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Signaling pathway perturbation 
analysis for assessment 
of biological impact of cigarette 
smoke on lung cells
Hongyu Chen1,2,8, Xi Chen2,3,8, Yifei Shen4,8, Xinxin Yin2, Fangjie Liu3, Lu Liu2, 
Jie Yao3, Qinjie Chu3, Yaqin Wang5, Hongyan Qi6, Michael P. Timko7, Weijia Fang1* & 
Longjiang Fan1,2,3*

Exposure to cigarette smoke (CS) results in injury to the epithelial cells of the human respiratory tract 
and has been implicated as a causative factor in the development of chronic obstructive pulmonary 
disease and lung cancers. The application of omics-scale methodologies has improved the capacity 
to understand cellular signaling processes underlying response to CS exposure. We report here 
the development of an algorithm based on quantitative assessment of transcriptomic profiles and 
signaling pathway perturbation analysis (SPPA) of human bronchial epithelial cells (HBEC) exposed 
to the toxic components present in CS. HBEC were exposed to CS of different compositions and for 
different durations using an ISO3308 smoking regime and the impact of exposure was monitored 
in 2263 signaling pathways in the cell to generate a total effect score that reflects the quantitative 
degree of impact of external stimuli on the cells. These findings support the conclusion that the SPPA 
algorithm provides an objective, systematic, sensitive means to evaluate the biological impact of 
exposures to CS of different compositions making a powerful comparative tool for commercial product 
evaluation and potentially for other known or potentially toxic environmental smoke substances.

Cigarette smoke (CS), which also called mainstream smoke (MS), is the leading cause of disease of the human 
airway worldwide, including chronic obstructive pulmonary disease (COPD), asthma and lung cancer1. Because 
of its effects on human health, smoking and smoking related diseases have attracted great concern from the 
public and the government (Such as FDA, PHE, etc.). Conventional cigarettes with low tar or nicotine content2, 
electronic cigarettes generating nicotine-containing vapor instead of CS3, and Heated Tobacco Products with 
purported reduced levels of combustion generated toxic chemical constituents4 have been developed for indi-
viduals unwilling or unable to quit smoking. Understanding the health effects of different tobacco products is 
extremely important for the public and requires not only the determination of the smoke constituents but also 
their biological effects.

Historically, studies of the adverse effects induced by CS mainly focused on examing the release of some 
toxic substances in CS5. However, CS is an extremely complex and dynamic aerosol, which contains more than 
6000 identified chemical compounds6. So chemical composition analysis can’t fully characterize the possible 
harm of CS to the human body. Biological evaluations of CS to human health risk could provide more accurate 
approaches to reflect the actual harm and address the investigation requirements. Many in vivo inhalation stud-
ies have been conducted with rodent models to reproduce and investigate the pathogenesis of airway diseases, 
but such results can’t be entirely and straightforwardly extrapolated to humans due to interspecies differences7,8. 
Meanwhile, in vitro air–liquid interface (ALI) models of respiratory tract tissue have also been improved to assess 
the genotoxicity, mutagenicity and cellular response of tobacco smoke particulate matter. These ALI models now 
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display similar morphology and character to human in vivo tissue which enable investigations of the toxicologi-
cal effects of test substances to be conducted using human cells9–11. According to different cell sources, it can be 
divided into 2D ALI models and 3D ALI models. 3D ALI models are constructed using primary cells which dif-
ferentiated over a period of time to form multi-cell populations and are more similar to human tissues, while 2D 
ALI models mostly use single cell type, especially cell lines. However, since the primary cells are directly derived 
from the human body therefore with large individual differences, which will be difficult to apply to large-scale 
comparative analysis. 2D ALI models are selected and used in our experiments.

With such in vitro models, a variety of cytotoxicity or genotoxicity assays have been developed to evaluate 
the harmful effects and potential risks of CS on human health, such as the neutral red uptake (NRU) assay12, 
lactate dehydrogenase (LDH) assay13, methyl thiazolyl tetrazolium (MTT)14 and in vitro micronucleus test 
(MN)15. Omics technologies application in toxicology evaluation has also been evolving besides cellular screen-
ing approaches. Transcriptome, which reflects the genome-wide reaction to environmental stress at gene level, 
has been shown to be more sensitive than the effect indicators at individual-level. The effect endpoint of gene 
expression responsive to environmental toxic substances must be earlier than the survival indicators and repro-
ductive indicators of individual organisms. Fedorenkova et al.16 analyzed the correlation between the acute 
toxicity data and gene expression data at the biological individual level and showed that the sensitivity of gene 
expression to cadmium exceeded the acute toxicity indicators. In addition, RNA profiles were closely related 
to human disease states. RNA profiling of tumors, as one of biomedical applications, is used to predict tumor 
aggressiveness, understand the responses to the treatment and assess the risks of cell rejection17,18. In smoking 
risk studies, the transcriptomic data obtained from ALI bronchial tissue culture exposure models also provide 
deeper insights into the biological mechanisms perturbed by CS19,20. We utilized the in vitro model to examine 
differential expression of genes and found that although e-vapor did not cause many of the cytotoxic reactions 
observed in human bronchial epithelial cells, e-vapor exposure with or without added nicotine was not benign 
but elicits discrete transcriptomic signatures21. Not limited to transcriptome analysis, perturbation of metabolism 
in CS-exposed tissues, global gene expression profiles and protein alterations also can be combined. Ishikawa 
et al.22 learned that CS interfered with central carbon metabolism, oxidative stress and epidermal growth factor 
receptors that have been identified as key regulators of perturbation processes by using multi-omics.

To better demonstrate the biological risk of CS exposure with emerging omic data, powerful and effective cel-
lular signal perturbation analysis methodology is required. At present only one algorithm, network perturbation 
amplitude (NPA)23–29, has been developed and applied in the quantification of biological toxicity of CS. Kuehn 
et al.30 analyzed the gene expression data with NPA to reveal the potential reduced risk of e-vapor. However, 
the NPA method was originally developed based on microarray datasets and only focused on specific signaling 
pathways of the pulmonary and vascular systems which is the most affected tissues exposed to smoking29. The 
annotation limitation of NPA constrains the application extended to non-lung cells. Furthermore, t test statis-
tics which is required to analyze the microarray data in the NPA restricts the transplant of RNA-seq data which 
requires Z-statistics of the Wald test into the algorithm.

To provide more comprehensive understanding about the biological toxicology mechanism of CS exposure, 
we developed a human bronchial epithelial cell transcriptome-based signaling pathway perturbation analysis 
(SPPA) algorithm to take all cellular biological pathways into account to provide a measure of overall biological 
toxicity of CS and indicate specific responsive signal pathways in the cells. Here we provide evidence for the 
validity and accuracy of the algorithm by analyzing transcriptome profiling data derived from cell exposure in 
a smoking platform and in vitro air–liquid interface model.

Methods and materials
Cell culture.  The human bronchial epithelial cell line BEAS-2B cells were obtained from the Shao laboratory 
(Institute of Medicine in Zhejiang University, Hangzhou, China). BEAS-2B cells were cultured in DMEM basic 
nutrient solution (Gibco, Thermo Fisher Scientific, China) supplemented with 10% fetal calf serum (FCS) (GR, 
Gibco, New York, US), 2 mM L-glutamine (AR, Solarbio, Beijing, China) and 100 units/ml Penicillin–Strepto-
mycin (HyClone SV30010, Beijing, China) in a CO2 incubator (Thermo scientific, China) at 37 °C with 5% (v/v) 
CO2. The cells were passaged when they reached 80–90% confluence.

Experimental cigarettes.  Three types commercial cigarettes with different tar content (8 mg/cig, 12 mg/
cig) were purchased for use in this study. They are called CB8, AB8, AB12 which the number means tar con-
tent. Specifically, CB8 is purchased from China, and AB8 and AB12 are purchased from an American tobacco 
company. The nicotine and tar content of cigarettes are also described in Supplementary Table S1. 3R4F refer-
ence cigarettes (University of Kentucky, Lexington, KY, USA) were also chosen for exposure experiments. All 
cigarettes were conditioned at 22 ± 1 °C and 60 ± 3% relative humidity for at least 48 h before being used in the 
experiments.

Cell exposure treatment based on the in vitro air–liquid interface model.  For CS exposure treat-
ment experiments, cells were seeded onto transwell inserts (Corning Incorporated, US) with 3 μm polycarbon-
ate membrane at a density of 2.0 × 104 cells/cm2 and thereafter an ALI was established by removing the medium 
from the apical surface, exposing only the basal surface of the cells to medium. Cells were further used for 
subsequent air and CS exposures by Borgwaldt RM20S (Borgwaldt KC GmbH, Hamburg, Germany) which is a 
rotary syringe smoking machine specifically designed for in vitro biological toxicity assessment of CS (Fig. 1).

The whole CS was diluted with laboratory air (Temperature 22 ± 1 °C; Humidity 60 ± 3%) to series times (10×, 
30×, 100×, 300×, 500×, 1000×) to expose BEAS-2B cells maintained at the ALI in exposure chambers housed 
at 37 °C (Table 1). The puffing regimen was set according to the International Organization for Standardization 
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(ISO3308:2012) with the following parameters: a 35-ml puff drawn over 2 s every 1 min period; a 5 min cycle per 
cigarette yielding 12 cigarettes smoked per 1 h of treatment. To avoid potential exposure to CS components in the 
nutrient solution due to aerosol sedimentation, a peristaltic pump was used to replace the nutrient solution at a 
flow rate of 3 ml/min. One-third of the treated cells after CS treatment for 1 h were washed with PBS immediately 
to collect cells, and the rest were cultured in CO2 incubator for 4 h/24 h before sampling. Cytotoxicity assays and 

Figure 1.   Experimental platform and workflow for assessment of biological impact of mainstream cigarette 
smoke. A BEAS 2B cells were cultured into transwells (Corning 3402) as described in the Materials& Methods. 
The cells were then transferred to exposure chambers for smoke exposure. B Cigarette smoke was generated 
in a Borgwaldt RM20S smoking machine under ISO3308 smoking regime and diluted cigarette smoke from 
a reference cigarette (3R4F) was introduced into cell exposure chanbers. C After treatment with the diluted 
cigarette smoke for 1 h, cell viability assessed by NRU assays and testing the TEER values. NRU: neutral red 
uptake; TEER: trans-endothelial electrical resistance. The images of Exposure chambers and Borgwaldt RM20S 
smoking machine are taken from Adamson et al.52.

Table 1.   Summary of smoke exposure experiments for validation in this study.

Experiments Cigarette type Sample code Tar (mg/cig) Nicotine (mg/cig) Dilution times
Sampling time (hour) after 
exposure

Optimal concentration Reference 3R4F 9.4 0.73 1/10, 1/30, 1/100, 
1/300,1/500,1/1000 0

Transcriptomic profiling: reference 
versus commercial cigarette

Reference 3R4F_0 9.4 0.73 1/500 0

Reference 3R4F_4 9.4 0.73 1/500 4

Reference 3R4F_24 9.4 0.73 1/500 24

Commercial CB8_0 8 0.8 1/500 0

Commercial CB8_4 8 0.8 1/500 4

Commercial CB8_24 8 0.8 1/500 24

Transcriptomic profiling: different 
tar/nicotine contents

Commercial AB8_4 8 0.7 1/500 4

Commercial AB12_4 12 1 1/500 4

Commercial CB8_4 8 0.8 1/500 4
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RNA extraction were subsequently performed. The negative control groups were achieved with air-exposed cells 
under the same protocol with CS exposed cells.

Nicotine content determination.  In order to determine the nicotine content in CS, we use cambridge 
filters to collect CS, and immediately extract with 20  ml absolute ethanol. Gas chromatograph was used for 
nicotine content detection. We tested the nicotine content of 1/500 CS and carried out six repeated experiments 
for each kind of cigarette.

Trans‑endothelial electrical resistance measurement.  Trans-endothelial electrical resistance 
(TEER), an electrical parameter to assess membrane integrity and suitability of in vitro cellular barriers31, was 
used to assess cell layer integrity and toxicity of CS exposure. TEER was measured using a Millicell-ERS-2 (Milli-
pore, Billerica, MA, US) volt-ohm-meter with a STX01 chopstick electrode (Millipore, Billerica, MA, US). Trip-
licate measurements were performed for each well. Three wells per experimental run were tested. Subsequently, 
the values were adjusted with blank control. The obtained value was multiplied by the effective membrane area 
in cm2 (1.12 cm2 for 12-well transwell inserts) to yield the final result in Ω.cm2.

Neutral red dye uptake assay.  Neutral red uptake (NRU) is the most widely used assay for the assess-
ment of cytotoxicity in the context of tobacco product testing. Neutral red is an acidotropic stain that is taken 
up by lysosomes. Lysosomal membranes are damaged by cytotoxic substances so that the uptake and binding of 
the dye is decreased. The cell samples were incubated for 3 h with nutrient medium containing 0.5% neutral red. 
The dye was extracted, and the absorbance measured at 540 nm using a spectrophotometer (Synergy H1, USA). 
Cell viability was calculated by determining the ratio of absorbance in treatment group compared to the control 
group. Three wells are tested for each experiment run.

Transcriptomic profiling of BEAS 2B cells under smoke exposure.  Total RNA was isolated with 
the RNeasy mini kit (QIAgen, Hilden, Germany) following the manufacturer’s procedure. RNA was quantified 
using a NanoDrop ND1000 (NanoDrop Technologies, Wilmington, DE, USA). Samples with a RIN number 
greater than 8 were retained for subsequent analyses. Paired-end sequencing was then performed on an Illumina 
Hiseq 4000 for RNA-seq. Triplicates were made for each treatment and control, which a total of 39 samples were 
achieved according to the experimental design. All the sequencing data generated in this study was submitted to 
NCBI with accession number PRJNA637969.

FASTQC32 was used to generate quality control (QC) metrics for initial reads and low quality read ends were 
trimmed using trimmomatic33. The RNA-seq reads were aligned to the human genome (GRCh38) using HISAT34 
aligner with default parameters. Differential expression genes were analyzed by edgeR package35. The signifi-
cantly modulated genes were further analyzed for GO classification by Clusterprofiler package36 with adjusted 
p value < 0.05 and fold change (FC) > 2 or <  − 2 considered as statistically significance.

SPPA algorithm overview.  To objectively address quantification of impact of CS on a human cell line, and 
explore biological signaling pathway perturbation caused by the whole CS, we established a methodology based 
on genome-wide gene expression profile data and biological signaling pathway information and developed a 
pipeline (“AB-smoke”) implementing the algorithm by R and Perl language. The biological pathways informa-
tion was downloaded from Reactome database (V70, https://​www.​react​ome.​org/) which includes 27 topics (cell 
cycle, disease, cell–cell communication, programmed cell death, etc.), 2263 biological pathways with a total of 
12,608 reactions. In addition, we specially collected ten cancer-related pathways37 to detect whether there are 
differences in the effects of CS from different cigarettes on these pathways. The ten pathways have been identified 
as frequently genetically altered in cancer and changes in gene expression of these pathways are related to the 
occurrence and development of cancer. The approach comprises four steps, using gene expression profiles and 
biological pathways information as input, and the total effect scores which reflect the overall biological risk of 
the cigarettes and detailed quantification of the disturbance of different signaling pathways as output. The SPPA 
algorithm can be downloaded from https://​github.​com/​bioin​plant/​SPPA.

Step 1: Calculation of effect score for each biological signaling pathway.  In order to study the overall effect of 
smoke on cells, first we need to evaluate the effect of smoke on each of the biological signaling pathways of the 
cell through transcriptomic data. However, if you only focus on differentially expressed genes, there may be 
some disadvantages, and you fail to fully use the information of the transcriptome, cellular processes often affect 
a coherent set of genes. A 20% increase of all genes involved in a biological pathway may significantly alter the 
expression flux of that pathway, and may be more important than a ten-fold increase in individual genes in the 
biological pathway38. Therefore, for the analysis of biological signal pathways, we borrowed the gene set enrich-
ment analysis (GSEA) to comprehensively consider all gene expression transformations. First, we get ranked list 
L of all the genes on the data based on the difference of their expression levels between the smoke versus air. We 
sort all genes based on the absolute fold change value of the expression change (Z value). Then, for each gene set 
S: find the location of each gene in S within L. Generate enrichment score for S based on running-sum statistic. 
For each of the designated biological pathways, the score is calculated by walking around the list of all genes 
that have been sorted. When we encounter a gene in the list, it will increase a running-sum statistic, otherwise 
it will be decreased (for example see Fig. 2A). The specific addition and subtraction algorithms learn from the 
GSEA algorithm. Here we use the maximum score obtained during the calculation as effect score (ES) of smoke 
on a biological pathway that reflects the degree of disturbance. If the genes in the specified pathway randomly 

https://www.reactome.org/
https://github.com/bioinplant/SPPA
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distributed in the sorted gene list or the whole genes in the pathway does not show differential expression, the 
maximum can always find at the bottom; if the genes in the specified pathway distributed at the top of the sorted 
gene list, the effect score will be found at the top of the sorted gene list.

Phit(S, i) =
∑

gj ∈ S
J ≤ l

|rj |

Nr
 , where NR =

∑
gj∈S

|rj|Phit(S, i) =
∑

gj ∈ S
J ≤ l

|rj |

Nr

The ES is the maximum deviation from zero of Phit(S, i)− Pmiss . For a randomly distributed S, ES(S) will be 
relatively small, but if it is concentrated at the top or bottom of the list, or otherwise non-randomly distributed, 
then ES will be correspondingly high.

We estimate the significance of an observed ES by comparing it with the set of scores ES null computed with 
randomly assigned phenotypes (Fig. 2B):

1.	 Randomly assign the original phenotype labels to samples, reorder genes, and re-compute ES(S).
2.	 Repeat step 1 for 500 permutations and create a histogram of the corresponding enrichment scores ES null.
3.	 Estimate nominal P value for S from ES null by using the positive or negative portion of the distribution cor-

responding to the sign of the observed ES(S). And calculate the normalized Z-score of each gene set (Fig. 2B 
provides an example).

Taking the “cell–cell communication” pathway in the Reactome database as an example to calculate its effect 
score. The positions of 112 genes contained in the pathway is found by traversing from left to right the gene list 
that has been sorted according to the expression change folds (Fig. 2A). When we encounter a gene in the list, it 
will increase a running-sum statistic, otherwise it will decrease. The highest enrichment score of cell–cell com-
munication pathway is calculated by finding the location of gene, and finally its effect score is 0.45 (Fig. 2A). We 
further randomly select the same number of genes (112 genes) in the ranked list to calculate the effect score. 
Through 500 random simulation calculations, we constitute a zero distribution for the pathway to estimate 
the statistical significance of the effect score of the pathway. Based on the obtained distribution, we calculate 
a standardized Z-score (0.429) based on the effort score. For cell–cell communication pathway, its P-value is 
0.365, which does not meet the significance requirement (< 0.05) (Fig. 2B) and will not be included in the further 
estimation of total effect score.

Step 2: Weight effect score by pathway gene number.  Different pathways contain different numbers of genes and 
some pathways contain only a few genes or have not been thoroughly defined. For example, AKT2 pathway only 
contains four genes while the GPCR pathway has 1220 genes. As a consequence, the contribution of different 
pathways to the overall effect will vary. Therefore, to define the impact of each pathway, we need to consider 
the influence of the number of genes present. We further calculated ES from the log-transformed value of the 

Pmiss(S, i) =
∑

gj ∈ S
J ≤ l

1

(N − NH )
.

Figure 2.   Illustration of the SPPA algorithm. A Shown is the estimation of the effect score (ES) of the “Cell–Cell 
communication” pathway. When all 112 genes are sorted according to the Z values of expression changes in the 
pathway, the highest enrichment score of the pathway based on running-sum statistic is calculated by finding 
the location of genes in the pathway. The score is 0.429, which is as effect score of smoke on this pathway. B 
Estimation of significance of effect score. 500 random simulations were performed to calculate whether the ES 
(0.429) of the example pathway reached a significant level. The estimation of P value is 0.365.
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number of genes (Ng) in a particular pathway and the Z-score (Z) of ES normalized by the impact score based 
on the permutation results in the first step.

Step 3: Calculation of effect score for main functional categories.  In the Reactome database, 2263 biological sig-
nal pathways are divided into 27 functional categories, including cell cycle, hemostasis, developmental biology, 
etc. Each category contains a different numbers of sub-channels and presents a clear hierarchical structure. In 
order to give the degree of influence of smoke exposure on cells in each large category, also to standardize each 
category can be used for comparison. We use the significant differential gene pathways found in the first step 
and the weighted effect scores calculated in the second step to calculate the normalized effect score (NES) for the 
main functional categories. The NES is the product of the average number of the ES of the subcategories and the 
number of the subcategories by log2 transformation.

Step 4: Calculation of total effect score.  Based on the NES of the main functional categories calculated in the 
third step, we therefore can calculate the total effect score (TES) of the cigarette. This score is the sum of effect 
scores for all major functional categories.

Results
Determination of optimal concentration for smoke exposure.  To test the SPPA methodology, a 
pilot experiment was performed using the 3R4F reference cigarette to define the optimal time of exposure and 
concentration to elicit a reproducible response in the HBECs relative to cell death. The experiment schematic, 
including the smoking strategy, exposure instrument, cytotoxicity assay, is shown in Fig.  1. Whole CS from 
3R4F cigarettes was diluted using the dilution syringes on the Borgwaldt RM20S smoking machine to achieve 
a series aerosol doses (i.e., 1/10, 1/30, 1/100, 1/300, 1/500, 1/1000 of whole CS) (Table 1). Following exposure 
for 1 h, NRU and TEER analyses were immediately carried out to assess the cell viability (Fig. 3). Both analyses 
showed similar tends and based on these results the 1/500 dilution of the whole CS, yielding about 80% viability 
under NRU analysis (Fig. 3A) and a TEER value of 5.2 Ω.cm2 (Fig. 3B) was deemed to be the optimal dilution 
factor for in vitro exposure. Cells exposed to air which were left in the insert well and incubated in the incubator 
were compared to 1/1000 concentration exposure. No significant difference of NRU or TEER was observed. In 
brief, the results suggested that the biological impact on the cells of the cigarette whole smoke was affected in a 
dose dependant manner, and 1/500 was the optimal concentration of the whole smoke which was used for next 
analyses in this study. At the same time, we measured the nicotine content of diluted cigarette smoke (1/500) by 
using cambridge filters (as shown in Fig. 3C). The nicotine content of AB12 is significantly higher than that of 
other three cigarettes.

Transcriptomic profiling of bronchial epithelial cells under smoke exposure.  To apply the 
SPPA algorithm on signal pathway perturbation assessment by 1/500 CS, we first applied whole transcriptome 
sequencing for all samples from different exposure strategies (Table 1). Triplicates were made for each treatment 

ES = log(Ng)× Z

Figure 3.   Different endpoints of assessing the effect of cigarette smoke dilution rates. A Cell viability as 
determined by neutral red uptake (NRU) assay under six different dilutions of 3R4F reference cigarette smoke. B 
Changes of TEER following treatment with different dilutions of 3R4F smoke. C. Boxplot of nicotine content in 
different kind of cigarette smoke under 500 times dilution. The mean value is shown by the horizontal line in the 
middle. **A t-test significance at p < 0.05 using the average nicotine content of other three cigarettes (3R4F, AB8, 
CB8) as comparator.
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and control and average 7 Gb of paired-end RNA-seq data for each sample were generated. After trimming of 
reads, over 95% reads were successfully mapped to the human reference genome (GRCh38).

To further evaluate the effect of 1/500 CS exposure, transcriptional activity was investigated via DEG (differ-
entially expressed genes) analysis. We first compared the gene expression in BEAS-2B cells exposed to CS gener-
ated by reference cigarette 3R4F smoking using air-treated samples as our control and an initial 1 h exposure. A 
total of 720 genes were significantly (pFDR < 0.05, |FC|> 2) differentially expressed (Fig. 4 and Supplementary 
Table S1). Of these genes, 447 were up-regulated, suggesting that many cellular processes were stimulated follow-
ing the toxic insult. The GO analysis of all DEGs at this time point also indicated that several pathways related 
to stimulus response are affected among which negative regulation of transferase activity, response to external 
stimulus and epithelial cell proliferation were significantly enriched (Supplementary Figure S1A). Meanwhile 
protein kinase-related pathways were activated, suggesting that the cells attempt to recover from the CS exposure.

Expression patterns at different time points could give us hints about the temporal and spatial patterns of the 
potential harm of CS before we quantify them by SPPA algorithm. At 4 h, the majority (1418/3082) of DEGs of 
3R4F_4 were up-regulated and 2557 genes were newly activated at this time point (Fig. 4). These significantly 
enhances in expression pointing to a fierce response of cellular activity. The response categories were overrep-
resented with protein localization movements which mainly contribute to stress stimulus and possibly enable 
DNA damage repair or precede apoptosis. In 3R4F_24 samples, most DEGs (2761, 89.6%) in 3R4F_4 returned to 
normal expression level at this time point, while 278 genes expression were still significantly differential expres-
sion (Fig. 4A, Supplementary Table S1). In total, 599 genes were significantly up- or down-regulated in 3R4F_24, 
most of which clustered in pathways involved in ribosome and rRNA metabolism. Only 110 genes kept expressing 
through the whole treatment procedure in 3R4F exposure experiments. This is not surprising rapid changes in 
gene expression patterns would be expected in cells undergoing the effects of CS exposure whereas during the 
4 h and 24 h periods post-exposure readjustment and renewal of cellular activity likely initiate and persist. This 
persistence has already been noted in previous studies from our group and others19,39. The similar expression 
patterns could also be noted from CB8 samples (Fig. 4B, Supplementary Figure S2, Supplementary Table S1). 
Although the cells were subjected to disturbances in CB8 treatment, the relevant pathways were different, but 
after 1 h of whole cigarette smoke treatment, the cells showed a sustained injury response. It is worth mention-
ing that the most abundant GO terms of CB8_0 refers to perturbation of negative regulation of MAPK cascade, 
response to heat, and stress response, with significant q-values ranging from 6.13e-5 to 0.03 (Supplementary 
Figure S2). MAPK signaling pathways plays a key role in the regulation of many cellular processes including 
proliferation, differentiation, the stress response, motility, growth, differentiation, survival, and death. Abnormal 
MAPK signaling may contribute to increased or uncontrolled cell proliferation and/or resistance to apoptosis. 
The KEGG enrichment analysis supported the findings above (Supplementary Figure S3). Even though there 
were fewer enriched pathways, MAPK signaling pathway occurred in both CB8_0 and CB8_4.

The DEGs of different commercial cigarettes CB8 (887), AB8 (671) and AB12 (2560) were also analyzed 
to further confirm that the 1/500 CS exposure for 1 h and recovery for 4 h was able to trigger adequate cells 
response (Supplementary Table S1 and Figure S4). The GO terms ID found in common between CB8 and AB8 
relates to negative regulation of kinase activity and negative regulation of protein kinase activity. However, the 
GO enrichment of AB12 treatment mainly focused on the mitochondrial-related pathways (Supplementary 
Figure S5). The studies confirmed that the cells quickly responded to the 1/500 exposure of CS and the effects 
persisted for at least 4 h.

Application of SPPA algorithm for assessment of biological impact: reference versus commer-
cial cigarettes.  To access the potential application performance of the SPPA algorithm on health risk evalu-
ation of conventional tobacco products, we applied the method using two CS treatment experiments (Table 1). 
The first experiment is the scoring comparison between reference cigarettes 3R4F and commercial cigarettes 
(CB8) (Fig. 5A). This experiment serves to evaluate the robustness of the SPPA algorithm in time-manner toxi-
cology measurement. The second one is to compare two kind of commercial cigarettes, which contain different 
tar contents (8 and 12 mg/cigarette, means CB8 vs AB8 vs AB12).

Exposure to 1/500 CS from 3R4F cigarettes for 1 h, nine signaling pathways category, comprising of 282 
reactions, were triggered and its TES was scored as 212.62 (Fig. 5A, B). We compared to the analysis of the 
transcriptomic profiles (Fig. 3), the pathway categories were also mainly cellular response to external stimulus. 
Overall TES increased across the recovery period, from 369.97 (3R4F_4) to 443.07 (3R4F_24), consistent with 
the trend in CB8 samples (Fig. 5C). The top 5 pathways in 3R4F_0, immune system, signal transduction, cell 
cycle, cellular responses to external stimuli and vesicle-mediated transportation, were the largest contribution to 
TES, and most of them showed the highest amplitude of increase at all time points. The scorings of metabolism 
of protein and metabolism of RNA were sharply increased to 2.5 times from 0 h (15.32, 9.95) to 24 h (36.41, 
32.42) and ranked as second and third of all pathways. As expected, immune system was also computed as the 
highest activated pathway in CB8_0 to show the cell quick response to the CS exposure. There were only immune 
system and signal transduction scored over 15.00 in CB8_0, and the score of immune system has declined from 
24.94 (CB_4) to 21.68 (CB_24) at the end of the experiment. It indicated that the CB8 might have less harm than 
3R4F, paralleling the smaller TES of CB8 gained from the SPPA. While the number of DEGs in the cells largely 
decreased after 24 h of recovery, the top scores still hit cell cycle pathway in both 3R4F_24 and CB8_24. Inter-
estingly, the score of immune system was even higher than cell cycle in CB8_24. Overall, the finding supported 
that the cell cycle is the primary process during perturbation reported by researchers40.

We narrowed down the gene sets to ten main cancer related pathways40, including cell cycle, signaling by 
Hippo, signaling by NOTCH, signaling by WNT, transcriptional regulation by TP53, MYC signaling, signaling 
by TGF-beta family members, cellular responses to stress, signaling by receptor tyrosine Kinases, PI3K cascade, 
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Figure 4.   Volcano plots for mainstream smoke (MS) exposure generated by reference and commercial 
cigarettes. A Exposure to 1/500 MS from 3R4F cigarettes for 1 h, compared with the air control, the number of 
differential genes changes at three time points, 3R4F_0h: recovery 0 h after exposure to 1/500 MS from 3R4F 
cigarettes for 1 h; 3R4F_4h: recovery 4 h after exposure to 1/500 MS from 3R4F cigarettes for 1 h; 3R4F_24h: 
recovery 24 h after exposure to 1/500 MS from 3R4F cigarettes for 1 h. B Exposure to 1/500 MS from CB8 
cigarettes for 1 h, compared with the air control, the number of differential genes changes at three time points. 
CB8_0h: recovery 0 h after exposure to 1/500 MS from CB8 cigarettes for 1 h; CB8_4h: recovery 4 h after 
exposure to 1/500 MS from CB8 cigarettes for 1 h; CB8_24h: recovery 24 h after exposure to 1/500 MS from 
CB8 cigarettes for 1 h. The X-axis displays Log2 of the fold change (FC), and the Y-axis displays -Log10 of the 
adjusted p-value (pFDR). The dashed horizontal lines represent the 0.05 pFDR threshold. The vertical dashed 
line shows + 2 and − 2 times the change threshold. Blue dots represent significant RNA features at pFDR < 0.05 
and FC <  − 2, and red dots represent significant RNA features at pFDR < 0.05 and FC >  + 2.
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Figure 5.   Application of the SPPA algorithm in comparisons of the biological impact of MS from reference 
versus commercial cigarettes. A The total effect scores (TES) for three time points after reference 3R4F and 
commercial CB8 smoke exposure using SPPA algorithm. B, C The degree of effect of 3R4F (B) and CB8 (C) 
smoke exposure on 27 cell-related topics at different time points. The redder the color, the higher the effect 
score. D The Z-score values of ten cancer-related pathways at different time points under 3R4F and CB8 
treatment using SPPA algorithm. The larger the sector area, the larger the Z-score value, indicating the greater 
the perturbation to the pathway.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16715  | https://doi.org/10.1038/s41598-021-95938-z

www.nature.com/scientificreports/

and presented the Z-score generated by SPPA algorithm for these ten main pathways (Fig. 5D). After 3R4F 
treatment, the Z-score value of multiple pathways increased at 4 h and 24 h compared to 0 h, and at the same 
time, there was no significant weakening trend at 24 h. In the CB8 treatment, the Z-score of multiple pathways 

Figure 5.   (continued)
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reached a peak at 4 h, and decreased to a certain extent at 24 h. However, its Z-scores are always lower than the 
value of corresponding 3R4F time point.

In this experiment, the assessed biological impact of CS on BEAS-2B cells displayed the expected time-
dependent pattern of response. Moreover, the SPPA methodology also distinguish the potential difference in 
biological activity between reference cigarettes and commercial ones.

Application of SPPA algorithm for assessment of biological impact: cigarettes with different 
contents of tar/nicotine.  In a second experiment to test the SPPA algorithm, three commercial cigarettes 
with different labeled tar contents were evaluated (Table 1). CB8 (8 mg per cigarette), AB8 (8 mg), and AB12 
(12 mg) are manufactured by two different tobacco companies (e.g., CB and AB, respectively). Higher tar ciga-
rettes, when puffed the same as lower tar cigarettes, should provide a larger cellular response. Comparison of 
AB8 and AB12 can detect the accuracy of the SPPA algorithm, while CB8 and AB8 with the same tar content 
shows the sensitivity of the SPPA algorithm. Consistent with this, the TES of AB12 (386.57) was much higher 
than that of AB8 (287.38). We next looked at the network scores to identify the significantly perturbated biologi-
cal processes by AB12 or AB8 smoke. Cell cycle, and immune systems were still the primary contributors to the 
TES scores in both samples (Fig. 6A) while the amplitude of perturbations in these aspects under the treatment 
of AB12 (31.75, 30.61) was significantly higher than AB8 (23.72, 18.55). The increased scores were in agreement 
with previously published findings21 for airway epithelial cells exposed to CS. Interestingly, we observed extra-
cellular matrix organization be specifically scored in AB12 (Fig. 6A). Although the magnitude and statistical 
significance of these pathway perturbations vary widely between different tar contents, the response patterns 
between AB8 and CB8 are similar (Fig. 6A). The TES of AB8 (287.38) was slightly lower than CB8 (289.14), the 
overall consistency of scores of cell cycle and immune systems in comparison between AB8 and CB8 was also 
observed. The two major contributors, signal transduction and vesicle-mediated transport, showed higher signal 
intensity in AB8 than CB8 (Fig. 6A). In agreement with these results, the similar perturbation amplitude of 10 
cancer-related pathways was observed between CB8 and AB8. The most pronounced effects seen in higher tar 
content samples AB12 compared with CB8 or AB8 were the signaling by WNT and signaling by NOTCH.

In this experiment, the scoring methods produced global TES scores that were consistent with our expecta-
tions, particularly the separation between 8 mg tar cigarette and 12 mg tar CS treatment. The degree of influence 
of CS on cells has a positive correlation with tar content. For AB8 and CB8 containing the same tar content, the 
overall effect is similar, even though there are slight differences in some specific cellular responses. The effects of 
smoke on cells are mainly concentrated in the cell cycle, immune system, signal transduction and metabolism-
related pathway. Moreover, the hierarchical structure of the pathways was used to gain a mechanistic understand-
ing of the biological impact of the CS exposure by the SPPA.

In summary, based on the transcriptomic data, we provide robust SPPA algorithm which is accurate and 
sensitive in its ability to evaluate the cellular responses to differences in cigarette smoke exposure. By consider-
ing all expressed genes as input, our SPPA methodology could comprehensively offer perturbation information 
for all signaling pathways and accurately score each affected disease-related process to provide insight into the 
pathology and the potential of smoking-induced diseases.

Discussion
As the increasing needs of the biological risk assessment of smoking cigarettes and the fast developing of sequenc-
ing technologies, cigarette health harm evaluation has been improved to the level of omics. In particular, tran-
scriptome analysis has been applied to evaluate the effects of aerosols produced by different electronic cigarettes, 
tobacco heating products and CS on in vitro cell models19,39. However, there is still no appropriate algorithm 
to calculate the cell response at cellular pathway level based on omics data. The SPPA algorithm developed in 
this study focus on comprehensive signaling pathways and provides an effective quantitative tool by integrat-
ing transcriptomic data to accurately assess biological risk of CS. Notably, we described a unified and coher-
ent framework for scoring individual biological signaling pathways to reflect systematic activated processes 
which potentially cause diseases. The results demonstrated here provide a significant extension to conventional 
chemical composition examination methods41–44, and in vitro cellular toxicity endpoints analysis19,39,45,46. The 
first application of the methodology on analyzing the affection of reference cigarettes provides solid evidences 
that the SPPA algorithm could successfully assess the biological perturbation of cigarette smoke and evaluate 
the time-manner effect, which results are in agreement with previous reports21. The further validation of the 
methodology illustrates the envisioned utility to comparatively assess the cigarettes with the same amount of 
tar which cannot be distinguished by conventional methods. Therefore, the SPPA algorithm integrating RNA-
seq data could enable the accurate health risk assessment of the different types of tobacco products, including 
combustibles, e-vapor generating, and heat-non-burn devices, and could also be used by extension to examine 
other forms of environmental contaminants or toxic compounds in the air.

The SPPA algorithm is based on the RNA-seq data and ranked the all gene expression based on expression 
for downstream calculation facilitating the method more comprehensive and informatic. We could score all 
2263 signaling pathways and abstract any interested ones by tailoring the gene sets and ascribing weights to 
specific pathways. In other words, compared with previous assessments based on microarray data19, our algo-
rithm provides more possibilities for various researchers focus on specific topics. The envision utility is the 
investigation and diagnosis of disease state, the prediction of future disease onset by exposed to environmental 
toxic substances, such as COPD47. For example, all these genes for ten major cancer-related pathways37 could be 
further assigned to related processes and mechanisms that describe a coherent biological response, and could be 
predicted from a given experiment, further verified through additional experimental investigation. For exam-
ple, we found that AB12 has a stronger effect on WNT and NOTCH signaling pathways, and this conclusion is 
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Figure 6.   Application of SPPA algorithm in comparisons of the biological impact of MS from cigarettes with 
different contents of tar/nicotine. A The degree of effect of CB8, AB8 and AB12 smoke exposure on 27 cell-
related topics at different time points. The redder the color, the higher the effect score. B The Z-score values of 
ten cancer-related pathways under CB8, AB8 and AB12 treatment using SPPA algorithm. The larger the sector 
area, the larger the Z-score value, indicating the greater the perturbation to the pathway. Two commercial 
cigarettes with different labeled tar contents, CB8 (8 mg) and AB8/AB12 (8 and 12 mg), were produced by two 
different tobacco companies.
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consistent with the conclusion of the previous article48,49. Similarly, the methodology could also provide novel 
insight into the molecular mechanism of diseases and understanding the disease state by well-controlled experi-
ments with samples from specific patients or treatments, such as healthy lung cells or tissues exposed to various 
inhale exposures.

In the first experiment that we considered for the SPPA validation, reference cigarette 3R4F was introduced 
in the system. 3R4F reference cigarette is a ‘US style’ blended product (University of Kentucky), The tar content 
is 9.4 mg/cig and the nicotine content is 0.73 mg/cig50. It is widely used to evaluate the hazard comparison of 
commercial cigarettes. By collecting the scores of hierarchically structured biological pathways which disturbed 
by 3R4F exposure, we were able to place the results into the comparison of interested tobacco products in the 
future application. CB8 and AB8/AB12 which utilized in the second validation experiment are commercial brands 
likely made with different composition of tobacco leaves. However, the TES values given by our SPPA algorithm 
show the same toxic levels of CB8 and AB8 (Fig. 6). Even though, it cannot be simply concluded that the health 
risk is linear correlated with tar content.

The application of our quantitative approach for assessing biological impact to four distinct cigarette treat-
ments found that the results were consistent with expected responses. The cell cycle, immune systems, signal 
transduction, metabolism of proteins and metabolism of RNAs were the main contributors to the TES scores of 
all four treatments, while the contribution of the regulation of proliferation signal pathway was negligible across 
all time points and all treatments, which is consistent to the studies reported by Kuehn et al30. The activation 
of cancer-related signaling pathways also indicates that the composition of CS is a key factor in determining 
potential biohazards. This is consistent with prior studies showing that there is a dose–effect on the response 
of human cells51. Together, these experiments support our conclusion that SPPA methodology is capable of 
providing an accurate assessment of the biological effects of CS and its future in the evaluation of exposure to 
other air-borne toxic substances.

In conclusion, the SPPA scoring algorithm presented here could quantitatively assess the disturbance of CS 
from different cigarettes to cell biological pathways. If combined with the chemical composition analysis, cellular 
toxicology measurement and histology examination, it will provide more comprehensive information about 
the potential risks of cigarette smoke. In addition, our results highlight the features of our method as accurate 
and sensitive. We envision that our algorithm could have practical utility not only for systematic comparison 
of human health risk of various air-borne environmental toxic substance, but also for prediction of disease 
mechanism.

Data availability
The RNAseq data are publicly available in Sequence Read Archive database, accession number PRJNA637969.

Code availability
The SPPA algorithm can be downloaded from https://​github.​com/​bioin​plant/​SPPA.
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