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Abstract
Background  Increasing evidence has elucidated the 
clinical significance of tumor infiltrating immune cells in 
predicting outcomes and therapeutic efficacy. In this study, 
we comprehensively analyze the tumor microenvironment 
(TME) immune cell infiltrations in clear cell renal cell 
carcinoma (ccRCC) and correlated the infiltration patterns 
with anti-tumor immunity and clinical outcomes.
Methods  We analyzed immune cell infiltrations in four 
independent cohorts, including the KIRC cohort of 533 
patients, the Zhongshan ccRCC cohorts of 259 patients, 
the Zhongshan fresh tumor sample cohorts of 20 patients 
and the Zhongshan metastatic ccRCC cohorts of 87 
patients. Intrinsic patterns of immune cell infiltrations 
were evaluated for associations with clinicopathological 
characteristics, underlying biological pathways, genetic 
changes, oncological outcomes and treatment responses.
Results  Unsupervised clustering of tumor infiltrating 
immune cells identified two microenvironment subtypes, 
TMEcluster-A and TMEcluster-B. Gene markers and 
biological pathways referring to immune evasion were 
upregulated in TMEcluster-B. TMEcluster-B associated with 
poor overall survival (p<0.001; HR 2.629) and recurrence 
free survival (p=0.012; HR 1.870) in ccRCC validation 
cohort. TMEcluster-B cases had worse treatment response 
(p=0.009), overall survival (p<0.001; HR 2.223) and 
progression free survival (p=0.015; HR 2.7762) in metastatic 
ccRCC cohort. The predictive accuracy of International 
Metastatic Database Consortium risk score was improved 
after incorporation of TME clusters.
Conclusions  TMEcluster-A featured increased mast 
cells infiltration, prolonged survival and better treatment 
response. TMEcluster-B was a heavily infiltrated but 
immunosuppressed phenotype enriched for macrophages, 
CD4+ T cells, Tregs, CD8+ T cells and B cells. TMEcluster-B 
predicted dismal survival and worse treatment response in 
clear cell renal cell carcinoma patients.

Introduction
Renal cell carcinoma (RCC) afflicts around 
300,000 individuals worldwide and leads to 
over 100,000 deaths annually.1 Clear cell renal 

cell carcinoma (ccRCC) is the most common 
and lethal histological subtype.2 It features 
an increased immune signature and high 
immune infiltration.3 Interactions between 
tumor infiltrating immune cells and cancer 
cells in tumor microenvironment (TME) 
are critical to cancer progression.4 Tumor 
infiltrating cells can demonstrate pro-tumor 
or anti-tumor effects depending on cancer 
types. In ccRCC, CD8+ T cells,5 Tregs,5 macro-
phages5 and neutrophils6 are associated with 
dismal prognosis while mast cells7 are associ-
ated with prolonged survival.

Up to 25% localized RCC patients would 
develop metastasis with dismal outcomes after 
curative nephrectomy.8 The advent of targeted 
therapies especially tyrosine kinase inhibi-
tors (TKIs) has been a major breakthrough 
in metastatic RCC, which exerted thera-
peutic effect on metastatic renal cell carci-
noma (mRCC) by antagonizing the vascular 
endothelial growth factor (VEGF) receptor.9 
Unfortunately, many patients display intrinsic 
resistance or develop resistance sometime 
after treatment.10 Several molecular mecha-
nisms for resistance are proposed including 
immune escape.9 Recently, researchers iden-
tified increased macrophage infiltration and 
a more immunosuppressed TME in molec-
ular subgroups resistant to TKIs treatment, 
which further confirmed the impact of tumor 
infiltrating immune cells on TKI resistance.11

Therefore, there is great interest in under-
standing the immune microenvironment 
of ccRCC. The comprehensive landscape 
of immune cells infiltrating TME and its 
impact on prognosis as well as TKI treatment 
response have not been elucidated. In this 
study, we demonstrated the intrinsic patterns 
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of TME infiltrations and systematically correlated TME 
clusters with underlying biological processes, genetic 
characteristics, prognosis and response to TKI treatments.

Materials and methods
Clinical cohorts
TCGA KIRC cohort. For TCGA KIRC cohort, data were 
abstracted from 533 patients with both RNA-seq data and 
clinical information in TCGA kidney clear cell renal cell 
carcinoma (KIRC) cohort. Clinical data were downloaded 
from cBioPortal12 and the TCGA Pan-cancer Clinical Data 
Resource, a database that provides processed high-quality 
clinical data.13 RNA-seq data were downloaded from the 
UCSC Xena. Mutational and arm somatic copy number 
alteration (SCNA) data were obtained from cBioPortal.

Zhongshan ccRCC cohort. The Zhongshan ccRCC cohort 
included patients with ccRCC who underwent nephrec-
tomy at Zhongshan Hospital between January 2005 to 
June 2007. Data were censored until June 2017. Inclusion 
criteria were patients with pathologically proven ccRCC 
treated with nephrectomy and with available Formalin 
Fixed Paraffin Embedded (FFPE) specimens. Exclusion 
criteria were neoadjuvant or adjuvant systemic therapy, 
synchronous or metachronous bilateral RCC or histories 
of other malignant tumors. A total of 249 patients were 
included for further analyses.

Zhongshan fresh tumor sample cohort. Fresh tumor samples 
in the Zhongshan fresh tumor sample cohort were 
collected from 20 ccRCC patients between October 2017 
and November 2018. The same inclusion and exclu-
sion criteria of Zhongshan ccRCC cohort were applied, 
except that fresh tumor sample cohort did not need FFPE 
specimen.

Zhongshan metastatic ccRCC cohort. We retrospectively 
enrolled a cohort of 87 pathologically proved meta-
static ccRCC patients treated with first-line sunitinib or 
sorafenib between March 2005 and June 2014 as the 
Zhongshan metastatic ccRCC cohort. The last follow-up 
time was January 2015. For inclusion criteria, patients 
had to have developed metastases, received sunitinib or 
sorafenib as first-line treatment in the metastatic setting, 
undergone their first CT scan assessment and processed 
available FFPE specimen. Exclusion criteria were the 
same as previously described. Response to treatment was 
assessed with RECIST 1.1.14

Computational analysis of immune cell infiltration, microarray 
and RNA-Seq data
Immune cell compositions and pathway analysis. We evaluated 
the absolute and relative cell fractions of major types of 
tumor infiltrating immune cells with CIBERORT, a compu-
tational approach for inferring leukocyte representation 
in bulk tumor transcriptomes.15 Single sample Gene Set 
Enrichment analysis (ssGSEA) was chosen for immune 
deconvolution analyses of Immune Score16 and immune 
suppression score.17 Comparison of gene expression 

profiles were carried out with Gene Ontology (GO) anal-
ysis and Gene Set Enrichment Analysis (GSEA).18

Clustering and classifier construction. Unsupervised hier-
archical clustering of normalized immune cell fractions 
with K-median identified the intrinsic pattern of immune 
cell infiltration, TMEcluster-A and TMEcluster-B. The 
optimal number of clusters was determined by Nbclust 
testing. To develop a robust immune cell composition 
classifier for assessing TME subtype, we applied predic-
tion analysis for microarray (PAM),19 a centroid-based 
classification algorithm. PAM was widely used because 
of its reproducibility in subtype classification compared 
with other centroid-based prediction method.20 For 
example, the establishment of the well-recognized simpli-
fied version of ccA/ccB gene signature, ClearCode 34, 
was based on PAM.21 The Zhongshan ccRCC cohort, 
fresh tumor sample cohort and metastatic ccRCC cohort 
were classified into TMEcluster-A and TMEcluster-B with 
normalized immune cell densities obtained from immu-
nohistochemistry using PAM model in this study.

Immunohistochemistry and flow-cytometry for clinical 
samples
Immunohistochemistry. We performed immunohistochem-
istry on Zhongshan ccRCC cohort, fresh tumor sample 
cohort and metastatic ccRCC cohort to evaluate infiltra-
tions of macrophages (CD68, clone KP1, Dako), CD4+ T 
cells (CD4, ab213215, Abcam), Tregs (FOXP3, ab22510, 
Abcam), CD8+ T cells (CD8, clone C8/144B, Dako), B 
cells (CD19, ab31947, Abcam) and mast cells (tryptase, 
ab134932, Abcam) for further subtype classification with 
PAM model. SETD2 was stained with primary anti-SETD2 
(HPA04245, Sigma-Aldrich Corp) antibody. The densities 
of each type of immune cells were evaluated in two repre-
sentative areas at ×200 magnification. The mean value was 
adopted, changed into density as cells/mm2 and normal-
ized. The PAM model was performed with normalized 
densities of each immune cell type in all three Zhongshan 
validation cohorts to assign the TME clusters. Two inde-
pendent shots of SETD2 expression with the strongest 
staining at ×200 magnification were recorded and eval-
uated via the semi-quantitative immunoreactivity score 
(IRS) algorithm.

Flow cytometry. Cell suspensions were stained with 
fluorochrome-labeled antibodies specific for human 
CD3 (344 818 Biolegend), CD8 (301 006 Biolegend), 
PD1 (560 795 BD), CTLA4 (369610, Biolegend), TIM3 
(345032, Biolegend) and TIGIT (372710, Biolegend). 
Cell suspensions were collected from tumors in Zhong-
shan fresh tumor sample cohort. We analyzed the stained 
cells on a flow cytometer using Flowjo software.22

Statistical analysis
Differences in continuous variables between two groups 
were analyzed by Student’s t-test or t’-test according 
to Levene’s test. Pearson’s χ2 test, Cochran-Mantel-
Haenszel χ2 test or Fisher’s exact test were used for cate-
gorical variables. Survival analyses were carried out with 
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Kaplan-Meier method and Cox proportional hazards 
regression model. All statistical tests were two-sided and 
statistical significance was set at p<0.05. For TCGA KIRC 
cohort and Zhongshan ccRCC cohort, overall survival 
(OS) was defined as the length of time from the data of 
diagnosis to date of death or last follow-up time. Recur-
rence free survival (RFS) was defined as time from surgery 
to loss of follow-up or deaths from other causes without 
recurrence. Disease specific survival (DSS) was censored 
at deaths from ccRCC. Metastatic ccRCC patients were 
excluded from RFS analysis in both KIRC and Zhong-
shan ccRCC cohort. Overall survival was calculated from 
the time of therapy initiation to the time of death or last 
follow-up. Progression free survival (PFS) was defined as 
the time from therapy initiation to the time of disease 
progression or the last follow-up time. Four patients were 
excluded from PFS analysis for lack of progression infor-
mation. Prognostic capabilities of different risk models 
were compared using time dependent receiver operating 
characteristic (ROC) analysis and Harrell’s concordance 
index (C-index).The R package ‘limma’ was used for 
analysis of differentially expressed genes. Statistical anal-
yses were carried out with SPSS Statistics 21.0 and R soft-
ware 3.51.

Results
Immune landscape in ccRCC and clinical characteristics of 
TME clusters
Analyses of major immune cell composition in KIRC 
cohort revealed that CD4+ T cells, CD8+ T cells, macro-
phages and Tregs increased while mast cells decreased 
with disease progression (Figure 1A, online supplemen-
tary figure 1A). The TME cell network demonstrated 
that macrophages, CD4+ T cells, CD8+ T cells, Tregs and 
B cells were positively correlated with each other. More-
over, macrophages, CD4+ T cells, CD8+ T cells, Tregs and 
neutrophils associated with shortened OS while mast 
cells associated with prolonged OS (Figure 1B, online 
supplementary table 1). Unsupervised hierarchical 
clustering of normalized immune cell fractions was 
performed and two major TME clusters with different 
clinical characteristics were identified (Figure  1C, 
online supplementary table 2). TMEcluster-A exhib-
ited higher infiltration of mast cells. TMEcluster-B was 
characterized by increases in the infiltration of B cells, 
CD8+ T cells, Tregs, Macrophages and CD4+ T cells. 
TMEcluster-B correlated with higher stages and grades. 
The two TME subtypes showed significant differences 
in OS (p<0.001; HR 2.162, 95% CI: 1.546 to 3.023), RFS 
(p<0.001; HR 2.018, 95% CI: 1.373 to 2.967) and DSS 
(p<0.001; HR 2.907, 95% CI: 1.834 to 4.609) (Figure 
1D, online supplementary figure 1B,C). After adjust-
ment of stage and grade as binary variables, TME clus-
ters remained an independent risk factor for OS (HR 
1.482, 95% CI: 1.048 to 2.095, p=0.026).

Prognostic value of TME clusters in the validation cohort
Immune cell infiltrations in the KIRC cohort were taken 
as the training set in the PAM model. Macrophages, CD4+ 
T cells, Tregs, CD8+ T cells and B cells were extracted as 
phenotype signatures of TMEcluster-B while mast cells 
were extracted as phenotype signatures of TMEcluster-A 
(online supplementary figure 2A). We performed immu-
nohistochemistry in Zhongshan RCC cohort to quantify 
densities of the phenotype signature immune cells (online 
supplementary figure 2B, online supplementary table 3). 
Applying the classifier to normalized immune cell density 
in Zhongshan ccRCC cohort, 100 samples were assigned 
as TMEcluster-A and 149 as TMEcluster-B. There were 
increased B cells, CD8+ T cells, Tregs, macrophages, 
CD4+ T cells and reduced mast cells in TMEcluster-B 
(Figure 1E, online supplementary figure 1D). TMEclus-
ter-B associated with higher tumor stage (p=0.036) but 
not tumor grades (p=0.202) (online supplementary 
figure 1E), and experienced recurrence more frequently 
(p=0.012; HR 1.870, 95% CI: 1.141 to 3.066) (online 
supplementary figure 1F). TMEcluster-B cases had higher 
risk of overall mortality compared with TMEcluster-A 
(p<0.001; HR 2.629, 95% CI: 1.630 to 4.241) (figure 1F). 
In addition, overall deaths (HR 2.304, 95% CI: 1.401 to 
3.790, p<0.001) remained significant between clusters 
after adjustment of stage, grade, Eastern Cooperative 
Oncology Group Performance Status (ECOG PS) and 
necrosis (online supplementary table 4).

Highly immune infiltrated but immunosuppressed 
microenvironment in TMEcluster-B
We noticed that there were plenty of immune-related 
genes among the top 50 upregulated genes in TMEclus-
ter-B in KIRC cohort, such as genes encoding components 
of CD8+ T receptor (CD8A, CD8B, CD27, CD3D), related 
to cytotoxic activities mediated by CD8+ T (IFNG, GZMK), 
suggesting a cytokine-rich microenvironment (CXCR3, 
IL20RB, CXCL13, CCL19) and associated with immune 
suppression (FOXP3, TGFB1, PDCD1, CTLA4, LAG3, 
TIGIT) (figure 2A). GO analysis of the most upregulated 
200 genes in TMEcluster-B revealed enrichment of both 
pathways of immune activation and immune suppression 
among the 10 most significantly enriched biological path-
ways (figure 2B). GSEA analyses revealed that a large part 
of upregulated pathways were associated with immune 
parameters in classic pathway database REACTOME, 
BIOCARTA and KEGG (figure 2C). In particular, pathways 
representing immune evasion were upregulated in each 
of the database, including CTLA4 inhibitory signaling, 
immunoregulatory interactions between a lymphoid and 
a non-lymphoid cell, IL10 pathway and TGF-β signaling 
pathway (figure 2D). Using ESTIMATE,16 we found that 
TMEcluster-B had higher Immune Score (p<0.001), a 
marker of total immune infiltration (figure 2E). Immune 
deconvolution analysis via ssGSEA showed TMEclus-
ter-B had higher immune suppression (p<0.001) score17 
(figure  2F). T cell exhaustion markers unanimously 
increased in TMEcluster-B (online supplementary figure 
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Figure 1  Immune landscape in ccRCC and prognostic value of TME clusters. (A) Immune landscape of major immune cell 
types in clear cell renal cell carcinoma (ccRCC). (B) Cellular interactions and prognostic values of tumor microenvironment cell 
types. The color of each cell type represents the survival impact and the color of each cell represents relative cell fractions. 
The lines connecting each cell type represent cellular interactions, red for positive correlation and blue for negative correlation. 
The thickness of the line represents coefficients calculated by Spearman correlation analysis. (C) Unsupervised clustering of 
TME cells for 533 patients in the KIRC cohort. TME clusters, survival status, TNM stage and tumor nucleus grade are shown as 
annotations. (D) Kaplan-Meier curves for overall survival in KIRC cohort. (E) Normalized densities of phenotype signature cell 
types in Zhongshan RCC cohort. (F) Kaplan-Meier curves for overall survival in Zhongshan RCC cohort. **p<0.01, ***p<0.001. 
RCC,renal cell carcinoma; TME, tumormicroenvironment.

3A). On the contrary, CD8 T cell/Treg ratio (p<0.001)3 
and GZMB/CD8A ratio (p<0.001),23 ratio markers of 
anti-tumor immunity, significantly decreased in TMEclus-
ter-B (online supplementary figure 3B,C). Our findings 
suggested a highly immune infiltrated but immunosup-
pressed tumor microenvironment in TMEcluster-B. We 
performed flow cytometry in Zhongshan fresh ccRCC 

cohort and observed higher expression of exhaustion 
markers on CD8+ T cells in TMEcluster-B including 
PD-1 (p=0.017), CTLA-4 (p=0.116) and TIM-3 (p=0.005) 
as expected (Figure  2G, online supplementary figure 
2C). There were higher percentage of PD1+CD8+T cells 
(p=0.007), CTLA4+CD8+T cells (p=0.021) and TIM3+CD8+ 
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Figure 2  Highly immune infiltrated but immunosuppressed microenvironment in TMEcluster-B. (A) Volcano plots of 
differentially expressed genes between TMEcluster-A and TMEcluster-B. (B) Gene ontology (GO) analysis of top 200 
differentially expressed genes between TME clusters. (C) Gene set enrichment analysis (GSEA) (REACTOME, BIOCARTA and 
KEGG) pathway distribution for TMEcluster-A versus TMEcluster-B. (D) Immunosuppressive GSEA pathways upregulated in 
TMEcluster-B. (E) Immune score estimated by single sample GSEA (ssGSEA) in TMEcluster-A and TMEcluster-B. (F) Immune 
suppression score estimated by ssGSEA in TMEcluster-A and TMEcluster-B. (H) Flow cytometry detection of PD-1, CTLA-
4 and TIM-3 expression on CD8+ T cells in TMEcluster-A and TMEcluster-B. *p<0.05, **p<0.01, ***p<0.001. TME,tumor 
microenvironment.

T cells (p=0.004) in TMEcluster-B (online supplementary 
figure 2D).

Genetic characterization of TME clusters
Next, we explored differences in the frequency of muta-
tions in common ccRCC cancer driver genes between 
the two clusters. Somatic SETD2 mutations were more 
frequent in TMEcluster-B with borderline statistical 
significance (p=0.054) (figure 3A). Low SETD2 protein 
expression previously demonstrated poor prognostic 
effects among TKI treated ccRCC patients.24 We analyzed 
SETD2 expression in Zhongshan metastatic ccRCC 
cohort and found that tumors in TMEcluster-B had lower 
SETD2 expression (p=0.027) (Figure 3B, online supple-
mentary figure 2E). TMEcluster-B had lower overall 
tumor mutation burden compared with TMEcluster-A 
(p=0.008) (figure  3A), in accordance with a previous 
study showing that most immune signatures were upreg-
ulated in low-TMB subtype in ccRCC.25 We then analyzed 
the associations between TME clusters and prevalent arm 
level SCNAs (present in over 10% patients) with poor 
prognosis in a previous study.26 The heatmap showed that 
amplifications of 8q, 12, 20 and deletions of 9 p, 14q were 
enriched in TMEcluster-B. Total number of poor prog-
nosis SCNAs (amplifications of 8q, 12, 20 and deletions 
of 4 p, 9 p, 14q, 19, 22q) was higher in TMEcluster-B as 
well (p<0.001) (figure 3A). TME clusters and ccA/ccB27 
signature were positively correlated (p<0.001). Cell cycle 

proliferation score28 and 16-gene recurrence score,29 two 
well established molecular risk models, were both higher 
in TMEcluster-B (p<0.001 and p=0.055, respectively) 
(figure 3A).

Resemblance of TMEcluster-B to molecular subtypes resistant 
to TKI treatment
Hakimi et al reported that TKI non-responders had 
higher macrophage infiltration.11 Macrophage infiltra-
tions determined by CIBERSORT, immunohistochem-
istry and metagene value30 all elevated in TMEcluster-B 
(figure  1C and E, online supplementary figure 3D). 
Markers of macrophage chemotaxis and activation also 
increased in TMEcluster-B (figure  3C). They identified 
four distinct molecular subgroups in COMPARZ phase 
III patients significantly differed in response and survival, 
among which cluster 4 showed the worst TKI treatment 
response.11 Cluster 4 tumors had more frequent PD-L1 
positivity and TMEcluster-B had higher PD-L1 mRNA 
expression (p<0.001) (online supplementary figure 
3E). The hallmark inflammation signatures enriched 
in cluster 4 were upregulated in TMEcluster-B as well 
(online supplementary figure 3F). Another molecular 
subgroup with poor response to sunitinib, ccrcc4 iden-
tified by Beuselinck et al, was characterized by a strong 
inflammatory, Th1-orineted but suppressive immune 
microenvironment.31 TMEcluster-B displayed the same 
TME characterization as shown in heatmap (figure 3C).
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Figure 3  Genetic characterization and resemblance of TMEcluster-B to molecular subtypes resistant to TKI treatment. 
(A) Distribution of driver genes mutation, tumor mutation burden, arm somatic copy number alterations (SCNA) with poor 
prognosis, ccA/ccB subtype, cell cycle proliferation score and 16-gene signature in TMEcluster-A and TMEcluster-B. (B) 
SETD2 expression in TMEcluster-A and TMEcluster-B. (C) Heatmap displaying gene clusters of macrophage chemotaxis, 
macrophage activation, inflammation, T cell chemotaxis, T cell activation markers, Th1 polarization, Th2 polarization, T 
cell inhibition, ClassⅠMHC, TGFβ signaling and IL10 signaling in TME subtypes.*p<0.05. TKI,tyrosine kinase inhibitor; TME, 
tumormicroenvironment.

Associations between TME clusters and TKI treatment 
response in mRCC patients
Our previous findings suggested a highly potential 
correlation between TME clusters and TKI treatment 
response. We further explored the correlation in Zhong-
shan metastatic ccRCC validation cohort and found that 
TMEcluster-B had significant worse treatment response 
compared with TMEcluster-A (p=0.009) (figure 4A). The 
objective response rate was 50.0% for TMEcluster-A and 
16.9% for TMEcluster-B. Clinical benefit rate was 87.5% 
for TMEcluster-A and 78.0% for TMEcluster-B. Kaplan-
Meier analysis and univariate analysis revealed that 
TMEcluster-B cases experienced earlier disease progres-
sion (p=0.015; HR 2.7762, 95% CI: 1.530 to 4.986) and 
overall death (p<0.001; HR 2.223, 95% CI: 1.150 to 4.229) 
(figure 4B,C). Utilizing IMDC risk scores alone predicted 
2-year PFS and OS with an area under the curve (AUC) 
of 0.74 and 0.76, respectively. IMDC risk scores incorpo-
rating TME clusters reached an AUC of 0.80 and 0.82 for 
PFS and OS (figure 4D,E). Integration of IMDC variables 

and TME clusters improved the C-index for PFS from 
0.61 to 0.66 and OS from 0.67 to 0.71 (figure 4F,G).

Discussion
We report a comprehensive evaluation of tumor-intrinsic 
immune cell infiltrations in KIRC cohort and validate its 
predictive value for outcomes and treatment response in 
three independent Zhongshan ccRCC cohorts. The prog-
nostic landscape of infiltrating immune cells displayed in 
our study was mostly in accordance with previous studies.5 
In contrast to majority of tumors, high densities of CD8+ 
T cells associated with poor prognosis in ccRCC. The 
TME immune cell network (figure 1B) may partly explain 
this phenomenon. Patients with high CD8+ T cell infiltra-
tion also tend to have high densities of Tregs and macro-
phages. The anti-tumor effects of CD8+ T cells were offset 
by these immunosuppressive immune cells. In Zhongshan 
ccRCC validation cohort, TMEcluster-A associated with 
favorable prognosis in multivariate analysis, consistent 
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Figure 4  Associations between TME clusters and TKI treatment response in mRCC patients. (A) Distribution of tyrosine 
kinase inhibitor (TKI) treatment response in TMEcluster-A and TMEcluster-B. P values were estimated by χ2 test. (B) Kaplan-
Meier curves for progression-free survival (PFS) in Zhongshan metastatic ccRCC cohort. (C) Kaplan-Meier curves for OS in 
Zhongshan metastatic ccRCC cohort. (D) ROC analysis for PFS at 2 years. (E) ROC analysis for OS at 2 years. (F) Predictive 
accuracy of IMDC risk score with the addition of TME clusters for PFS in terms of Harrell’s C-index. (G) Predictive accuracy 
of IMDC risk score with the addition of TME clusters for OS in terms of Harrell’s C-index. AUC,area under the curve; ccRCC, 
clear cell renal cell carcinoma; mRCC, metastatic renal cell carcinoma; OS, overall survival;PFS, progression free survival; ROC, 
receiveroperating characteristic; TME, tumor microenvironment.

with a previous study suggesting a positive correlation 
between mast cells infiltration and prolonged survival.7

To understand the biological mechanisms underlying 
TMEcluster-B, we performed various bioinformatics 
analyses and discovered upregulation of both immu-
nosuppressive and immunostimulatory pathways in 
TMEcluster-B. Immune Score,16 a marker of total infil-
tration, were significantly higher in TMEcluster-B, which 
may contribute to the upregulation of immunostimu-
latory pathways. In addition, CD8/Treg3 and GZMB/
CD8A,23 markers of immune activation that taking both 
immune evasion and stimulation into account, were both 
downregulated in TMEcluster-B, consistent with an immu-
nosuppressed TME for which a poor outcome would be 
expected. Flow cytometry analyses further confirmed an 
immunosuppressed TME in TMEcluster-B with higher 
infiltrations of exhausted CD8+ T cells.

Critically, TME characterization of TMEcluster-B 
demonstrated notable overlap with cluster 4, a TKI resis-
tant molecular subtype in a recent report by Hakimi 
et al.11 Cluster 4 tumors showed composite signatures 
of higher macrophage infiltrations, upregulation of 
hallmark inflammatory pathways and stronger PD-L1 
expression, all of which were observed in TMEclus-
ter-B. Further, TMEcluster-B was similar to ccrcc4 group 

identified by Beuselinck et al.31 (figure 3C). Ccrcc4 had 
poor treatment response to TKIs and exhibited a strong 
inflammatory, Th1-oriented but suppressive immune 
microenvironment. Notably, in cluster 4, ssGSEA scores 
of macrophages, T helper cells, CD8 T cells and B cells 
increased while mast cells decreased. In ccrcc4, meta-
gene values for B cells, T cells and macrophages were 
elevated. In summary, both molecular subtypes resis-
tant to TKI treatment displayed an immune-infiltrated 
but immunosuppressed TME, which is the same for 
TMEcluster-B we identified in our study with unsuper-
vised clustering of immune cell infiltrations. Besides, 
TMEcluster-B had lower SETD2 expression, another 
TKI resistant characteristic.24 These insight into the role 
of TME clusters suggested that immune cell composi-
tion might be relevant for cancer management. Thus 
we analyzed the associations between TME clusters and 
TKI treatment response in the Zhongshan metastatic 
ccRCC cohort. TMEcluster-B tumors were more resistant 
to TKI treatment response and conferred with shorter 
PFS and OS. Accumulating evidence suggests that 
targeted agents could alter the immune contexture of 
tumor, such as stimulating T cell or Natural Killer (NK) 
cell mediated anticancer immune responses, depleting 
numbers of infiltrating MDSCs, etc.5 Immune evasion in 
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TMEcluster-B might contribute to TKI resistance by elim-
inating the immunostimulatory functions of TKIs.

A high number of tumor mutations are expected to 
drive tumor immune-infiltration. However, we found 
higher TMB in the more immune-infiltrated subtype, 
TMEcluster-B, in accordance with a previous study 
showing that most immune signatures were upregulated 
in low-TMB subtype in ccRCC,25 which is different from 
other immunotherapy responsive solid tumors. High 
TMB has been identified as a predictive biomarker for 
immunotherapy,32 our findings also suggested a potential 
link between TMB and TKI treatment response in ccRCC.

There were some major limitations in our study. First, 
this is a retrospective study in nature. Furthermore, the 
metastatic ccRCC cohort were small, despite these small 
validation cohorts still reached the consistent conclusion 
with statistical significance. Third, ccRCC demonstrated 
significant intra-tumor heterogeneity, which made it 
necessary to analyze regional differences.

Conclusion
In conclusion, we identified two TME subtypes based on 
clustering of immune cell infiltrations. TMEcluster-B was 
characterized by a dominance of macrophages, CD4+ 
T cells, Tregs, CD8+ T cells and B cells, heavily infil-
trated but immunosuppressed phenotype. It is associ-
ated with dismal survival and worse treatment response 
to TKIs. TMEcluster-A featured mast cells accumula-
tion, prolonged survival and better treatment response. 
With increasing understanding of the importance of 
TME, immune subtype may play a fundamental role in 
predicting outcomes and treatment responses as opposed 
to relying solely on clinicopathological characteristics or 
single biomarkers.
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