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ABSTRACT
Doxorubicin is a prototypical inducer of immunogenic cell death (ICD) that sensitizes to subse
quent immunotherapy by PD-1 blockade. However, this systemic drug combination fails against 
glioblastoma, hidden behind the blood–brain barrier (BBB). A recent work delineates a biophysical 
method for BBB permeabilization that yields effective preclinical effects of chemoimmunotherapy.
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Immunotherapy has achieved remarkable success across multi
ple cancers.1 However, resistance remains frequent. 
Combining immunotherapy with agents that promote antitu
mor immune cell infiltration is a strategy to overcome resis
tance. Chemotherapeutic drugs inducing immunogenic cell 
death (ICD), notably anthracyclines like doxorubicin (DOX), 
are among these agents.2 In preclinical studies, ICD-inducing 
interventions enhanced sensitivity to immune checkpoint inhi
bitors (ICIs), such as programmed cell death 1 (PDCD1, best 
known as PD-1)-blocking antibodies (αPD1).3

Glioblastoma (GBM) is the most aggressive brain cancer. 
Immunotherapy for GBM is challenging due to the blood– 
brain barrier (BBB) and the immune-privileged status of the 
brain.4,5 These factors hinder drug delivery and immune cell 
trafficking, reducing treatment efficacy. Previous attempts to 
treat GBM with αPD1, either alone or with standard che
motherapy, or with liposome-embedded DOX plus an anti- 
angiogenic drug, failed in clinical trials.6–8

A recent study by Arrieta et al. published in Nature 
Communications, exploited a novel strategy to transiently 
open the BBB utilizing low-intensity pulsed ultrasound 
(LIPU) combined with intravenously-administered microbub
bles (MB). This technique aimed to enhance the delivery of 
therapeutic agents, specifically liposomal DOX, and αPD1, into 
the brain (Figure 1).9

Four GBM patients received DOX/αPD1 treatment before 
surgery. DOX concentrations appeared twice higher in soni
cated regions of resected tissues than non-sonicated areas. 
Consistently, a 4-fold increase in DOX concentrations was 
detected in brain tissues of naïve mice following LIPU/MB 

compared to controls. This demonstrated LIPU/MB’s ability 
to enhance drug penetration into the brain.9

In clinical samples, enhanced DOX delivery led to higher 
expression of class-I and II antigen-presenting major histo
compatibility complex (MHC) molecules in tumor cells. In 
contrast, temozolomide, a standard GBM treatment, did not 
stimulate MHC expression. The DOX treatment also facilitated 
recognition of murine glioma cells by CD8+ T cells, stimulating 
their activation and expansion, indicating the immunogenicity 
of DOX-accumulated GBM tissues.9

In an intracranial murine GBM model, microglia and mono
cyte-derived macrophages produced more interferon-gamma 
(IFNG) following high-dose DOX treatment. This immunomo
dulatory effect included upregulation of surface MHC-I and 
CD274 (best known as programmed cell death 1 ligand 1, PD- 
L1), both IFNG-inducible genes. In GBM patients, microglial 
cells positive for IFNG and MHC-I were more abundant in post- 
treatment samples compared to pre-treatment tissues. Thus, 
LIPU/MB-mediated DOX delivery modulated the phenotype 
of myeloid cells constitutive of GBM microenvironment.9

While LIPU/MB facilitated αPD1 brain penetration in mice, 
it was ineffective alone to treat GBM. In patient tissues, αPD1 
was more concentrated in sonicated peritumoral areas. In the 
CT2A mouse model of intracranial GBM, combining αPD1 
with liposomal DOX was more effective than either therapy 
alone, achieving 40% long-term survival. LIPU/MB further 
improved survival, reaching an 80% cure rate.9

Mice cured of GBM were protected against tumor rechal
lenge, indicating immune memory establishment. Depleting 
microglia and bone marrow-derived macrophages impeded 
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the antitumor activity of LIPU/MB-delivered liposomal DOX 
plus αPD1 and abrogated protection against tumor recurrence, 
supporting previously reported memory by cerebral myeloid 
cells.9,10

Liposomal DOX promoted accumulation of T cells co- 
producing IFNG and tumor-necrosis factor-alpha (TNF) in 
the brain of mice surviving orthotopic GBM. Sonication 
expanded polyfunctional CD4+ T cells without affecting 
CD8+ subsets. Depleting CD8+ T cells abrogated the therapeu
tic effect, highlighting their critical contribution to antitumor 
immunity induced by LIPU/MB-mediated liposomal DOX/ 
αPD1 delivery. Correspondingly, GBM patients treated with 
this strategy exhibited higher IFNG production by tumor- 
infiltrating T lymphocytes than subjects without neoadjuvant 
treatment.

These findings by Arrieta and colleagues suggest that LIPU/ 
MB-mediated drug delivery systems could significantly 
improve GBM treatment outcomes and potentially extend to 
other intracranial cancers limited by the BBB and local immu
nosuppression. Continued research and clinical trials will be 
essential to optimize this procedure for becoming the stan
dard-of-care in managing GBM and other challenging cancers.
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Figure 1. Ultrasounds combined with administration of microbubbles facilitate the delivery of doxorubicin/anti-PD-1 to glioblastoma and improve therapeutic efficacy. 
LIPU/MB transiently opens the blood-brain barrier, facilitating the access of liposomal doxorubicin and anti-PD-1 to glioblastoma. Locally, concentration of the dual 
therapeutic agents stimulates IFNG production by cerebral myeloid cells and upregulation of MHC molecules by surrounding cells like malignant cells. This pro- 
inflammatory environment enhances the recognition of cancer cells by T lymphocytes. These latter show polyfunctionality, secreting both IFNG and TNF, improved 
antitumor activity, and persist in treated mice surviving the disease. IFNG, interferon-gamma; LIPU, low-intensity pulsed ultrasound; MB, microbubble; MHC, major 
histocompatibility complex; PD-1, programmed cell death 1; TNF, tumor-necrosis factor-alpha.
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