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Abstract

Highly up-regulated in liver cancer (HULC) was originally identified as the most overexpressed long non-coding RNA in hepatocellular
carcinoma. Since its discovery, the aberrant up-regulation of HULC has been demonstrated in other cancer types, including gastric can-
cer, pancreatic cancer, osteosarcoma and hepatic metastasis of colorectal cancer. Recent discoveries have also shed new light on the
upstream molecular mechanisms underlying HULC deregulation. As an oncogene, HULC promotes tumorigenesis by regulating multiple
pathways, such as down-regulation of EEF1E1, promotion of abnormal lipid metabolism, and up-regulation of sphingosine kinase 1. Perti-
nent to clinical practice, a genetic variant in the HULC gene has been found to alter the risk for hepatocellular carcinoma and oesopha-
geal cancer, whereas cancer patients with high or low expression of HULC exhibit different clinical outcome. These findings highlighted
the pathogenic role and clinical utility of HULC in human cancers. Further efforts are warranted to promote the development of HULC-
directed therapeutics.
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Introduction

Only 2% of the human genome encodes protein-coding genes,
whereas the function of the remaining is still poorly defined. With the
completion of the Encyclopedia of DNA Elements (ENCODE) project

[1], it is now known that a significant portion of this genomic dark
matter is transcribed into non-coding RNAs, which have diverse bio-
logical functions [2]. Long non-coding RNAs (lncRNAs) are non-pro-
tein-coding RNAs with more than 200 nucleotides in length. LncRNAs
play a crucial role in the regulation of gene expression and participate
in many biological processes, including epigenetics [3], alternative
splicing [4], ‘sponging’ small RNAs [5] and translational regulation
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[6]. It therefore comes as no surprise that altered lncRNA expression
is implicated in many human diseases, including diabetes [7], infec-
tion [8], autoimmune diseases [9] and particularly cancer. In this con-
nection, accumulating evidence have demonstrated the functional
involvement of lncRNAs in the pathogenesis of different types of can-
cer, such as gastric [10], colon [11], lung [12] and pancreatic [13]
cancers as well as glioma [14], melanoma [15] and hepatocellular
carcinoma (HCC) [16, 17].

Highly up-regulated in liver cancer (HULC) was originally identi-
fied as the most overexpressed lncRNA in human HCC by Panzitt
and colleagues in 2007 [18]. HULC gene is located on chromosome
6p24.3 with approximately 500 nucleotides in length and contains
two exons. The transcribed RNA lacks substantial open-reading
frame and does not give rise to any protein. Since then, the aber-
rant up-regulation of HULC has been discovered in other cancer
types [19–22]. To this end, functional characterization indicated that
HULC could promote different pro-tumorigenic phenotypes, such as
cell survival, proliferation and invasion [20] in vitro as well as
tumour growth [23] and angiogenesis [24] in vivo. These studies
collectively indicate that HULC dysregulation plays a key role in
tumorigenesis.

In this review, we examine current evidence regarding the deregu-
lation of HULC in human cancers and its associated mechanisms.
Importantly, we discuss the clinical utilities of HULC as disease sus-
ceptibility and prognostic markers as well as the possible directions
of future investigation.

Aberrant up-regulation of HULC in
human cancers

Highly up-regulated in liver cancer is aberrantly up-regulated in a wide
spectrum of human cancers, including hepatocellular carcinoma [18],
gastric cancer [20], pancreatic cancer [21], osteosarcoma [22] and
hepatic metastasis of colorectal cancer [19].

Hepatocellular carcinoma and hepatic metastasis
of colorectal cancer

Panzitt and colleagues generated an HCC-specific gene library to
screen for deregulated genes using 46 HCC, 4 focal nodular hyper-
plasia, 7 cirrhosis and 2 non-neoplastic liver samples. They found that
HULC was progressively up-regulated from cirrhosis, through focal
nodular hyperplasia, to HCC. The overexpression of HULC was also
confirmed by radioactive in situ hybridization [18]. In another study,
Wang and colleagues verified the up-regulation of HULC in HCC using
14 pairs of tumour and para-tumour tissues by real-time reverse tran-
scription (RT)-PCR. They also demonstrated the higher expression of
HULC in seven HCC cell lines as compared with the two normal
human liver cell lines QSG-7701 and HL-7702 [25]. The up-regulation
of HULC in HCC has been further verified by other studies [26–28]. In
contrast with HCC, Matouk and colleagues demonstrated that no

HULC expression could be detected in primary colorectal tumours or
tumour-adjacent tissues [19]. Surprisingly, they found that colorectal
cancer with hepatic metastasis, but not lymph nodes metastasis,
exhibited a significant up-regulation of HULC. However, whether hep-
atic microenvironment drives the overexpression of HULC or HULC
by itself could promote liver metastasis of colorectal cancer remains
to be ascertained.

Gastric cancer, pancreatic cancer and
osteosarcoma

By real-time RT-PCR, Zhao and colleagues quantified HULC
expression in 58 pairs of gastric cancer and paired adjacent tis-
sues and found that HULC levels were markedly up-regulated in
cancerous gastric tissues. They also reported that HULC expres-
sion was higher in three gastric cancer cell lines (SGC7901,
BGC823 and AGS) as compared with the human gastric epithelial
mucosa cell line GES-1 [20]. Similar to HCC and gastric cancer,
Peng and colleagues showed a significant increase in HULC level
in pancreatic cancer as compared with adjacent normal tissues.
The authors also demosntrated higher levels of HULC in a panel
of pancreatic cancer cell lines (MIAPaca-2, CFPAC-1, PANC-1,
AsPC-1, SW1990 and BxPC-3) relative to normal human pancreas
tissues [21]. A recent study by Sun and colleagues further demon-
strated higher HULC expression in human osteosarcoma tissues
relative to adjacent non-tumour tissues. In addition, they reported
that HULC expression was significantly higher in three osteosar-
coma cell lines (MG-63, U2OS and SAOS-2) as compared with the
human normal bone cell line hFOB [22].

Transcriptional regulation of HULC by
hepatitis B virus and other factors

Although the mechanisms underlying HULC overexpression in many
cancer types remain uncertain, emerging evidence have hinted at
complex interplay between environmental and host factors in the reg-
ulation of HULC expression (Fig. 1).

Hepatitis B virus and CREB

Matouk and colleagues showed that HULC was up-regulated in two
hepatitis B virus (HBV)-producing HCC cell lines compared with their
parental lines that do not produce HBV [19], implicating that HULC
might be induced by HBV during hepatocarcinogenesis. Concordantly,
Lu and colleagues found that HULC levels were strongly associated
with HBV X protein (HBx), an oncogenic viral protein that mediates
many aspects of HBV pathogenicity, in both HCC and non-tumourous
liver tissues [19]. In this respect, HBx induced the promoter activity
of HULC via the transcription factor CREB [26], which in combination
with its partner P300 triggers promoter acetylation and demethylation
[25]. Wang and colleagues further identified a regulatory loop
between HULC and CREB, in which the former could ‘sponge’ and
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down-regulate miR-372, thereby derepressing PRKACB (a catalytic
subunit of cAMP-dependent protein kinase), which in turn induces
phosphorylation and activation of CREB [25].

Other transcription factors

In addition to CREB, other transcription factors have been identified
to link environmental stimulation to aberrant HULC up-regulation. Cui
and colleagues [23] found that cholesterol could up-regulate HULC
expression through RXRA, a nuclear retinoid receptor with ligand-
dependent transcriptional activity in HCC cells. Importantly, a feed-
forward loop exists between cholesterol and HULC in which the latter
could elicit methylation of CpG islands in the miR-9 promoter and
thereby abrogating miR-9-mediated repression of the transcription
factor PPARA. Derepression of PPARA in turn drives the expression
of acyl-CoA synthetase subunit ACSL1 that catalyses the initial step in
cellular long-chain fatty acid metabolism. Besides RXRA, several
members of the transcription factor Sp family (i.e. Sp1, Sp3 and Sp4)
were found to positively regulate HULC expression through direct
binding to HULC promoter in HCC cell lines. In this regard, the antidi-
abetic drug metformin down-regulated these Sp proteins and
decreased HULC expression [29].

LncRNA CUDR

LncRNA cancer up-regulated drug-resistant (CUDR) gene is overex-
pressed in many tumours and could promote oncogenesis. Gui and
colleagues showed that CUDR induced HULC expression via inhibiting
HULC promoter methylation during malignant transformation of
embryonic stem cell-derived hepatocyte-like cells [30]. This study
highlighted the complexity of gene regulation by demonstrating an
unanticipated lncRNA–lncRNA interaction.

Post-transcriptional regulators

H€ammerle and colleagues demonstrated that HULC could be regu-
lated by post-transcriptional destabilization through binding to IGF2
mRNA-binding protein 1 (IGFBP1). Mechanistically, binding of IGFBP1
reduced the half-life and steady-state expression levels of HULC
through recruiting the CNOT1 protein, which is the scaffold of the
human CCR4-NOT deadenylase complex. These findings suggested
that IGF2BP1 might induce HULC degradation through promoting
HULC deadenylation [27]. Apart from RNA destabilization, post-tran-
scriptional regulation of HULC by miR-203 has been reported [31].

Oncogenic functions and mechanisms
of HULC

Highly up-regulated in liver cancer has been shown to exert onco-
genic functions through promoting cancer-related phenotypes, such
as cell survival, proliferation, colony formation, migration, invasion,
tumorigenicity and/or angiogenesis, in different cancer types
(Table 1). The mechanism by which HULC mediates such actions is
complex and involves multiple factors (Fig. 2).

Down-regulation of EEF1E1

Eukaryotic translation elongation factor 1 epsilon 1 (EEF1E1), also
known as AIMP3 and p18, is a scaffold of the macromolecular
aminoacyl-tRNA synthase complex and may function as a tumour
suppressor by translocating into the nucleus upon DNA damage to
mediate ATM/ATR-mediated p53 activation [32]. Loss of EEF1E1
expression has been documented in gastric, colorectal and bladder
cancers [33, 34]. EEF1E1 gene is in close proximity to HULC gene.
In this connection, lncRNAs may have a propensity for regulating

Fig. 1 Upstream regulatory mechanisms
governing HULC expression. HBx-induced

activation of CREB plays a key role in

aberrant up-regulation of HULC in HCC.
Unchecked activation of two feed-forward

loops, namely miR-372/PRKACB/CREB

and miR-9/PPARA/ACSL1/cholesterol/RXRA,

also maintain HULC overexpression. Tran-
scriptional regulation of HULC by tran-

scription factors Sp1/3/4 and the lncRNA

CUDR and post-transcriptional repression

by IGFBP1 and miR-203 have also been
reported.
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the expression of their neighbouring genes [35]. Du and colleagues
demonstrated that there was a negative correlation between the
levels of HULC and EEF1E1 in HCC tissue specimens. Enforced
expression of HULC decreased while knockdown of HULC increased
the promoter activity and expression of EEF1E1. Importantly, abro-
gating the up-regulation of EEF1E1 rescued the tumour-suppressing
effect of HULC knockdown, which per se was sufficient to promote
HCC growth in vivo [26]. These findings suggested that HULC pro-
motes HCC growth at least partly through down-regulating EEF1E1.
The regulation of EEF1E1 by HULC has also been demonstrated
during regulatory T-cell differentiation in HBV-related liver cirrhosis
[36].

Promoting angiogenesis via sphingosine kinase 1

Sphingolipids are important bioactive molecules that signal cell prolif-
eration. Accumulating evidence suggests that regulation of sphin-
golipid levels by sphingosine kinase 1 (SK1) plays a crucial role in
carcinogenesis [37]. Lu and colleagues found that HULC levels were

positively correlated with levels of SK1 and its product, sphingosine-
1-phosphate, in HCC. Importantly, knockdown of SK1 abrogated
HULC-enhanced angiogenesis. The authors further demonstrated that
sequestration of miR-107 by HULC derepressed E2F1, thereby
enhancing SK1 transcription [24].

Promoting abnormal lipid metabolism by ACSL1

As mentioned above, ACSL1 is an enzyme crucial for initiating
long-chain fatty acid metabolism. Cui and colleagues reported that
HULC levels were positively correlated with ACSL1 levels in HCC,
in which epigenetic silencing of miR-9 by HULC derepressed the
transcriptional factor PPARA, thereby inducing ACSL1. Activation
of this molecular circuitry led to the accumulation of intracellular
triglycerides and cholesterol. In this connection, knockdown of
ACSL1 reduced the levels of triglycerides and cholesterol and
the growth of HCC xenografts in nude mice. Restored expression
of miR-9, knockdown of PPARA or ACSL1 or pharmacological
inhibition of ACSL1 by Triacsin C also rectified lipid accumulation

Table 1 Oncogenic functions of HULC in human cancers. EMT, epithelial-to-mesenchymal transition

Cancer types Phenotypes affected Regulation Cell lines used Approach

HCC Cell proliferation Positive MHCC97L, HepG2 Gain-of-function

LO2 Gain-of-function

LO2-X, Hep3B, PLC/PRF/5, HepG2-X Loss-of-function

Cell proliferation, soft-agar colony
formation

Positive Embryonic stem cell-derived hepatocyte-
like cells

Loss-of-function

Cell proliferation, G1-S transition, colony
formation, tumorigenicity

Positive HepG2 Gain-of-function

Colony formation Positive HepG2-X Loss-of-function

Soft-agar colony formation Positive LO2 Gain-of-function

Migration, invasion Positive HepG2, SNU-449, SK-Hep-1 Loss-of-function

EMT Positive SK-Hep-1 Loss-of-function

Tumorigenicity Positive HepG2-X Loss-of-function

Tumorigenicity, lipogenesis Positive HepG2, Huh7 Gain-of-function

Tumorigenicity, angiogenesis Positive HepG2, Huh7 Gain-of-function

Lipogenesis Positive HepG2.2.15 Loss-of-function

Gastric cancer Cell proliferation Positive SGC7901 Gain-of-function,
loss-of-function

Migration, invasion, EMT Positive SGC7901 Loss-of-function

Apoptosis Negative SGC7901 Gain-of-function

Osteosarcoma Cell proliferation, migration, invasion Positive U2OS Loss-of-function

Pancreatic cancer Cell proliferation, colony formation,
G1-S transition

Positive MIAPaca-2, CFPAC-1 Loss-of-function
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and abrogated the mitogenic effect of HULC overexpression
in vitro [23].

Perturbing cellular circadian rhythm via CLOCK

Disruption of cellular circadian rhythm (i.e. periodic alterations of
gene expression) is implicated in hepatocarcinogenesis [38]. It has
been demonstrated that HULC could up-regulate the circadian regula-
tor CLOCK and perturb its rhythmical expression in HCC via interact-
ing with the 50UTR of CLOCK mRNA through complementary base
pairing. Concordantly, CLOCK was up-regulated in HCC tissues and
correlated with HULC levels. To this end, knockdown of CLOCK abol-
ished the stimulatory effects of HULC overexpression on cell prolifer-
ation, G1-S phase transition and colony formation in vitro as well as
HCC xenograft growth in vivo [39].

Promoting epithelial–mesenchymal transition via
Snail

Epithelial–mesenchymal transition (EMT) is a process by which
epithelial cells acquire mesenchymal properties characterized by
reduced intercellular adhesion and elevated motility and invasive-
ness. EMT plays a key role in tumour progression and metastasis
[40]. Positive regulation of EMT, manifested as down-regulation of
epithelial markers (e.g. E-cadherin) and up-regulation of mes-
enchymal markers (e.g. vimentin), by HULC has been demon-
strated in HCC [29] and gastric cancer [20]. In this respect,
overexpression of HULC has been shown to up-regulate the
expression of Snail [41], which is an important EMT-inducing
transcription factor [42].

Regulation of other key oncogenes and tumour
suppressor genes

LncRNAs could interact with chromatin-modifying complexes, such
as EZH2 and MLL1, to regulate gene expression. Gandhy and col-
leagues reported that a substantial number of genes were co-regu-
lated by HULC and MLL1 but not EZH2 [29]. In particular, several key
oncogenes in hepatocarcinogenesis, such as ribonucleotide reductase
M2 [43], Skp2 [44] and Stathmin1 [45], were positively regulated by
both HULC and MLL1 in HCC cells. Apart from positive regulation of
oncogenes, repression of tumour suppressor genes, GLTSCR2 [46]
and miR-372 [47], by HULC has been reported [18]. However,
whether these genes are functionally involved in the oncogenic action
of HULC remains unclear.

Clinical utilities of HULC

Polymorphism of HULC gene as cancer
susceptibility marker

Liu and colleagues conducted a case–control study and genotyped a
single-nucleotide polymorphism (SNP) rs7763881 in HULC in a Chi-
nese cohort of 1300 HBV-positive HCC patients, 1344 HBV persistent
carriers and 1344 participants with HBV natural clearance. The
authors found that AC and CC genotypes of rs7763881 conferred a
significantly lower risk (P = 0.022) for HCC with an odds ratio of 0.81
in a dominant genetic model as compared with the AA genotype.
However, no significant association was found between rs7763881
genotypes and HBV clearance [48]. Similarly, in a case–control study

Fig. 2 Downstream oncogenic pathways

activated by HULC. Induction of these

pathways by HULC was mainly reported in

HCC studies. The protumorigenic mecha-
nism of HULC overexpression in other

cancer types is still largely uncertain.

EMT, epithelial–mesenchymal transition.
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for assessing the association between rs7763881 genotypes and sus-
ceptibility to oesophageal squamous cell carcinoma, AC genotype
was associated with a significantly reduced disease risk (P = 0.031)
relative to the AA genotype with an adjusted odds ratio of 0.69 [49].
These findings indicated that genetic variants of HULC reduce the
susceptibilities to HBV-associated HCC and oesophageal squamous
cell carcinoma.

Circulating HULC as diagnostic marker

Highly up-regulated in liver cancerwas detected with higher frequency
in the plasma of HCC patients compared to healthy controls (63%
versus 10%) with higher detection rates in patients with higher
Edmondson grades (100% in Stage III/IV versus 14% in Stage I/II) or
with HBV-positive status (90% versus 25%) [28]. The diagnostic sig-
nificance of circulating HULC was verified in a subsequent study, in
which HULC could achieve an area under the receiver operating char-
acteristic curve of 0.78 for diagnosing HCC. There was also a strong
correlation between tissue and circulating levels of HULC [50]. These
findings suggested that circulating HULC might be used as a non-
invasive biomarker for HCC diagnosis.

HULC as prognostic marker

Up-regulation of HULC was associated with poor pathological and
clinical outcome in osteosarcoma, pancreatic cancer and gastric can-
cer. In osteosarcoma, higher expression of HULC was correlated with
more advanced clinical stages and distant metastasis as well as
shorter overall survival. Multivariate analysis confirmed HULC overex-
pression to be an independent prognostic factor for patients’ survival
[22]. Similarly, higher HULC expression was associated with larger
tumour size, lymph node metastasis and vascular invasion in pancre-
atic cancer and served as an independent prognosticator for shorter
overall survival [21]. In gastric cancer, HULC overexpression was cor-
related with lymph node metastasis, distant metastasis and advanced
tumour-node-metastasis (TNM) stages [20].

While HULC is highly up-regulated in HCC, its association with
clinicopathological features remains controversial. H€ammerle and
colleagues found that HULC up-regulation was most prominent in
low-stage HCC and progressively decreased along advancing
tumour stages. Highly up-regulated in liver cancer up-regulation
was also more remarkable in well-differentiated than poorly

differentiated HCC [27]. On the contrary, Xie and colleagues
reported that higher HULC expression was positively associated
with Edmondson histological grades of HCC [27]. Consistent with
the former, Yang and colleagues demonstrated that high HULC
expression was associated with less vascular invasion and better
overall survival of HCC patients [51]. Further studies with larger
sample size are needed to ascertain the prognostic significance of
HULC in HCC.

Concluding remarks and future
perspectives

Overexpression of the lncRNA HULC occurs in many cancer
types, including hepatocellular carcinoma, gastric cancer, pancre-
atic cancer, osteosarcoma and hepatic metastasis of colorectal
cancer. A complex interplay between environmental factors (e.g.
HBV infection, cholesterol) and existing host cellular signalling
dysregulation (e.g. transcription factors, miRNAs) might con-
tribute to its aberrant up-regulation. As an oncogene, HULC pro-
motes cancer-related cellular phenotypes via multiple pathways,
which further our understanding of the complexity of gene regu-
lation by lncRNAs. However, these pathways interact widely with
each other and their significance in the oncogenic action of
HULC should be interpreted with caution. From a clinical per-
spective, polymorphisms in HULC gene are associated with
altered risks for oesophageal cancer and HCC, whereas HULC in
plasma may serve as a biomarker for early HCC diagnosis. More-
over, altered expression of HULC has been shown to correlate
with clinicopathological features, including patients’ survival. Nev-
ertheless, population-based differences may occur, and thus its
use as a biomarker should be verified in different ethnic groups.
Despite these limitations, it is propitious that our understanding
of the upstream regulatory mechanisms of HULC and recent
advances in the development of RNA-targeting therapeutics will
eventually open up new avenues for developing HULC-targeting
molecules as novel cancer therapeutics.
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