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The SARS-CoV-2 host cell receptor ACE2 correlates positively with
immunotherapy response and is a potential protective factor for cancer
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a b s t r a c t

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 29 million
people and has caused more than 900,000 deaths worldwide as of September 14, 2020. The SARS-CoV-
2 human cell receptor ACE2 has recently received extensive attention for its role in SARS-CoV-2 infection.
Many studies have also explored the association between ACE2 and cancer. However, a systemic inves-
tigation into associations between ACE2 and oncogenic pathways, tumor progression, and clinical out-
comes in pan-cancer remains lacking. Using cancer genomics datasets from the Cancer Genome Atlas
(TCGA) program, we performed computational analyses of associations between ACE2 expression and
antitumor immunity, immunotherapy response, oncogenic pathways, tumor progression phenotypes,
and clinical outcomes in 13 cancer cohorts. We found that ACE2 upregulation was associated with
increased antitumor immune signatures and PD-L1 expression, and favorable anti-PD-1/PD-L1/CTLA-4
immunotherapy response. ACE2 expression levels inversely correlated with the activity of cell cycle, mis-
match repair, TGF-b, Wnt, VEGF, and Notch signaling pathways. Moreover, ACE2 expression levels had
significant inverse correlations with tumor proliferation, stemness, and epithelial-mesenchymal transi-
tion. ACE2 upregulation was associated with favorable survival in pan-cancer and in multiple individual
cancer types. These results suggest that ACE2 is a potential protective factor for cancer progression. Our
data may provide potential clinical implications for treating cancer patients infected with SARS-CoV-2.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has infected more than 29 million people and has caused
more than 900,000 deaths worldwide as of September 14, 2020
(https://coronavirus.jhu.edu/map.html). SARS-CoV-2 uses the
angiotensin-converting enzyme 2 (ACE2) as a host cell receptor
to infect humans [1–4]. ACE2 plays an important role in regulating
cardiovascular and renal function [5]. This protein has recently
received extensive attention for its role in SARS-CoV-2 infection
[1,2,4]. Our recent study revealed that ACE2 is expressed in various
human tissues [6], suggesting that SARS-CoV-2 may invade various
human organs besides the lungs. Moreover, SARS-CoV-2 infection
may result in ACE2 upregulation [7]. However, ACE2 deficiency
may exacerbate outcomes in patients with SARS-CoV-2 infection
[8]. Indeed, a recent study showed that ACE2 was downregulated
in virus-infected lung tissue [9], indicating a potential protective
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role of ACE2 in patients with SARS-CoV-2 infection. ACE2 also plays
a protective role in hypertension and heart disease [8].

Many studies have investigated the association between ACE2
and cancer [10–18]. For example, Yu-Jun et al. analyzed ACE2
expression in various cancers and revealed a positive association
between ACE2 expression and survival prognosis in liver cancer
[10]. Cai et al. described the genetic alteration, mRNA expression,
and DNA methylation of ACE2 in over 30 cancer types and revealed
genetic and epigenetic variations of ACE2 in various cancers [11].
Several studies demonstrated that ACE2 had antitumor effects by
inhibiting tumor angiogenesis [13,14,16]. Zhang et al. revealed that
ACE2 expression was more highly expressed in lung adenocarci-
noma (LUAD) and lung squamous cell carcinoma (LUSC) than in
normal tissues [17]. Huang et al. found that ACE2 expression had
a significant association with immune cell infiltration in various
normal and cancer tissues [18]. A recent study [9] showed that
ACE2 expression was associated with increased tumor immune
infiltration and was a positive prognostic factor in uterine corpus
endometrial and renal papillary cell cancers. Despite these previ-
ous studies, a systemic investigation into the association between
ACE2 expression and antitumor immunity, oncogenic pathways,
tumor progression phenotypes, and clinical outcomes in pan-
cancer remains lacking.

In this study, we investigated associations between ACE2 expres-
sion and antitumor immune signatures in 13 human cancer cohorts
from the Cancer Genome Atlas (TCGA) program (https://cancergen-
ome.nih.gov/). We also explored associations between ACE2 expres-
sion and multiple tumor phenotypes, including cell proliferation,
stemness, epithelial-mesenchymal transition (EMT), oncogenic sig-
naling, and clinical outcomes in these cancer cohorts. We also inves-
tigated the association between ACE2 expression and
immunotherapy response in four cancer cohorts receiving the
immune checkpoint blockade therapy. This study aimed to provide
new insights into the association between ACE2 and cancer and the
potential association between cancer and SARS-CoV-2 infection.
Fig. 1. Association of ACE2 expression with immune signatures and immunother-
apy response in cancer. (A) Immune-related pathways upregulated in high- (upper
third) versus low-ACE2-expression-level (bottom third) tumors in at least 5 cancer
types identified by GSEA [25] (adjusted p-value (FDR) < 0.05). (B) Significant
positive correlations of ACE2 expression levels with the ratios of immune-
promoting/immune-inhibiting cytokines in pan-cancer and in 12 individual cancer
types. The Pearson correlation coefficient (r) and p- or FDR-value are shown. (C) The
positive expression correlation between ACE2 and PD-L1 in pan-cancer and in 6
individual cancer types. (D) Higher rate of immunotherapy response in the high-
2. Materials and methods

2.1. Datasets

From the genomic data commons data portal (https://portal.
gdc.cancer.gov/), we obtained RNA-Seq gene expression profiling
datasets (level 3 and RSEM normalized) for 13 TCGA cancer
cohorts. The 13 cancer cohorts included cervical squamous-cell
carcinoma (CESC), colon adenocarcinoma (COAD), esophageal car-
cinoma (ESCA), head and neck squamous cell carcinoma (HNSC),
kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), LUAD, LUSC, skin cutaneous melanoma (SKCM),
thymoma (THYM), uterine corpus endometrial carcinoma (UCEC),
ovarian carcinoma (OV), and pancreatic adenocarcinoma (PAAD).
We log2-transformed all RSEM-normalized gene expression values
before further analyses. Besides, we obtained gene expression pro-
filing and clinical data in four cancer cohorts receiving anti-PD-1/
PD-L1/CTLA-4 immunotherapy from their related publications,
including Nathanson (melanoma) [19], Topalian (melanoma) [20],
Ascierto (renal cell carcinoma) [21], and Snyder (bladder cancer)
cohorts [22]. A summary of these datasets is presented in Supple-
mentary Table S1.
ACE2-expression-level (> median) than in the low-ACE2-expression-level
(< median) tumors in four cancer cohorts receiving immune check point blockade
th.erapy. (E) Kaplan-Meier survival curves showing better survival in high-ACE2-
expression-level (> median) than in low-ACE2-expression-level (< median) cancer
patients with immune checkpoint blockade therapy. The log-rank test p-value is
shown. (F) Correlations between pathway activity and PD-L1 expression levels in
pan-cancer and in 13 individual cancer types. The Spearman correlation coefficient
(q) and FDR-value are shown. FDR: false discovery rate. * FDR < 0.05; ** FDR < 0.01;
*** FDR < 0.001; ns: not significant. They also apply to the following figures.
2.2. Evaluating the enrichment levels of immune signatures, pathways,
and tumor phenotypes

We evaluated the enrichment level of a pathway or tumor phe-
notype in a tumor sample by the single-sample gene-set enrich-
ment analysis (ssGSEA) score [23]. The gene set included all
2439
marker genes of a pathway or tumor phenotype. A total of 14
cancer-associated pathways (cell cycle, mismatch repair, TGF-b,
Wnt, VEGF, Notch signaling, axon guidance, renin angiotensin sys-
tem, PPAR signaling, MAPK signaling, glycolysis, cell adhesion
molecules, endocytosis, and calcium signaling) and three tumor
phenotypes (cell proliferation, stemness, and EMT) were analyzed.
We presented the marker genes of these pathways and tumor phe-
notypes in Supplementary Table S2.

2.3. Gene-set enrichment analysis

We defined high-ACE2-expression-level (upper third) and low-
ACE2-expression-level (bottom third) tumors in each cancer type
based on ACE2 expression profiles. We identified the KEGG [24]
pathways highly enriched in both groups of tumors using GSEA
[25] with a threshold of adjusted p-value < 0.05. Moreover, we
used WGCNA [26] to detect the gene modules (gene ontology) dif-
ferentially enriched between the high- and low-ACE2-expression-
level tumors in pan-cancer. We identified the hub genes as the
genes connected to at least 5 other genes with a connectedness
weight greater than 0.25 in a gene module and built their co-
expression network.

2.4. Statistical analysis

We used Spearman’s correlation test to evaluate the correlation
(q) of ACE2 expression levels with the enrichment levels of path-
ways or tumor phenotypes, which were not normally distributed.
We used Pearson’s correlation test to evaluate the correlation (r)
of ACE2 expression levels with the ratios of immune signatures,
which was the log2-transformed values of the ratios between the
mean expression levels of all marker genes in immune signatures
and was normally distributed. We used the Benjamini and Hoch-
berg method [27] to calculate the FDR for adjusting for multiple
tests. We compared overall survival (OS), disease-specific survival
(DSS), progression-free interval (PFI), and disease-free interval
(DFI) between the high- and low-ACE2-expression-level tumors.
We utilized Kaplan-Meier curves to display survival time differ-
ences and the log-rank test to evaluate the significance of survival
time differences. The R package ‘‘survival” was used to perform the
survival analyses.

3. Results

3.1. Association of ACE2 expression with immune signatures and
immunotherapy response in cancer

GSEA [25] identified many immune-related pathways highly
enriched in the high-ACE2-expression-level tumors in at least 5
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cancer types. These pathways included viral myocarditis, T cell
receptor signaling, systemic lupus erythematosus, primary
immunodeficiency, NOD-like receptor signaling, natural killer cell
mediated cytotoxicity, Leishmania infection, Jak-STAT signaling,
2440
intestinal immune network for IgA production, hematopoietic cell
lineage, graft-versus-host disease, Fc epsilon RI signaling, epithelial
cell signaling in Helicobacter pylori infection, cytosolic DNA-
sensing, cytokine-cytokine receptor interaction, chemokine signal-



Z. Zhang et al. Computational and Structural Biotechnology Journal 18 (2020) 2438–2444
ing, B cell receptor signaling, autoimmune thyroid disease, asthma,
antigen processing and presentation, and allograft rejection
(Fig. 1A). Moreover, we found that ACE2 expression levels posi-
tively correlated with the immune-promoting/immune-inhibiting
ratios in pan-cancer (Pearson’s correlation test, r = 0.25, p = 2.37
� 10�71) and in 12 individual cancer types (adjusted p-value
(FDR) < 0.05) (Fig. 1B). This suggests that ACE2 expression has a
stronger positive association with the immune-promoting signa-
ture than the immune-inhibiting signature in these cancer types.
Altogether, these results suggest a prominent positive association
between ACE2 expression and antitumor immune signatures in
cancer. We found that ACE2 had a positive expression correlation
with PD-L1 in pan-cancer and in 6 individual cancer types
(FDR < 0.05) (Fig. 1C). We expected that the ACE2 expression would
have a positive association with the response to anti-PD-1/PD-L1/
CTLA-4 immunotherapy. We confirmed the anticipation in four
cancer cohorts receiving immune checkpoint blockade therapy.
In these cohorts, the high-ACE2-expression-level (> median)
tumors displayed a higher rate of immunotherapy response than
the low-ACE2-expression-level (< median) tumors (67% versus
17%, 80% versus 40%, 40% versus 20%, and 46% versus 25% for
Nathanson (melanoma), Topalian (melanoma), Ascierto (renal cell
carcinoma), and Snyder (bladder cancer) cohorts, respectively)
(Fig. 1D). As a result, the former had better overall survival (OS)
than the latter in the Nathanson cohort, which had related data
available (log-rank test, p = 0.036) (Fig. 1E). These results suggest
that the ACE2 expression is likely to be a positive predictor for
anti-PD-1/PD-L1 immunotherapy.

GSEA [25] also identified several cancer-associated pathways
highly enriched in the high-ACE2-expression-level tumors in at
least 5 cancer types. These pathways included axon guidance, renin
angiotensin system, PPAR signaling, MAPK signaling, glycolysis,
cell adhesion molecules, endocytosis, and calcium signaling. We
found that the activities of these pathways were significantly and
positively associated with PD-L1 expression levels in pan-cancer
(FDR < 0.001) (Fig. 1F). In individual cancer types, the elevated
activities of these pathways were also likely to correlate with
increased PD-L1 expression levels (FDR < 0.05) (Fig. 1F). The ele-
vated activities of these pathways could be responsible for the
more active immunotherapy response in cancer.
3.2. Association of ACE2 expression with oncogenic pathways and
tumor phenotypes in cancer

We quantified the activity of a pathway using the single-sample
gene-set enrichment analysis (ssGSEA) [23] score of the set of
genes included in the pathway. We found that ACE2 expression
levels inversely correlated with the activity of cell cycle, mismatch
repair, TGF-b, Wnt, VEGF, and Notch signaling pathways in 10, 7, 9,
7, 6, and 7 individual cancer types, respectively (Spearman’s corre-
lation test, FDR < 0.05) (Fig. 2A). Moreover, we found that ACE2
expression levels had a significant inverse correlation with the
expression levels of MKI67, which is a tumor proliferation index
marker, in pan-cancer and 8 individual cancer types (Pearson’s cor-
Fig. 2. Association of ACE2 expression with oncogenic pathways and tumor
phenotypes in cancer. ACE2 expression levels are likely to inversely correlate with
the activity of oncogenic pathways (A),MKI67 expression levels (B), stemness scores
(C), and EMT signature scores (D) in cancer. EMT: epithelial-mesenchymal
transition; (E) Kaplan-Meier survival curves showing that ACE2 upregulation is
associated with favorable survival in pan-cancer and multiple individual cancer
types. Log-rank test p-values are shown. OS: overall survival; DSS: disease-specific
survival; PFI: progression-free interval; DFI: disease-free interval. (F) ACE2 expres-
sion levels significantly decrease with tumor advancement in KIRC. KIRC: kidney
renal clear cell carcinoma.

"
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relation test, FDR < 0.05) (Fig. 2B). Tumor stemness represents a
stem cell-like tumor phenotype associated with tumor progres-
sion, metastasis, immune evasion, and drug resistance. We found
that ACE2 expression levels showed a marked negative correlation
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with tumor stemness scores (ssGSEA scores) in pan-cancer and in
10 individual cancer types (FDR < 0.05) (Fig. 2C). EMT plays an out-
standing role in facilitating malignant transformation, tumor pro-
gression, and metastasis. We observed a marked negative
correlation between ACE2 expression levels and EMT signature
scores (ssGSEA scores) in 11 individual cancer types (FDR < 0.05)
(Fig. 2D). Overall, these data indicate that ACE2 could be a protec-
tive factor for cancer progression. Indeed, survival analyses showed
that ACE2 upregulation was associated with favorable survival in
pan-cancer (log-rank test, p < 0.01 for OS, DSS, PFI, and DFI) and
in KIRC, KIRP, LUSC, and OV (log-rank test, p < 0.05 for OS, DSS,
PFI, and/or DFI) (Fig. 2E). Furthermore, we found that ACE2 expres-
sion levels significantly decreased with the tumor advancement in
KIRC (two-sided Student’s t test, p < 0.05, fold change > 1.5 for
Fig. 3. Interaction networks of ACE2 in cancer. (A) 217 and 26 genes having marked po
r| > 0.5). The size of nodes is proportional to the absolute values of the expression c
expression-level and low-ACE2-expression-level pan-cancer. (C) Co-expression subnetw
level pan-cancer centered on three transcription factor genes (EOMES, IRF4, and TBX21).
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high-grade (G3-4) versus low-grade (G1-2), late-stage (stage III-
IV) versus early-stage (stage I-II), large tumor size (T3-4) versus
small tumor size (T1-2), with lymph nodes (N1-3) versus without
regional lymph nodes (N0), and metastasis (M1) versus no metas-
tasis (M0)) (Fig. 2F).

3.3. Identifying interaction networks of ACE2 in cancer

We identified 217 and 26 genes having marked positive and
negative expression correlations with ACE2 in pan-cancer, respec-
tively (|r| > 0.5) (Fig. 3A and Supplementary Table S3). WGCNA
[26] identified five gene modules (indicated in blue, green, yellow,
brown, and turquoise color, respectively) highly enriched in the
high-ACE2-expression-level tumors and three gene modules (indi-
sitive and negative expression correlations with ACE2 in pan-cancer, respectively (|
orrelation coefficients. (B) Gene modules (gene ontology) enriched in high-ACE2-
ork of the immune response module (in brown) enriched in high-ACE2-expression-
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cated in pink, black, and red color, respectively) highly enriched in
the low-ACE2-expression-level tumors (Fig. 3B). The GO terms
highly enriched in the high-ACE2-expression-level tumors mainly
included brush border, cellular response to zinc ion, cell adhesion,
immune response, and chemical homeostasis within a tissue. In
contrast, the GO terms highly enriched in the low-ACE2-
expression-level tumors mainly included microtubule-based pro-
cess, cell cycle, and nucleic acid binding (Fig. 3B). Again, these
results indicate that ACE2 expression has a significant positive
association with antitumor immune response and a significant
negative association with the cell cycle in cancer, suggesting the
potential protective role of ACE2 from cancer progression.

From the brown gene module, we identified 82 hub genes
mainly associated with immune-related pathways. Among the 82
hub genes, three transcription factor (TF) genes, including EOMES,
IRF4, and TBX21, were co-expressed with many other immune-
related genes, such as PDCD1, TIGIT, GZMK, IL21R, and PRF1
(Fig. 3C). The association between these TFs and immune regula-
tion has been well recognized, such as EOMES (Eomesodermin)
mediating the CD8+ T cell differentiation [28], IRF4 (interferon reg-
ulatory factor 4) regulating immune cell development [29], and
TBX21 (T-bet) playing a pivotal role in regulating Th1 cell develop-
ment [30].
4. Discussion

We investigated the association of ACE2 expression with
immune signatures, oncogenic pathways, and tumor phenotypes
in diverse cancer cohorts. Our results indicate that ACE2 is a poten-
tial protective factor for cancer progression. In particular, the ACE2
downregulation correlates with worse survival and tumor
advancement in KIRC, also known as clear cell renal cell carcinoma
(ccRCC). Previous studies demonstrated that ACE2 exerts antitu-
mor effects by inhibiting tumor angiogenesis [13] and promoting
tumor immune infiltration [9]. Our results are consistent with
these previous findings. Besides, we found that ACE2 upregulation
was associated with reduced cell proliferation, stemness, and EMT,
as well as the downregulation of oncogenic pathways, such as cell
cycle, mismatch repair, TGF-b, Wnt, and Notch signaling. Moreover,
we found that ACE2 had a positive expression correlation with PD-
L1, a predictive marker for an active response to immune check-
point inhibitors. As a result, ACE2 upregulation correlates with a
favorable response to anti-PD-1/PD-L1/CTLA-4 immunotherapy.

Our and others’ studies indicate that ACE2 plays a protective
role in cancer, hypertension, heart disease, and COVID-19 patients.
An intriguing phenomenon is that ACE2 as a SARS-CoV-2 human
host cell receptor is crucial for SARS-CoV-2 to invade human cells,
while its deficiency may exacerbate outcomes in COVID-19
patients [8]. A potential explanation is that the ACE2 deficiency
could worsen outcomes in the people with underlying conditions,
such as hypertension, heart disease, and cancer, who are infected
with COVID-19. Thus, using ACE2 inhibitors for preventing and
treating COVID-19 may not be an advisable strategy for individuals
with certain underlying conditions, such as hypertension, heart
disease, and cancers.

It should be noted that the negative correlation between ACE2
and cancer progression presented in this study is an association
but not a causation. To prove their causal relationship, further
experiments are necessary. This would be an important direction
for further studies.
5. Conclusions

ACE2 upregulation was associated with increased antitumor
immunity and immunotherapy response, reduced tumor malig-
2443
nancy, and favorable survival in cancer, suggesting that ACE2 is a
potential protective factor for cancer progression. Our data may
provide potential clinical implications for treating cancer patients
infected with SARS-CoV-2.
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