulting in a joint call set with 8,566,510 SNPs and 

72,348 SVs. LD was calculated in terms of R-squared for all SVs using PLINK v2 and 

considering a window of 5 Mb. As result, 9,876 SVs had a tag SNPs with r2 > 0.8.

Reproducibility of SVs in other large cohort studies

SVs discovered in the AMP-AD cohorts were compared with other large cohort studies and 

datasets in order to identify novel variants. SV annotations were obtained from AnnotSV 
v2.176 and included dbVar31, the National Human Genome Research Institute (NHGRI) 

Centers for Common Disease Genomics (CCDG)2, Database of Genomic Variants (DGV)32, 

Deciphering Developmental Disorders (DDD)33, GnomAD-SV3, and 1000 Genomes Project 

SVs1. SVs were considered replicated in other datasets if their coordinates had a reciprocal 

overlap of 0.7 irrespectively of the SV class.

Allele frequency comparison with 1000 Genomes Project and gnomAD-SV

Correlation of minor allele frequencies (MAFs) between SVs discovered in gnomAD-SV 

and 1000 Genomes Project phase III (1KGP) were compared to ROS/MAP MAFs. Only 

European (EUR) MAFs from gnomAD and 1KGP were used for comparison. SVs in 

common were first identified using bedtools “intersect” requiring at least 50% reciprocal 

overlap with no requirement of matching SV classes. Then, coefficients of determination 

(R2) were assessed with a linear regression between MAFs for SVs mapped in both studies 

being compared. Using ROS/MAP as reference, 20,414 (28%) and 15,108 (21%) were found 

in common with gnomAD and 1KGP respectively. Comparing European MAF between 

these sets, resulted in correlations of 0.71 for gnomAD and 0.75 for 1KGP. (Supplementary 

Figure S5).
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Hardy-Weinberg equilibrium comparison

SV genotype distributions were evaluated under the null expectations set by the Hardy-

Weinberg equilibrium (HWE; 1 = p2 + 2pq + q2). Using tabulated genotype distributions 

per cohort as input, we measured deviations from HWE using a chi-square goodness-of-fit 

test with one degree of freedom and their P-values using the “HardyWeinberg” package in 

R77. SVs were considered in violation of HWE if its P-value was significant after Bonferroni 

correction for the number of SVs tested per population (Supplementary Figure S6). We did 

not remove SVs failing the test, but instead we provide the P-values as part of the summary 

statistics tables on GitHub.

SV long-read validation

Two samples from ROS/MAP cohorts were selected for long-read sequencing validation 

(more details in the Supplementary Methods). DNA samples extracted from DLPFC tissues 

were then used for continuous long-read (CLR) sequencing using PacBio Sequel II platform. 

Both samples were multiplexed sequenced in a single SMRT Cell 8M Tray, resulting in 

an average 10x coverage per sample and average 14 kb read length (Supplementary Table 

S2). Under such coverage we expect over 80% of F1-score (96.19% precision / 69.12% 

recall) on GiaB benchmarking78. Raw PacBio BAM files were then aligned to the GRCh37 

reference genome using minimap279 and SVs were called using SVIM80 with default 

parameters (Supplementary Figure S16). BAM files were used to validate SVs found using 

the orthogonal short-read data using VaPoR, a software that performs comparative local 

realignments of long-reads to a synthetically modified reference sequence81.

Therefore, SVs identified in the main SV discovery step with short-reads and positively 

genotyped in each sample were selected and filtered to maximize VaPoR sensitivity. We 

restricted the analysis for SVs with no overlapping breakpoints to simple repeats, segmental 

duplications, centromeres, regions subject to somatic V(D)J recombinations, and regions 

with low mappability in the PacBio data (<10x coverage). SV classes were evaluated 

separately by deletions, duplications, and insertions. For inversions, since our calls were 

not completely resolved and could represent also other sorts of complex conformations, we 

measured their support either as simple inversions (INV) or any combination of deletions, 

duplications, and inversions (e.g DEL_INV, DUP_INV, DEL_DUP_INV). SVs with a 

proportion of reads supporting the predicted structure versus all reads assessed higher than 

zero (i.e., VaPoR_gs > 0) or SVs with genotype proposed by VaPoR other than homozygous 

to the reference (i.e., 0/0) were considered supported in the long-read data. Supporting rates 

for each sample were then measured as the number of supported SVs divided by the total 

number of tested SVs (Figure 2d).

RNA-seq processing and SV-eQTL mapping

Given that originally each cohort had different RNA-seq processing pipelines, we 

took advantage of the RNA-seq Harmonization Study (rnaSeqReprocessing) data 

(Synapse:syn9702085), which reprocessed all the data in a harmonized workflow (more 

details in the Supplementary Methods). We mapped SV-eQTL to scan for significant 

associations between common structural variants and gene expression. We tested SVs with 

MAF ≥ 0.01 using a modified version from FastQTL21,82 to address the span of breakpoints 
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within a 1 Mb window from each gene TSS. All association tests were performed 

considering the allele alternative to the reference genome as the effect allele. A permutation 

test was applied to select the lead SV per gene and P-values were adjusted for multiple 

testing using Benjamini-Hochberg (FDR). Associations were performed separately for each 

SV class, meaning that multiple lead-SVs (from different classes) could be associated with 

each phenotype. A significance threshold of FDR 5% was used in most of the analysis. The 

total number of significant associations at other thresholds can be found at Supplementary 

Figure S17.

SV-haQTL mapping

ChIP-seq experiments and data processing for H3K9ac acetylation markers were previously 

performed on 712 samples (699 after QC) Epigenetics (ChIP Seq) - syn4896408 

(synapse.org)83. Detailed description of the data processing can be found in the 

Supplementary Methods. For SV-haQTL analysis, we used residualized values obtained 

from 571 samples with WGS after regressing out “Sex”, “gel_batch”, “AgeAtDeath” and 

the first 3 principal components of the genotype matrix to account for the effect of ancestry 

plus the first 10 principal components of the phenotype matrix to account for the effect of 

known and hidden factors (Supplementary Figure S18). We tested SVs with MAF ≥ 0.01 

and within 1 Mb of each peak. A permutation test was applied to select the lead SV per 

peak. Finally, P-values were adjusted for multiple testing using Benjamini-Hochberg (FDR). 

Associations were performed separately for each SV class, meaning that multiple lead-SVs 

(from different classes) could be associated with each phenotype. A significance threshold 

of FDR 5% was used in most of the analysis. The total number of significant associations at 

other thresholds can be found at Supplementary Figure S17.

SV-pQTL mapping

Tandem Mass Tag (TMT) isobaric labeling data were previously generated for 292 

individuals84,85. For SV-pQTL analysis, we used residualized values for 7,960 protein 

obtained from 272 samples with WGS after regressing “PMI”, “Sex”, “AgeAtDeath”, 

three first ancestry PCs, and the first 10 principal components of the phenotype matrix 

(Supplementary Figure S19). We tested SVs with MAF ≥ 0.01 and within 1 Mb of each 

protein. A permutation test was applied to select the lead SV per protein. Finally, P-values 

were adjusted for multiple testing using Benjamini-Hochberg (FDR). Associations were 

performed separately for each SV class, meaning that multiple lead-SVs (from different 

classes) could be associated with each phenotype. A significance threshold of FDR 5% was 

used in most of the analysis. The total number of significant associations at other thresholds 

can be found at Supplementary Figure S17.

SV-sQTL mapping

Splicing junction proportions, measured as percent spliced in (PSI), were measured 

previously86 (more details in the Supplementary Methods and Supplementary Figure S20). 

A total of 505 samples with WGS data were used in the association analysis using a 

modified version from FastQTL21,82 to address when the span or breakpoint of deletions, 

duplications, inversions, or insertions felt within the cis window a gene TSS. Genotyping 

information of SVs with MAF ≥ 0.01 and within 100 kb of each intron junction were 

Vialle et al. Page 13

Nat Neurosci. Author manuscript; available in PMC 2022 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://synapse.org


tested, and a permutation test was applied to select the top SV per junction. Finally, P-values 

were adjusted for multiple testing using Benjamini-Hochberg (FDR). Associations were 

performed separately for each SV class, meaning that multiple lead-SVs (from different 

classes) could be associated with each phenotype. A significance threshold of FDR 5% was 

used in most of the analysis. The total number of significant associations at other thresholds 

can be found at Supplementary Figure S17.

SV-eQTL sharing

To estimate and compared the SV-eQTL sharing across different brain regions and cohorts, 

we performed a Multivariate Adaptive Shrinkage (MASH) through the R package mashR 37. 

Following the pipeline applied by GTEx Consortium 37, the nominal statistics associations 

from FastQTL (P-values, betas, and standard errors) for each brain region (DLPFC, TCX, 

CBE, BM10, BM22, BM36 and BM44) were used as input. The pipeline then: i) selects 

the strongest associations based on a sparse factorization matrix of z-scores; ii) computes 

covariance matrices priors using the Extreme Deconvolution method; iii) computes the 

maximum-likelihood estimates of the weights; and iv) calculates posterior statistics using 

the fitted MASH models. mashR then returns tables with posterior means and local false 

sign rate (lfsr), as a measure of false discovery rate. To measure sharing, we considered the 

top SV-eQTLs that were significant (lfsr < 0.05) in at least one of the two tissues (n = 1,081–

1,364 gene-SV pairs, depending on pair of tissues compared). The proportion of sharing 

by sign was considered if effect estimates had the same direction. While the proportion of 

sharing in magnitude was measured based on effect estimates that are in the same direction 

and within a factor of 2 in size.

SV-eQTL fine-mapping

In order to predict the probability of a variant to be causal for a particular eGene, we first 

mapped SV-eQTL using the joint variant call set (including SVs and SNPs). The VCF was 

first subsampled to match the 456 samples with DLPFC RNA-seq, and variants were filtered 

by MAF ≥ 1%, resulting in 7,861,048 SNPs and 23,700 SVs. Cis-eQTL mapping was 

performed using FastQTL with 1 Mb window from each gene TSS. A total of 7,787 joint-

eQTLs were identified with FDR < 5%. Z-scores were then computed for each variant-gene 

pair using the linear regression slopes and their nominal P-values, which were then used 

as input for CAVIAR 38. CAVIAR is a fine-mapping tool that assesses summary statistics 

while accounting for the LD across an associated locus to rank the causal probability of each 

variant in a region. For each gene we ran CAVIAR with a causal set size of 1 and using the 

Z-scores and pairwise LD matrices were obtained for the top 100 variants including the best 

SV associated (if not among the 100 variants). Posterior probabilities were then obtained as 

a measure of causality for each variant. 95 of 7,787 eQTLs (1.2%) had an SV with higher 

CAVIAR posterior compared to SNPs.

SV-eQTL mapping in monocytes

CD14+CD16- isolated monocytes RNA-seq data from ROS/MAP samples were obtained 

from Synapse portal (syn22024496). Sequencing reads were processed following the GTEx 

eQTL pipeline87 (more details in the Supplementary Methods) SV-eQTL mapping was 

performed for 177 ROS/MAP samples with post-QC SV calls (41 donors overlapped with 
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DLPFC RNA-seq samples). Associations were measured using the modified version from 

FastQTL17,83 considering the span of breakpoints within a 1 Mb window from each gene 

TSS. A total of 12,929 genes and 17,347 SVs with MAF ≥ 5% were evaluated. After a 

permutation test was applied to select the lead SV per gene and P-values were adjusted for 

multiple testing using Benjamini-Hochberg (FDR), a total of 208 SV-eQTL were found in 

monocytes.

SV-xQTL mediation analysis

We performed mediation analysis using bmediatR47. The method uses a Bayesian based 

model selection approach. Three causal models are defined: complete mediation, partial 

mediation, and co-local (whereas an SV is independently affecting two phenotypes). 

Mediation was performed for different sets of samples and genes depending on the 

hypothesis tested. We considered either RNA or proteins as outcome and the other 

phenotypes as mediators, and only genes found associated at FDR 5% (i.e., 2,518 eGenes 

and 329 pGenes). Samples were matched in each pairwise comparison. Considering SV-

eQTLs as the outcome and SV-haQTLs as the mediator, 401 samples were analyzed (had 

RNA-seq and H3K9ac data available) and for each one of the 2,518 eGenes, H3K9ac peaks 

in 100 kb of the gene were tested as mediators. Similarly, for mediation by SV-sQTLs, a 

total of 433 samples were analyzed and any splicing junction in 100 kb of the gene were 

tested. We also tested the mediation of SV-eQTLs via SV-pQTLs. For that 112 samples were 

included and genes within 1 Mb of the eGene were tested as mediators. Analogously, we 

considered SV-pQTLs as outcome and SV-eQTLs as mediators, 112 samples and 311 genes 

(pGenes) were analyzed. For SV-pQTL as outcome and SV-haQTL as mediator, 124 samples 

and 329 genes were analyzed and any H3K9ac peak in 100 kb of the gene was tested as 

mediator. And finally for SV-pQTL as outcome and SV-sQTL as mediator, 135 samples and 

329 genes, and any splicing junction in 100 kb of the gene was tested as mediator.

Expression outliers assessment

To identify expression outliers, either at RNA and protein levels, we used the OUTRIDER 
R package88. Briefly, data normalization was first performed using its inbuilt autoencoder 

method to control for variation linked to unknown factors. Then outlier detection was 

performed assuming a significant deviation of gene expression distributions from a negative 

binomial distribution. For the RNA, read counts for 15,004 genes expressed in 456 samples 

were used as input. While for proteins, we used the rounded batch adjusted abundances 

for 8,179 proteins and 272 samples. Samples with missing protein abundance values were 

imputed as the mean values of each protein. Since the observed protein variance across 

samples was considerably higher than for RNA, the number of outliers detected for proteins 

tended to be higher, so to control for this difference the significance threshold for outlier 

detection was set at FDR adjusted P-values of 0.05 and 0.001 for RNA and protein 

respectively and absolute z-scores higher than 2 for both data. A total of 1,551 gene-sample 

pairs outliers were identified in RNA, and 1,747 in proteins at the given thresholds.

Enrichment analysis

All enrichments of SV features were accessed via logistic regression as described 

elsewhere50 and adjusted by SV size. This analysis is equivalent to the relative risk of 
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an SV having a specific feature (e.g., is overlapping a particular genomic annotation) given 

a secondary status (e.g., is SV-eQTL). Briefly, data were converted to a binary matrix with 

lines representing each SV and columns representing related features. Logistic regression 

was then performed fitting a generalized linear model (glm R function) and log odds 

ratio estimates and P-values were extracted from each feature comparison. The asymptotic 

distribution of the log relative risk was then used to obtain 95% Wald confidence intervals.

SVs tagging GWAS associated SNPs

SNPs mapped in high LD (r2 > 0.8) with SVs were overlapped with a list of GWAS SNPs. 

We used the EBI GWAS catalog (release 2019–05-03) and matched SNPs by their reference 

number (rsID). A total 802 SVs were in LD with some GWAS SNPs (P-value < 5 × 10−8) 

and at LD r2 > 0.8.

Disease status associations

SV calls from ROS/MAP, Mayo Clinic and MSBB were merged into a combined call set 

using SURVIVOR75 while requiring 1000 bp maximum distance between breakpoints to 

merge SVs of the same type. A total of 22,007 SVs identified and all three study groups 

and with MAF ≥ 0.01 were selected for the association test. Alzheimer’s disease status 

was harmonized across cohorts as previously described89. Briefly, for the ROSMAP study, 

late-onset AD (LOAD) cases were defined as individuals with a Braak neurofibrillary tangle 

(NFT) score ≥ 4, CERAD score ≤ 2, and a cognitive diagnosis of probable AD with no other 

causes, while individuals with Braak less ≤ 3, CERAD score ≥ 3, and cognitive diagnosis of 

“no cognitive impairment” were considered as controls. For MSBB, individuals CDR score 

≥ 1, Braak score ≥ 4, and CERAD neuritic and cortical plaque score ≥ 2 were considered 

LOAD cases, while CDR scores ≤ 0.5, Braak ≤ 3, and CERAD ≤ 1 were considered 

controls (note that CERAD definitions differ between ROSMAP and MSBB studies). For 

the Mayo Clinic study, cases were defined based on neuropathology, with LOAD cases 

being individuals with Braak score ≥ 4 and CERAD neuritic and cortical plaque score > 

1 while controls were defined as Braak ≤ 3, and CERAD < 2. A logistic regression was 

fitted using 539 AD cases and 368 controls and adjusting for sex, study, and the first three 

ancestry principal components. For PSP associations, Mayo Clinic study had 83 cases90 with 

pathological diagnosis at autopsy were compared against the same 368 controls using the 

same model.

RESOURCE AVAILABILITY

Code Availability

All code used in this study has been provided in a single repository on GitHub (https://

github.com/RajLabMSSM/AMP_AD_StructuralVariation).

Data Availability

Data supporting the findings of this study are available via the AD Knowledge Portal 

(https://adknowledgeportal.org). The AD Knowledge Portal is a platform for accessing 

data, analyses, and tools generated by the Accelerating Medicines Partnership (AMP-

AD) Target Discovery Program and other National Institute on Aging (NIA)-supported 
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programs to enable open-science practices and accelerate translational learning. The 

data, analyses and tools are shared early in the research cycle without a publication 

embargo on secondary use. Data is available for general research use according to the 

following requirements for data access and data attribution (https://adknowledgeportal.org/

DataAccess/Instructions). For access to content described in this manuscript, including 

raw PacBio long-read sequencing data, individual-level SV calls and SV-xQTL summary 

statistics see: www.doi.org/10.7303/syn26952206. Additionally, individual-level genotyping 

and SV-xQTL summary statistics data are also being made available through NIAGADS 

(Accession Number: NG00118). All SV site-frequency data from 1,706 donors discovered 

separately in each cohort, complete nominal and permuted SV-xQTL summary statistics, 

and disease status association summary statistics are publicly available on GitHub 

(https://github.com/RajLabMSSM/AMP_AD_StructuralVariation). The raw whole-genome 

sequence data used for SV discovery are available for each cohort respectively: ROS/MAP26 

(syn10901595); MSBB29 (syn10901600) and Mayo Clinic28 (syn10901601). ROS/MAP 

H3K9ac ChIP-seq data are available at syn4896408 and TMT proteomics data are available 

at syn17015098. RNA-seq reprocessed data from all cohorts were obtained from the 

RNAseq harmonization study89 (syn9702085). Splicing junction proportions were obtained 

from Raj et al.86 and a respective sQTL visualization (Shiny App) browser is available 

at https://rajlab.shinyapps.io/sQTLviz_ROSMAP/. ROS/MAP data can also be requested at 

https://www.radc.rush.edu.

METHODS & SUPPLEMENTAL INFORMATION

Detailed methods and supplemental information for this manuscript has been provided 

online.
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Extended Data

Extended Data Fig. 1. Functional context and evolutionary constraints
a, Cumulative fraction of SVs by minor allele frequency (MAF). b, Enrichment of SVs 

overlapping each region stratified by common (MAF>5%), rare (MAF<5%), and singleton. 

Enrichment of OMIM genes (c), LoF intolerant genes (d), and Haploinsufficient genes (e) 

overlapping SVs in different frequency stratum. Lines in the enrichment plots indicate Wald 

confidence intervals while the midpoints represent the relative log odds.
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Extended Data Fig. 2. Pairwise sharing of eQTLs among brain tissues and cohorts
a, SV-eQTL sharing across different groups and regions measured by π1 from qvalue R 

package. Columns represent the discovery sets while rows represent the replication set. b, 

Sharing according to mashR meta-analysis. SV-eQTLs with local false sign rate (lfsr) lower 

than 0.05 in at least one of the two tissues were considered (n = 1,081–1,364 gene-SV pairs, 

depending on pair of tissues compared). Lower triangle shows the proportion of sharing by 

sign (i.e. effect estimates have the same direction). Upper triangle shows the proportion of 

sharing in magnitude (i.e. effect estimates that are in the same direction and within a factor 

of 2 in size).
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Extended Data Fig. 3. Comparison between brain and monocytes SV-eQTLs effect sizes
Scatter plot shows the slope of 429 eGenes mapped in ROS/MAP DLPFC and Monocytes 

with a significant association in either dataset (FDR < 5%). Although majority of effects 

are concordant in direction, many genes show opposite direction of effects between brain 

and monocytes (e.g. ARL17B and CASP8). The x-axis shows the effect size in DLPFC and 

y-axis shows the effect size in Monocytes for the same SV-gene pair. Dots colored in blue 

are significant only at Monocytes, dots colored in grey are significant only in DLPFC, and 

dots in red are significant in both. Pearson correlation coefficient (and P-value, two-sided) of 

slopes for all 144 SV-gene pairs is shown on top.
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Extended Data Fig. 4. SV-xQTL top hits
Manhattan plots showing the top SV-xQTLs measured in ROS/MAP. Colored labels 

represent each SV class. a, SV-haQTL (H3K9ac), showing labels for associations with 

-log10(P-value)>30. b, SV-eQTL, labels for associations with -log10(P-value)>40. c, SV-

sQTL, labels for associations with -log10(P-value)>40. d, SV-pQTL, labels for associations 

with -log10(P-value)>10.
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Extended Data Fig. 5. SV-xQTL effect sizes
Distribution of effect sizes for all SVx-QTLs by SV class. Plots on the left show results 

for all associated SVs, plots on the right show results only for SVs overlapping either the 

associated histone peak (SV-haQTL, a), or exonic regions of the associated gene (SV-eQTL 

on b and SV-pQTL on c).
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Extended Data Fig. 6. SV-eQTL mediation by SV-pQTL
a, The locus plot shows a 3.7 kb deletion (in red) deleting the splicing acceptor sites on 

exon 16 of the gene ACOT11 (from which is an SV-eQTL and SV-pQTL). Genes and 

histone peaks colored in red had significant associations (FDR < 0.05) with the SV. b, 

Mediation analysis performed on 112 biologically independent samples with both RNA-seq 

and proteomics data available, supports the mediation of the gene MROH7 SV-eQTL via 

SV-pQTL of ACOT11 (complete mediation posterior probability = 0.59). The scatter plot 

on the left shows the correlation between both phenotypes, x-axis is the residual mRNA 

expression of MROH7 while the y-axis is the residual protein abundance levels for ACOT11. 

Pearson correlation coefficient (R) and respective P-value as well as a linear regression line 

are shown in the plot. The box plots show the median in the central line, the box spans the 

first to the third quartiles and the whiskers extend 1.5 times the IQR from the box. Nominal 

P-values and effect sizes from the linear regression model are listed on the top of each box 

plot.
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Extended Data Fig. 7. SV-xQTL in LD with Schizophrenia GWAS variant
a, locus plot showing a 129 bp deletion that is in LD with a Schizophrenia GWAS variant 

(rs8070345, R2 = 0.94)6. Plot also shows genes and H3K9ac peaks near the SV. Genes 

colored in red represent phenotypes found significantly associated with the deletion at RNA 

and protein levels (SV-eQTL and SV-pQTL at FDR < 5%). b, shows the boxplot for the 

SV-eQTL association with the gene SRR (n = 456 biologically independent samples), c, 

shows the boxplot for the SV-pQTL association with the gene SRR (n = 272 biologically 

independent samples). In the box plots, slopes (β) and FDR adjusted P-values are shown for 

each association (linear regression model), the median values are shown in the central line, 

the box spans the first to the third quartiles and the whiskers extend 1.5 times the IQR from 

the box.

Extended Data Fig. 8. SV-xQTL in LD with Schizophrenia GWAS variant
a, locus plot showing a 5191 bp deletion that is in LD with a Schizophrenia GWAS variant 

(rs66691851, R2 = 0.95)6. Plot also shows genes and H3K9ac peaks near the SV. Genes 

and H3K9ac bars colored in red represent phenotypes found significantly associated with the 

deletion (SV-eQTL and SV-haQTL at FDR < 5%). b, shows the boxplot for the SV-eQTL 

association for the PCCB (n = 456 biologically independent samples), c, shows the boxplot 

for the SV-haQTL association for a peak in the promoter region of STAG1 (n = 571 

biologically independent samples). In the box plots, slopes (β) and FDR adjusted P-values 

are shown for each association (linear regression model), the median values are shown in the 

central line, the box spans the first to the third quartiles and the whiskers extend 1.5 times 

the IQR from the box.
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Extended Data Fig. 9. SV-xQTL in LD with Alzheimer’s disease GWAS variant
a, locus plot showing a 82 bp insertion that is in LD with an Alzheimer’s disease GWAS 

variant (rs73045691, R2 = 0.80)6. Plot also shows genes and H3K9ac peaks near the SV. 

Genes colored in red represent phenotypes found significantly associated with the insertion 

(SV-eQTL and SV-sQTL at FDR < 5%). b, shows the boxplot for the SV-eQTL association 

for the APOC1 gene (n = 456 biologically independent samples), c, shows the boxplot for 

the SV-sQTL association for a peak in the promoter region of APOC2 (n = 505 biologically 

independent samples). In the box plots, slopes (β) and FDR adjusted P-values are shown for 

each association (linear regression model), the median values are shown in the central line, 

the box spans the first to the third quartiles and the whiskers extend 1.5 times the IQR from 

the box.

Extended Data Fig. 10. Quality assessment of variant calling
In silico benchmarking and validation. a, Benchmarking of individual SV discovery tools 

and combined tools (“Merged”) for the sample HG002 evaluated against the Genome in a 

Bottle v0.6 Tier 1 using truvari. “Merged” strategy was defined by the best F1-score after 

testing all possible combinations of tools (for insertions and deletions separately). The same 

merging criteria was applied for all samples in AMP-AD. b, Benchmarking results of all 

Vialle et al. Page 25

Nat Neurosci. Author manuscript; available in PMC 2022 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1,760 AMP-AD samples evaluated against the Genome in a Bottle v0.6 Tier 1 using truvari. 
In the box plots, the median values are shown in the central line, the box spans the first to 

the third quartiles and the whiskers extend 1.5 times the IQR from the box.
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Figure 1. Study overview.
The datasets used in this study have been made available to the research community through 

the Accelerating Medicines Partnership in Alzheimer’s Disease (AMP-AD) Knowledge 

Portal. Whole-genome sequencing and RNA-seq datasets are available from four aging and 

Alzheimer’s disease cohorts: Religious Orders Study (ROS) and Memory and Aging Project 

(MAP), Mayo Clinic, and Mount Sinai Brain Bank (MSBB). RNA-seq data for ROS/MAP 

are from the dorsolateral prefrontal cortex (DLPFC). RNA-seq data from MSBB are from 

four brain regions: BM10 = Brodmann area 10 (part of the frontopolar prefrontal cortex), 

BM22 = Brodmann area 22 (part of the superior temporal gyrus), BM36 = Brodmann area 

36 (part of the fusiform gyrus), and BM44 = Brodmann area 44 (opercular part of the 

inferior frontal gyrus). RNA-seq from Mayo Clinic are from TCX = temporal cortex, CBE 

= cerebellum. The ChIP-seq (Histone 3 Lysine 9 acetylation, H3K9Ac) and proteomics 

data (Tandem mass tag, TMT) are from ROS/MAP dorsolateral prefrontal cortex (DLPFC) 

tissues. The post-QC sample sizes are shown next to each dataset. eQTL analyses were 

performed in all datasets; sQTL, haQTL, and pQTL were only performed with ROS/MAP 

data.
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Figure 2 - Summary of SV calls across cohorts.
a, Total number of SVs identified within each cohort (ROS/MAP, Mayo Clinic, MSBB), 

colored by main SV types (DEL, DUP, INS+MEI, and INV+CPX). b, SV size distribution 

per SV type with x-axis and y-axis shown in log10 scale. c, Proportion of novel SVs found 

in each cohort stratified by minor allele frequency (MAF) spectrum. SVs were considered 

novel if not found in dbVar, Centers for Common Disease Genomics (CCDG), Database of 

Genomic Variants (DGV), Deciphering Developmental Disorders (DDD), GnomAD-SV, and 

the 1000 Genomes Project. d, Barplot showing samples sequenced using PacBio’s long-read 

WGS and number of SVs from short-reads evaluated for replication, plot below shows the 

confirmation rates for each sample (dots) measured using VaPoR and stratified by each SV 

class. Horizontal bars represent the median of both samples.
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Figure 3 - Properties of SV-eQTLs.
a, Total number of significant SV-eQTLs (FDR < 0.05) identified within each cohort (ROS/

MAP, Mayo Clinic, MSBB) in each brain region. b, Log odds ratio (midpoints) of SV being 

associated with gene expression changes (i.e., being an SV-eQTL). Lines indicate 95% Wald 

confidence intervals. c, Log odds ratio (midpoints) of a gene being significantly associated 

stratified by gene biotype, lines indicate 95% Wald confidence intervals. d, Average absolute 

effect sizes (midpoints) of each eGene stratified by gene biotype, lines represent 95% 

confidence intervals (n = 1000 bootstraps). e, Distribution of effect sizes for each SV type 
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for all SVs (on the left) and SVs that overlap exonic regions of the associated gene (on 

the right). For box plots, the median is the central line, the box spans the first to the third 

quartiles and the whiskers extend 1.5 times the IQR from the box. f, SV-eQTL sharing in 

magnitude according to mashR meta-analysis. Values represent the proportion of SV-eQTLs 

that are in the same direction and within a factor of 2 in size comparing each brain region 

(columns) to ROS/MAP DLPFC. g, CAVIAR posterior probabilities for 2,517 genes with 

significant SV-eQTL association in ROS/MAP. The x-axis shows the maximum posterior 

probability for SVs, while the y-axis shows the maximum posterior for SNPs mapped 

jointly for eQTLs. Variants below the diagonal line have a higher SV posterior than SNP 

posteriors. Gene names are shown for selected genes. Colors represent the SV type of the 

best SV associated to each gene. h-i, Nominal P-values (showed as -log10) for joint-eQTL 

association tests (linear regression between variant allele and gene expression) for the genes 

MPC2 (h) and FAM66C (i) considering both SVs and SNPs. The lead variants are an Alu 
insertion (h) and duplication (i) both with higher CAVIAR posterior probabilities compared 

to the best SNPs in the locus. Points are colored by the LD to the lead SV. Error bars over 

the causal SVs represent their size.
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Figure 4 - Impact of SVs on the gene-regulatory cascade.
a, Total number of SV-xQTLs (FDR < 0.05) identified in ROS/MAP. Red bars show the 

number of lead per phenotype associations measured for each SV class separately, while 

gray bars show the total number of unique genes associated independently of SV classes. 

Percentages shown in the gene bars refer to the total number of genes tested for each 

phenotype. b, Heatmap showing the odds ratio of each SV class being associated with 

changes in each phenotype (i.e., being an SV-xQTL). Odds ratios are measured against all 

lead SVs per phenotype, including non-significant. Numbers in bold represent P-value < 5% 

(two-sided Wald’s test). c, Enrichment of xSVs (i.e., SVs significantly associated to some 
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phenotype) by functional annotation. Values are given as the log odds ratio (midpoints) of 

an xSV being overlapping a given genomic feature compared to all SVs tested for each 

molecular phenotype separately. Lines indicate 95% Wald confidence intervals. d, Slope 

correlation of SV-haQTL and SV-pQTL effect sizes (y-axis) compared to SV-eQTL effect 

sizes (x-axis). Pearson correlations and respective P-values (two-sided) are shown for each 

pair. e, SVs associated with proteins (380 pSVs, first bar) that are also associated with 

different molecular phenotypes (indicated at respective columns). Each color represents 

pSVs where the same SV-gene pair is significantly associated with a different number of 

phenotypes, from 1 (only at protein level) to 4 (all molecular phenotypes). f, Example of 

discordant effect between RNA and protein caused by a 411 bp duplication overlapping an 

H3K9ac peak upstream of the UROS. In the locus plot, genes and histone peaks colored in 

red had significant associations (FDR < 0.05) with the duplication. Box plots show in the 

y-axis the UROS mRNA (n = 456 biologically independent samples) and protein (n = 272 

biologically independent samples) residual levels for specific SV allele carriers (x-axis). The 

box plots show the median in the central line, the box spans the first to the third quartiles and 

the whiskers extend 1.5 times the IQR from the box. Slopes (β) and FDR adjusted P-values 

are shown for each association (linear regression model).
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Figure 5 - Mediation of SV-xQTL.
a, Relationships modeled in the mediation testing. The complete mediation model and 

the partial mediation model represent cases where the effect of an SV on a phenotype Y 

(also called outcome, e.g. SV-eQTL) is explained, completely or partially, by the effect 

of the same SV on a phenotype M (also called mediator, e.g. SV-haQTL). The co-local 

model represents a special case where there is no mediation between M and Y, but the 

SV independently affects M and Y. b, Proportion of 2,518 genes with significant SV-eQTL 

(mRNA as outcome Y) mediated by either haQTL, sQTL, or pQTLs according to each 

model. c, Proportion of 329 genes with significant SV-pQTLs (proteins as outcome Y) 

mediated by either haQTL, sQTL, or eQTLs according to each model. d, Example of a 

complete mediation (posterior probability = 0.95) for an SV-eQTL for the gene RP11–33B1 
(outcome) via an SV-haQTL (mediator). The first plot shows the correlation between both 

phenotypes, x-axis is the residual expression of RP11–33B1 and the y-axis is the residual 

values for the corresponding H3K9ac peak (hg19 coordinates 4:120,375,241–120,377,352). 

The box plots show the associations of an Alu insertion (length: 281 bp; hg19 coordinates 

4:120,639,905) with the RNA expression, the histone acetylation levels, and the residual 

expression of RP11–33B1 after regressing the effects of the histone acetylation levels, 

respectively (n = 401 biologically independent samples with RNA-seq and H3K9ac data 

available). The box plots show the median in the central line, the box spans the first to 

the third quartiles and the whiskers extend 1.5 times the IQR from the box. Slopes (β) and 

nominal P-values are shown for each association (linear regression model).
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Figure 6 - Impact of rare SVs on gene expression outliers.
a, Quantile-quantile (QQ)-plot showing the observed distribution of P-values of outliers 

for RNA and protein and its deviation from the expected uniform distribution (showing 

only for gene-sample pairs measured in common). b, Enrichment of rare SVs overlapping 

outliers (any SV breakpoint within the gene body) stratified by SV type showed as a log 

odds ratio (midpoints) with 95% Wald confidence intervals. c, Fraction of overexpressed 

and underexpressed outlier genes that are potentially explained by each rare SV compared 

to non-outliers. d, Distribution of gene outlier z-scores that are overlapped by rare SVs. 

e, Examples of gene-sample pairs outlier with a rare SV overlapping their respective 

gene bodies. Showing on top an overexpression outlier for C19orf12 caused by a 103 kb 

duplication and at bottom an underexpression outlier for the gene TLN2 caused by a rare 

136 bp deletion. Each dot represents a sample. Y-axis represents the raw counts + 1, while 

the x-axis represents the expected counts + 1, which is given assuming a negative binomial 

distribution with a gene-specific dispersion according to the OUTRIDER’ model. Red dots 

represent an outlier sample.
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Figure 7 - SVs associated with PSP and their effects on molecular phenotypes.
a, Manhattan plot showing SVs associated with PSP cases (n=83) versus controls (n=368). 

Estimates were measured using Bayesian logistic regression (bayesglm) accounting for 

sex, study, and the first three ancestry PCs. Y-axis shows the -log10(P-value) of each SV 

association. X-axis represents SV sequential position by chromosome (not real scale). 

Labels with names of the nearest gene upstream of each SV breakpoint are shown for 

SVs with Bonferroni adjusted P-values lower than 5% (dashed line). Label colors represent 

different SV classes. b, Pairwise linkage disequilibrium (LD) matrix of SV genotypes 

identified between chr17:43M-46M (hg19) measured as R2 (LDheatmap R package). Labels 

are shown for the SVs significantly associated with PSP status (from letter a). c, Locus plot 

of 17q21.31 locus (chr17:43M-46M (hg19)). Genes bodies are shown at the top track, SVs 
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with MAF ≥ 1% identified in ROS/MAP are shown at the second track (colors represent SV 

class), and effect sizes for H1-H2 inversion haplotypes (using the top PSP associated SVs - 

DEL_11943 - as a proxy) are shown in the remaining tracks. Effect sizes are shown only for 

significant associations (FDR < 0.05). Positive effect sizes indicate increased levels of each 

phenotype in individuals with H2 (inverted) haplotype.
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