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Abstract

Partamona seridoensis is an endemic stingless bee from the Caatinga, a Neotropical dry for-

est in northeastern Brazil. Like other stingless bees, this species plays an important ecological

role as a pollinator. The aim of the present study was to investigate the genetic structure and

evolutionary history of P. seridoensis across its current geographic range. Workers from 84

nests from 17 localities were analyzed for COI and Cytb genic regions. The population struc-

ture tests (Bayesian phylogenetic inference, AMOVA and haplotype network) consistently

characterized two haplogroups (northwestern and eastern), with little gene flow between

them, generating a high differentiation between them as well as among the populations within

each haplogroup. The Mantel test revealed no isolation by distance. No evidence of a poten-

tial geographic barrier in the present that could explain the diversification between the P. seri-

doensis haplogroups was found. However, Pleistocene climatic changes may explain this

differentiation, since the initial time for the P. seridoensis lineages diversification took place

during the mid-Pleistocene, specifically the interglacial period, when the biota is presumed to

have been more associated with dry conditions and had more restricted, fragmented geo-

graphical distribution. This event may have driven diversification by isolating the two hap-

logroups. Otherwise, the climatic changes in the late Pleistocene must not have drastically

affected the population dynamics of P. seridoensis, since the Bayesian Skyline Plot did not

reveal any substantial fluctuation in effective population size in either haplogroup. Considering

its importance and the fact that it is an endemic bee from a very threatened Neotropical dry

forest, the results herein could be useful to the development of conservation strategies for

P. seridoensis.

PLOS ONE | https://doi.org/10.1371/journal.pone.0175725 April 14, 2017 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Miranda EA, Ferreira KM, Carvalho AT,

Martins CF, Fernandes CR, Del Lama MA (2017)

Pleistocene climate changes shaped the population

structure of Partamona seridoensis (Apidae,

Meliponini), an endemic stingless bee from the

Neotropical dry forest. PLoS ONE 12(4): e0175725.

https://doi.org/10.1371/journal.pone.0175725

Editor: Tzen-Yuh Chiang, National Cheng Kung

University, TAIWAN

Received: October 25, 2016

Accepted: March 30, 2017

Published: April 14, 2017

Copyright: © 2017 Miranda et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was supported by Fundação de

Amparo à Pesquisa do Estado de São Paulo -

FAPESP (Project Number: 2012/23342-1), and

Fundação de Amparo à Pesquisa do Estado de São
Paulo - FAPESP (Project Number: 2011/21501-2)

Conselho Nacional de Desenvolvimento Cientı́fico e

Tecnológico (CNPq, processes 475642/2007-4).

https://doi.org/10.1371/journal.pone.0175725
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175725&domain=pdf&date_stamp=2017-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175725&domain=pdf&date_stamp=2017-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175725&domain=pdf&date_stamp=2017-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175725&domain=pdf&date_stamp=2017-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175725&domain=pdf&date_stamp=2017-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175725&domain=pdf&date_stamp=2017-04-14
https://doi.org/10.1371/journal.pone.0175725
http://creativecommons.org/licenses/by/4.0/


Introduction

Social bees from the tribe Meliponini, known as stingless bees, are distributed in tropical and

southern subtropical areas throughout the world, with greater diversity in Neotropical and

Indo-Malayan regions [1,2]. So far, a total of 641 names for stingless bees are listed for the

Neotropical region, 417 of which are considered valid [2]. Recent data indicate 244 valid spe-

cies and another 89 undescribed forms [3] occurring in Brazil alone. Stingless bees play an

important ecological role as pollinators of many wild plant species and are considered key ele-

ments for the maintenance and conservation of natural ecosystems as well as economically

important agricultural systems [4]. However, recent studies have shown the decline of these

pollinators and the consequent loss of pollination services in many areas of the world due

mainly to human activities [5,6,7,8]. Despite the diversity, importance and threats, little is

known regarding the population genetics and phylogeography of these bees.

The stingless bee Partamona seridoensis [9] occupies xeric regions, such as the Caatinga
(phytogeographic domain), a Neotropical dry forest in the northeastern region of Brazil. This

species nests only in active arboreal termite nests, mainly those of Constrictotermes cypherga-
ster. (Termitidae, Nasutitermitinae) and Microcerotermes spp [9,10,11]. Partamona seridoensis
has been poorly studied and only one report is found in the literature on its population genet-

ics, in which two populations were analyzed using allozymic and microsatellite markers [12].

There have been no studies on its conservation status, although this bee occupies the Caatinga,

which is a threatened region. A recent study involving Partamona rustica has suggested the

importance of concentrating efforts on the conservation of endemic stingless bees from Brazil-

ian dry forests, due to bee hunters and deforestation, which have threatened these populations

[13].

The Caatinga covers nearly 85,000 Km2 and is a highly heterogeneous phytogeographical

domain, being the second largest center of endemism of xeric environments in South America

[14,15]. Studies on animals and plants of the Caatinga have shown that this environment harbors

high levels of species richness and specific interactions between insects and plants [13,14,16,17].

However, the Caatinga is one of the least protected areas by conservation policies in Brazil, with

only 5.9% of its area included within conservation units [18], and one of the least studied areas

of the Neotropical dry forest diagonal, constituted by the Chaco, Cerrado and Caatinga phyto-

geographic domains [14]. Moreover, deforestation combined with the semi-arid climate of the

Caatinga has led to a process of desertification in many areas, making this phytogeographical

domain severely threatened by climate changes [19].

Many studies have shown the effects of Pleistocene climatic events on the population struc-

ture and demography of bees around the world [20,21,22]. However, these studies are scarce

for endemic bees in xeric habitats, such as the Neotropical dry forest diagonal [23], especially

with regard to stingless bee populations of the Caatinga. A recent study analyzed the genetic

structure and evolutionary processes involved in the current genetic variation of Melipona sub-
nitida, an endemic species in northeastern Brazil, and suggested that the paleoclimatic changes

of the Pleistocene could have played an important role in the diversification of this species

[24]. Another recent study reconstructed the evolutionary history of Partamona rustica, an

endemic stingless bee from the Neotropical dry forest in Brazil, and identified two groups of

populations with no evidence of substantial changes in effective population size during the late

Pleistocene [23].

Understanding the evolutionary history of a species and its genetic structure is essential to

the development of effective conservation strategies [23,24], especially for species of the threat-

ened Caatinga. Given the potentially serious consequences of inbreeding in stingless bees due

the complementary sex determination mechanism [25,26], it is essential to understand the
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genetic population structure of these organisms to enable the implementation of management

strategies and conservation policies. Thus, the aim of the present study was to investigate the

genetic structure and evolutionary history of P. seridoensis across its current geographic range.

Materials and methods

Sampling

Adult workers were collected from P. seridoensis nests from March 2008 to August 2014.

Through active searches, 84 nests were sampled from 17 localities in the northeastern region

of Brazil, with an average of five nests per locality (Table 1 and Fig 1A). The sampled localities

were chosen through prior knowledge of occurrence records available on online database and

others studies as well as through our active searches. In each locality where nests of P. seridoen-
sis were sampled, we look for nests distant from each other at least 300 meters to avoid high

kinship between them. All specimens were preserved in ethanol prior to the molecular analyses

and vouchers were deposited in the Camargo Entomological Collection at the Universidade de

São Paulo (FFCLRP—USP) and in the Laboratório de Genética Evolutiva de Himenópteros at

the Universidade Federal de São Carlos (LGEH–UFSCar). All necessary research permits for

fieldwork and collection of samples were issued by the Brazilian Institute for Biodiversity Con-

servation (Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio) recorded by

SISBio (permit number 31750). Field studies did not involve endangered or protected species.

Amplification and sequencing

Total DNA was extracted from one worker per colony using a phenol-chloroform protocol

[27]. Fragments of the mitochondrial genes cytochrome c oxidase I (COI) [28] and cyto-

chrome b (Cytb) [29], commonly used for this type of study, were amplified. All polymerase

chain reactions (PCR) contained template DNA (50 ng), 1X of Taq buffer (Invitrogen, USA),

250 μM of each dNTP, l.0 μM of each primer, 2.5 mM of MgCl2 and 1 U of Platinum Taq

Table 1. Geographical origin (with coordinates) of the P. seridoensis nests. N = number of colonies; H = haplotypes found in each locality.

Localities Code Latitude Longitude N H

1 Almas-PB ALM -7.4730 -36.904 10 H1

2 Moreiras-PB MOR -7.3933 -36.414 10 H1

3 Jardim do Seridó-RN JSE -6.5976 -36.81 1 H7

4 Jandaı́ra-RN JAN -5.3508 -36.487 10 H1

5 Matureia-PB MAT -7.2623 -37.351 5 H1

6 Serra Branca-PB SBR -7.4808 -36.666 3 H1

7 Nova Olinda-PB NOL -7.4645 -38.017 1 H1

8 São Domingos do Cariri-PB SDC -7.5824 -36.391 1 H11

9 São José do Sabugi-PB SJS -6.776 -36.799 2 H12

10 Taperoá-PB TAP -7.2216 -36.846 2 H13

11 Santa Luzia-PB SLU -6.8718 -36.921 6 H14

12 Baturité-CE BAT -4.3292 -38.881 6 H2

13 Chorozinho-CE CHO -4.2891 -38.499 8 H3, H4, H5

14 Guaramiranga-CE GUA -4.23 -38.948 10 H6

15 Alcântaras-CE ALC -3.5588 -40.5210 1 H8

16 Martins-RN MAR -6.0635 -37.937 1 H9

17 Mossoró-RN MOS -5.1870 -37.624 7 H10

Total 84 -

https://doi.org/10.1371/journal.pone.0175725.t001
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DNA polymerase (Invitrogen, USA) in a final volume of 25 μL. The PCR conditions for all

gene regions were as follows: initial denaturation at 94˚C for 5 minutes, followed by 40 cycles

of denaturation at 94˚C for 30 s, annealing at 50˚C and extension at 72˚C for 1 min, and com-

pleted with an additional extension step at 72˚C for 10 min. The PCR products were electro-

phoresed in agarose gel stained with GelRedTM. The PCR product was purified using the

Illustra ExoProStar 1-Step Kit (GE Healthcare, Buckinghamshire, UK). The mitochondrial

genes were sequenced in both directions with the same amplification primers using the BigDye

v 3.0 Dye Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Carlsbad, CA, USA) in

an automated sequencer ABI 3730 XL (Applied Biosystems).

Genetic diversity

The electropherograms were edited using the Codon Code v3.7.1 program (CodonCode, Ded-

ham, Massachusetts, USA). Sequences were aligned using the Clustal W algorithm with the

aid of the BioEdit 7.0.9.0 program [30]. All alignments were visually inspected and corrected.

All haplotype sequences were deposited in the GenBank (accession numbers KX839192-

KX839206). The number of variable sites (S), number of haplotypes (h), haplotype diversity

(Hd) and nucleotide diversity (π) considering the concatenated gene regions were estimated

using the DnaSP v5.10.01 program [31].

Phylogeographic structure tests

Bayesian inference was used to estimate the phylogeny of P. seridoensis lineages based on the

concatenated mitochondrial haplotypes. The model with the best fit was selected with the aid

of the MrModeltest v2.2 program [32] based on the Akaike information criterion (AIC) for

Fig 1. Geographical distribution of P. seridoensis populations (A). Samples are indicated by circle and number and listed according to Table 1.

Bayesian inference using concatenated COI and Cytb mitochondrial gene regions in P. seridoensis and outgroups (B). Median-joining haplotype

network in P. seridoensis (C). Caatinga area is represented by downward diagonal lines and the dotted line represents the geographical distribution of P.

seridoensis [9] in A. Bayesian implementations of the Generalized Mixed Yule Coalescent model (bGMYC) for P. seridoensis, shown in B. Two lines represent

two mutation steps between haplotypes and no line between haplotypes represents one mutation step in C. Gray color represents northwestern haplogroup

and black color represents eastern haplogroup (in all figures).

https://doi.org/10.1371/journal.pone.0175725.g001
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two partitions (COI and Cytb). Two independent Bayesian runs of 20 million generations

were performed, each with four Markov Chain Monte Carlo (MCMC) simulations. The first

two thousand generations were discarded as burn-in, after which trees were sampled every

1000 generations. This analysis was performed using the MrBayes 3.1.2 program [33]. Chain

convergence was checked using likelihood plots for each run with the aid of the Tracer 1.5 soft-

ware [34] and results with ESS values> 200 were accepted. The consensus species tree for

each inference was visualized and edited using the FigTree 1.4 software (tree.bio.ed.ac.uk/

software/figtree/). For this analysis, Partamona cupira and Partamona ailyae were used as the

outgroup, since these species are part of the same group as P. seridoensis.
To check if the haplogroups observed are not cryptic species and assess uncertainty in phylo-

genetic tree estimation and model parameters, a Bayesian implementation of the generalized

mixed Yule coalescent model (bGMYC) was used, which integrates over these potential sources

of error via MCMC simulation [35]. The R package ‘bGMYC’ was used to calculate marginal

posterior probabilities of species limits from the posterior distribution of ultrametric trees recon-

structed by BEAST 1.8.0. A post-burn-in sample of 100 trees resampled from that posterior was

used to calculate the posterior distribution of the bGMYC model. The bGMYC analysis was run

for 100,000 generations, with a burn-in of 90,000 generations and a thinning interval of 100

samples.

Haplotype networks were constructed employing a median-joining network [36] in the NET-

WORK program (www.fluxus-engineering.com/sharenet.htm). Analysis of molecular variance

(AMOVA) was performed to estimate the degree of population genetic differentiation among

populations using three hierarchical levels. The FST and FCT indexes were also estimated. These

analyses were implemented using the ARLEQUIN 3.11 program [37] and significance was deter-

mined with 1000 permutations. A Mantel test was carried out using the program IBDWS v.3.23

[38] to test the hypothesis of isolation by distance, considering each haplogroup separately and

all populations together. Significance of this analysis was determined with 1000 permutations.

All these analyses were implemented using the concatenated gene regions.

Population divergence time

A Bayesian approach implemented in BEAST 1.8.0 program [39] was used to estimate the time

since the most recent common ancestor (TMRCA) of all samples and for each recovered line-

age, based on the concatenated regions. Two independent runs were implemented for each

estimate with the following parameters: coalescent constant size as a tree prior, UPGMA as an

initial tree, a strict clock, 100 million generations, parameter sampling every 5000 generations

and 10% of the MCMC simulations as burn-in. As there is currently no measure of mitochon-

drial mutation rate for corbiculate bees, to obtain the absolute times, a COI substitution rate

of 1.9% per lineage per million years per generation (one year) (under a normal distributed

prior) calibrated for other hymenopterans [40] was adopted. The substitution models for the

northwestern and eastern haplogroups (see Results) were TrN and HKI+I, respectively, which

were selected using the jModeltest v.2.1.5 program [41] and based on the AIC. Convergence

between runs and analysis performance were checked using Tracer 1.5. Results with ESS

values> 200 were accepted. Independent runs of each TMRCA estimate were combined in

LogCombiner [39].

Demographic inference

A Bayesian Skyline Plot (BSP) reconstruction was implemented for possible groups identified

in the phylogenetic reconstruction to evaluate population size dynamics over time using the

BEAST 1.8.0 program [39]. All the concatenated sequences for each group were used. As no
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selection was observed for each gene, as well as for their respective codon positions (data not

shown), we used all codon positions for each gene on this analysis. The evolutionary model,

clock and genes regions were the same as those used in TMRCA inference. The following

parameters were employed: 20 million generations for each haplogroup, parameter sampling

every 1000 generations of the MCMC analysis and a 10% burn-in period. Convergence

between runs and the performance of the analysis were checked using Tracer 1.5 and the plots

were constructed with the aid of the same program [34].

Gene flow and migration

We evaluated the gene flow between haplogroups by the structure tests using Migrate-n v3.6 [42].

The migration parameters were estimated using concatenated gene regions. Migrate-n v3.6 esti-

mates migration rate divided by the mutation rate M (m/μ). Four migration models were tested

and compared by the bayes factor: (1) a full model with two population sizes and two migration

rates; (2) a model with two population sizes and one migration rate (gene flow into the north-

western population); (3) a model with two population sizes and one migration rate (gene flow

into the eastern population); (4) a model considering eastern and northwestern as a panmictic

population. We used a Bayesian approach and thermodynamic integration of four chains with a

static heating swap scheme (temperatures: 1.0, 1.5, 3.0, 106), with two independent runs, sampling

at every 600th step for a total of 600,000 of recorded steps and a burn-in of 150,000 steps.

Results

Genetic diversity

A fragment of 1,015 base pairs (Cytb– 433 bp; COI– 582 bp) was obtained for the concatenated

genes of P. seridoensis and no indels occurred in these amplicons. We have no ambiguous

bases or missing data in our dataset. Sixteen variable sites and 14 haplotypes were identified.

The species exhibited low nucleotide diversity (π = 0.00266 ± 0.00019) and high haplotype

diversity (Hd = 0.756 ± 0.044) (Table 2).

Phylogeographic structure

Based on the AIC, the evolutionary model selected for the Bayesian Inference, including the

outgroup, was GTR + I. Fig 1B shows the topology based on this inference. Two haplogroups

with a high value of branching support were identified. The first, eastern haplogroup, com-

prised samples from 11 locations (1 to 11 in Table 1), in which six haplotypes were identified.

In this haplogroup, haplotype H1 was shared among six populations and all the other haplo-

types were privative of the localities (black haplotypes in Fig 1C). The second, northwestern

haplogroup, comprised samples from six locations (12 to 17 in Table 1), which exhibited eight

haplotypes that were privative of the locations (grey haplotypes in Fig 1C). The bGMYC shows

both haplogroups as a single evolutionary entity, with poor posterior probability values (PP<

0.9). AMOVA indicated high differentiation between haplogroups and among populations

(FCT = 0.740, p< 0.0001; FST = 0.984; p< 0.0001, respectively).

Table 2. Genetic diversity of P. seridoensis. Number of samples (N), number of haplotypes (h), variables sites (S), nucleotide diversity (π) and haplotype

diversity (Hd) for concatenated mitochondrial genes COI and Cytb in each haplogroup and all populations.

Haplogroups N h S π Hd

Eastern 51 6 7 0.00059 (±0.00017) 0.405 (±0.082)

Northwestern 33 8 7 0.00159 (±0.00015) 0.826 (±0.034)

All populations 84 14 16 0.00266 (±0.00019) 0.756(±0.044)

https://doi.org/10.1371/journal.pone.0175725.t002
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The Mantel test demonstrated no correlation between genetic and geographic distances

considering all populations (r = 0.171; p = 0.097) and populations in each haplogroup sepa-

rately (reastern = -0.222, p = 0.812; rnortheastern = 0.245, p = 0.2468), indicating no isolation by

distance among populations.

Divergence time and demographic inferences

The coalescent-based analysis considering all P. seridoensis populations indicated a TMRCA of

163 kya (highest posterior density [HPD 95%:]: 87.8–257.6 kya), suggesting that this could be

the initial diversification time for the two P. seridoensis lineages analyzed herein. The TMRCA

for each group indicated a recent age for these two lineages, with coalescence of northwestern

and eastern groups respectively occurring 84.5 kya (HPD 95%: 35.7–149.6 kya) and 106.9 kya

(HPD 95%: 49.3–180.5 kya). The BSP did not reveal any substantial fluctuations in the effective

population size (Ne) in either haplogroup (Fig 2).

Migration rates

We detected little gene flow between the eastern and northwestern populations in all models.

Migration from the eastern to the northwestern populations was the most probable model

(0.72) of gene flow (Table 3), with the number of migrants per generation (Nemeastern) of 0.63

(95% credibility interval: 0–2.87 migrants). All these parameters showed posterior probability

curves with unique peaks and effective sample sizes (ESS) higher than 1,000, indicating con-

vergence in the run.

Discussion

The population structure tests (phylogenetic inference, AMOVA and haplotype network) con-

sistently characterized two haplogroups (northwestern and eastern). The results revealed a

high number of privative haplotypes and a high level of differentiation between haplogroups as

well as among all populations, with little gene flow mainly from the eastern to the northwest-

ern haplogroup when the population genetic structure is assessed by mitochondrial genes.

Moreover, the bGMYC analysis recovered a single evolutionary entity, suggesting that these

haplogroups are not different species or even cryptic species. Previous study involving allozy-

mic and microsatellite loci found a low population differentiation between two geographically

close P. seridoensis populations in the state of Paraı́ba (Brazil) [12], suggesting restrictions to

gene flow between the populations as the present study. Some biological traits of stingless bees

limit dispersal. New queens of species of Partamona are philopatric, remaining in the place of

origin and not flying more than 300 meters from the maternal nest during the swarming pro-

cess [43,44,45]. Moreover, P. seridoensis builds its nests on specific substrates, nesting in

Fig 2. Coalescent Bayesian Skyline Plot (BSP) used to infer demographic history of P. seridoensis

population groups. Black horizontal line shows median BSP estimate and blue area shows upper and lower

95% highest posterior density limits.

https://doi.org/10.1371/journal.pone.0175725.g002
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arboreal termite nests [9,10,11]. Since stingless bees exhibit limited dispersal capacity, rela-

tively weak geographical barriers may effectively restrict gene flow [46].

There is no evidence of potential geographic barriers (such as mountains, large rivers or val-

leys) in the present that could explain the diversification found between the two haplogroups of

P. seridoensis. Moreover, no correlation was found between genetic and geographical distances,

suggesting no isolation by distance among the populations analyzed. However, the differentia-

tion that resulted in the two haplogroups may be explained by climatic changes in the mid-Pleis-

tocene, since the initial diversification time for these lineages was estimated at approximately 163

kya, specifically in the interglacial period [47], a time when the biota is presumed to have been

more associated with dry conditions and had more restricted and fragmented geographical dis-

tribution [24]. This event may have driven the diversification process, isolating northwestern

and eastern haplogroups. Furthermore, like other stingless bees, P. seridoensis depends on plant

resources, such as pollen, nectar and resins, as well the existence of suitable sites for nesting, such

as termite nests. Such resources may also have had restricted geographical distribution due to cli-

matic changes. These aspects and the presumed limited dispersal capacity of this stingless bee

lend support to the hypothesis that mid-Pleistocene climatic changes may have driven the diver-

sification of P. seridoensis into at least two haplogroups.

Similar results were observed to populations of Melipona subnitida, a stingless bee with a

similar distribution area in the Caatinga [24]. The authors characterized two evolutionary line-

ages of the species, which also diverged in the mid-Pleistocene, and suggest that paleoclimatic

changes in this period could have played an important role in this diversification. Other phylo-

geographic studies involving species associated with xeric vegetation in interglacial periods

report data that are in agreement with the present findings [23,48,49,50]. Some researchers

have also shown that climate oscillations in the Pleistocene may have promoted changes in the

range of Neotropical forests in response to more warm and humid (interglacial periods) or

more cold and dry (glacial periods) climatic conditions [51,52,53]. Moreover, climatic changes

may have also influenced biogeographic patterns, genetic diversity, historical demography and

species richness in the Neotropical biota [54,55] as well as the biota of other regions around

the world [20,21,56].

Studies have suggested that forests expanded into the Caatinga, at least locally, during the

wettest periods [57,58]. Population expansion for two evolutionary lineages of M. subnitida in

the Caatinga during the Pleistocene period was reported [24]. However, the late Pleistocene

climatic changes do not seem to have had a substantial influence on the demographic patterns

of the P. seridoensis groups, since the BSP did not reveal any substantial fluctuations in the

effective size of the populations in either haplogroup analyzed herein (Fig 2). As the two P. seri-
doensis haplogroups have a very recent origin, diverging after the Last Interglacial Maximum

(approximately 120 kya), oscillations occurred in the late Pleistocene must not have drastically

affected the population dynamics. A putative refuge area for Seasonally Dry Tropical Forests

in the Caatinga between the Last Glacial Maximum and the present, which covers most of the

current distribution area [59] was recently proposed. Such an area may have served as refuge

Table 3. Bayes factors and log marginal likelihoods of the four evaluated migration models between northwestern and eastern haplogroups of P.

seridoensis.

Bezier lmL LBF(Bezier) Choice(Bezier) Model probability

Meastern>northwestern -1446.0564 0.0000 1 0.72582

Mnorthwestern>eastern -1447.0697 -2.0266 2 0.2634

Full -1450.2751 -8.4374 3 0.0106

Panmictic -1458.5843 -25.0558 4 2.63042E-06

https://doi.org/10.1371/journal.pone.0175725.t003
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for the species during this period, which allowed the demographic stability of the two lineages.

This finding is in agreement with another study, which also found that climatic changes of the

late Pleistocene did not seem to have a remarkable influence on the demographic patterns of

P. rustica populations in Brazilian dry forests [23].

Unfortunately, there are no substitution rates yet available for the mtDNA (such as COI or

Cytb genes) of bees. Therefore, recent studies involving bees [22,23,24] published in important

journals have also used calibration described for other insects to estimate divergence time as

well as historical demography. Studies have shown that the use of a “universal” mutation rate

may overestimate the timing of population-level events [60,61,62]. It should be noted that the

rate used in the present study agrees with others calibration rates estimated for the COI of

other insects, such as 1.28 for beetles [63], 1.45 for ants [64] and 2.0 for Drosophila [65], as well

as the COI and Cytb concatenated regions, such as 1.5–2.0 for Orthoptera [66] 0.8–1.3 for Dip-

tera [67] and 2.1 for Coleoptera [68]. Therefore, the rate used in the present study does not dif-

fer much from those estimated for others insects and should not markedly compromise the

results obtained herein.

The population differentiation of P. seridoensis found with mitochondrial genes is expected

to be lower when assessed using nuclear genes, as observed in a previous study involving the

population genetics of P. seridoensis using nuclear markers [12]. Like most Hymenopterans,

stingless bees have a single multiallele locus that controls sex determination [26,69,70], in

which hemizygous individuals are males, whereas diploid individuals that are heterozygous

will develop into females and those homozygous at this sex locus will be diploid males [71].

Thus, this model predicts that inbreeding should produce diploids males that are highly harm-

ful to colonies and populations. Due to the philopatric behavior of females, gene flow among

populations must be accomplished by males, leading to asymmetrical sex dispersal, as also

observed in other stingless bees [12,23,72,] and even bees from the tribe Euglossini in Neotrop-

ical regions [22,73,74,]. Hence, one would expect lower differentiation among populations

based on nuclear genes due to the dispersal performed by males in these bee populations

[23,72].

Recent study stressed the need for further, more detailed investigations of dry environ-

ments of the Neotropical region, since few phylogeographical studies have considered the

biota of this area [23]. The present results contribute to a better understanding of evolutionary

processes occurring in the Caatinga during the Pleistocene, as we have shown that the lineages

of P. seridoensis diversified during the mid-Pleistocene likely due to climatic changes, resulting

in two haplogroups. The conservation of different evolutionary lineages is important to pre-

serving better adapted genotypes for greater survival during drought periods in the Caatinga
[24]. Moreover, for species with low population gene flow and, consequently, high differentia-

tion, as observed in the present study, it is important to preserve local populations in order to

maintain the species throughout its range, which is an important source of information for

planning conservation strategies [75,76]. Recent studies have shown that bee hunters, intense

deforestation in Caatinga areas and livestock farming represent serious threat to stingless bees

[13,23,77]. Studies involving organisms from dry forests as Caatinga are important since it has

been excluded from discussions on conservation [78]. Given its importance as a pollinator and

the fact that it is an endemic bee from a threatened dry forest, the present findings can be use-

ful to the development of conservation strategies aimed at P. seridoensis populations, especially

its two evolutionary lineages. Conservation policies directed at preserving pollinating species

may be an effective mechanism for preserving the biodiversity of Neotropical biomes, which is

an urgent task that must be pursued.
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