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Abstract: The Union-Retire CCA (UR-CCA) algorithm started a new paradigm for connected com-
ponents analysis. Instead of using directed tree structures, UR-CCA focuses on connectivity. This
algorithmic change leads to a reduction in required memory, with no end-of-row processing overhead.
In this paper we describe a hardware architecture based on UR-CCA and its realisation on an FPGA.
The memory bandwidth and pipelining challenges of hardware UR-CCA are analysed and resolved.
It is shown that up to 36% of memory resources can be saved using the proposed architecture. This
translates directly to a smaller device for an FPGA implementation.
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1. Introduction

In embedded vision applications, three factors are often of importance: real-time
processing (large amounts of image data cannot be stored for later offline processing),
processing latency (especially important for stability when vision is part of a control
system) and power (many embedded applications have a limited power budget). Where
these requirements cannot be met by conventional software systems, many have turned
to field programmable gate arrays (FPGAs) for their implementation. The parallel nature
of hardware design for an FPGA can often accelerate a design, enabling operation at a
lower clock frequency (reducing power requirements) and significantly reduce the latency
because images can be processed directly as they are streamed from a camera without first
having to save them in memory (as is required by software). However, these benefits come
at the cost of the increased design effort that is required for a parallel hardware design, as is
demonstrated within this paper.

Many image analysis applications use some form of connected components analysis
(CCA) to measure features of objects within an image. First, preprocessing operations
are used to segment the objects of interest within the image, resulting in a binary image
where each object is comprised of a set of connected pixels. Each connected component
can then be extracted, enabling a vector of features of the object to be calculated. These
feature vectors can then be used to eliminate false objects (or noise) or otherwise classify
each object into one of several classes, and provide key data about each object.

Typically, connected components are identified and labelled using some form of Union-
Find algorithm [1]. Labels are initially assigned to pixels based on connectivity. When
two different labels are detected as belonging to a single object (for example when two
sub-components are initially assigned different labels, and these sub-components are later
detected to be adjacent), a Union operation combines the sets of equivalent labels. Since
each object can be represented by sets of labels, a Find operation is required to determine the
representative label for a component. A connected components labelling (CCL) algorithm
therefore requires another pass through the image to replace the set of labels associated
with a component by the single representative label.
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For real-time processing on an FPGA, multiple passes through the image require the
image to be buffered (usually in external memory) and this significantly increases the
latency. Therefore, single-pass CCA algorithms were developed that calculate the feature
vector of each component during the labelling process [2]. Data are accumulated incre-
mentally as each pixel is added to the component. A Union operation requires combining
the feature vectors of the sub-components, with the resultant feature vector associated
with the representative label (identified using a Find operation) [1]. This combination of
feature vectors by a Union requires that the components of the feature vector are able to be
accumulated associatively [2].

Union-Find algorithms focus on labelling an image. However, for CCA, the labels are
only an intermediate step, and the direct output is the feature vector for each connected
component rather than a labelled image. The real focus needs to be on the connectivity
between sub-components, rather than their actual labels, and this has led to the recently
proposed Union-Retire algorithm [3]. Each run of consecutive object pixels on an image
row is assigned a label. A Union operation is still required to link runs when they overlap
between rows, but the Find operation is no longer required. Instead, a Retire operation is
used when a run is no longer accessible (during the raster scan of the image). The Retire
operation has two functions. First, it removes the label from the set, while ensuring that
the remaining members remain connected. Second, it passes the partial feature vector to
one of the remaining members of the set to ensure that its data are included in the final
feature vector.

This paper explores a pipelined, streamed implementation of the Union-Retire algo-
rithm on an FPGA, and analyses the requirements to make it work. In many low-cost
FPGAs, on-chip RAM (random access memory) is often the most precious resource when
implementing image processing algorithms. Therefore, within this paper, we have fo-
cused on the ability of the Union-Retire algorithm to reduce memory requirements when
implementing CCA.

2. Related Work

Early CCL algorithms [4,5] required two or more passes to assign a distinct label to
each component of a binary image. The need to process high-resolution images and image
streams with an increasing frame rate, however, made such algorithms expensive with
regards to computer and memory resources which required optimisations for hardware
realisation on FPGAs. Here, mainly FPGA and hardware-centric publications are discussed.
For further reference, the review by Bailey [2] provides a detailed overview of the history
of single-pass CCL and CCA algorithms.

Bailey and Johnston [6] shifted the focus from creating a labelled image to extracting
and accumulating feature vectors while scanning the input image. Consequently, the
name of the described algorithm was shifted from connected components labelling (CCL)
to connected components analysis (CCA). The ability to process an input image with a
single pass also significantly reduced the required memory resources, which was especially
important for processing on FPGAs with limited memory [7]. This idea resulted in a
number of optimisations to reduce memory requirements, e.g., aggressive relabelling [7],
double lookup [8], and deferred label assignment [9].

These algorithms still required mechanisms to resolve chained dependencies of labels
which are a result of the raster-scan processing. In [6] the resolution period was at the end
of each image row (during horizontal blanking). This was eliminated by some of the more
recent algorithms [10–12].

Algorithms that process one pixel per clock cycle have an inherent sequential nature
of the labelling and merging process which make them difficult to accelerate through
parallelisation. A number of parallelisation methods have been proposed. Kumar et al. [13]
parallelised the labelling of CCL by processing horizontal slices of the input image. These
are combined afterwards in a sequential process. Klaiber et al. [14] extract feature vectors
from vertical slices of the image in parallel from which results are combined in a scalable
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coalescing unit [15]. Kowalczyk et al. [16] demonstrate an implementation of processing
up to four pixels in parallel with neighbour-pixel parallelisation.

Lacassagne and Zavidovique [17] identified memory accesses and conditional state-
ments to be the key issue slowing down CCL on RISC (reduced operation set computing)
processors. In [18] this was identified to require the fewest processing cycles per pixel when
carried out on a general-purpose processor. Newer versions of this algorithm also consider
vector processing [19]. Even though [17] has not been directly realised as hardware archi-
tecture for CCL/CCA, this algorithm considers many hardware aspects, such as memory
hierarchy and data path, which provided inspiration for FPGA implementations.

All of the aforementioned algorithms use a variant of Union-Find as the set-merge
algorithm to combine sets of equivalent labels when merging regions, and to find the
representative label of a component. Consequently, the focus of many algorithms is on the
labelling, rather than the connectivity, which is not surprising given that they are derived
from algorithms where the key aim is to produce a labelled image.

Tang et al. [20] is the first to move away from this, with each run of consecutive object
pixels assigned a unique segment identifier, with the focus more on the linking of segments
to convey connectivity. Based on this, an alternative approach to Union-Find is proposed
called Union-Retire [3]. Like Tang et al., it deterministically assigns an index to each run,
and uses a linked-list structure to represent mergers. However, rather than having a linear
structure, with the head as the representative label, a more general graph structure is
proposed to represent the connections between runs.

3. Union-Retire Algorithm

The focus of this paper is the realisation of a hardware architecture of the Union-Retire
algorithm for CCA (UR-CCA) presented in [3]. Therefore, this section provides a brief
overview of the UR-CCA algorithm. A more detailed description and examples can be
found in [3].

UR-CCA shifts the paradigm of CCA algorithms from Union-Find-based operations
on a forest data structure to using a more general graph. The basic principle is to represent
each run of consecutive object pixels as a node within the graph, where each connected
subgraph corresponds to a single connected component. When a run is no longer accessible,
a Retire operation removes the corresponding node from the graph, simplifying the graph’s
structure. Throughout this process, the focus is on maintaining the overall connectivity
within the component between the constituent runs.

Algorithm 1 shows the operations for Union-Retire dependent on the content of the
current 2× 2 window and the previously processed pixels in the image represented by the
state of the graph. To simplify the description, the window patterns are shown graphically,
where background pixels are shown in white ( ), object pixels in black ( ), and pixels that
can be either object or background are shown in grey ( ).

Each node in the graph is assigned an index. All nodes in the graph have a maximum
of two outgoing arcs, represented by a link table (an array) LT[ ] with fields for the two
links LT[ ].L1 and LT[ ].L2 (a shorthand notation is later used to represent the most recent
link, i.e., LT[ ].L refers to LT[ ].L2 when LT[ ].L2 6= 0, otherwise LT[ ].L1). A feature vector
is associated with each node and stored in a data table DT[ ]. The image is scanned in
raster fashion, using a 2× 2 local window to determine connectivity. Two counters, P and
C, contain the most recent indices on the previous and current rows, respectively. These
are updated (incremented) when a new object pixel is found in the corresponding row
(previous row: , line 5; current row: , line 8).

The feature vector (stored in DT[ ]) for the node on the current row is initialised at the
start of a run ( , line 8), and updated for each object pixel within a run on the current row
( , line 12), where ⊕ is the operation which combines two feature vectors.

When a run in the previous row is connected to a run in the current row, a Union
operation is invoked, which adds a link between the corresponding nodes to connect the
two sub-components. This is detected on the end of a run on either row when there is an
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object pixel on the other row ( , line 15). This link is always added from P → C
to facilitate the Retire operation. If node P already has a link then the link is added to its
successor so that several successive nodes are linked in a chain (see lines 19 and 22). If the
successor node already has two links then the link is propagated to the successor’s most
recent successor (line 44).

Algorithm 1 Union-Retire CCA algorithm (adapted with permission from ref. [3]. Copy-
right 2021 Springer.)

Input: Binary image I of width W and height H
Output: A feature vector for each connected component in I

1: P := C := 0 . Initialise run indices
2: for y := 0 to H do
3: for x := 0 to W do . Raster scan through the image
4: Window := I[x− 1 : x; y− 1 : y] . Form 2×2 window
5: if Window = then . Start of run in previous row
6: P += 1
7: end if
8: if Window = then . Start of run in current row
9: C += 1

10: LT[C].L1 := LT[C].L2 := 0 . No links yet
11: DT[C] := F(x, y) . Feature vector for pixel
12: else if Window = then . Continuing current run
13: DT[C] := DT[C]⊕ F(x, y) . Accumulate feature vector for each pixel
14: end if
15: if Window in { } then . Union operation, link nodes
16: if LT[P].L1 = 0 then . No links
17: LT[P].L1 := C
18: else if LT[P].L2 = 0 and LT[P].L1 6= C then . Only one link
19: LINK(LT[P].L1 → C)
20: LT[P].L1 := C
21: else if LT[P].L1 6= C and LT[P].L2 6= C then . Two links
22: LINK(LT[P].L2 → C)
23: LT[P].L2 := C
24: end if
25: end if
26: if Window = then . Retire operation, unlink node
27: if LT[P].L1 = 0 then . No links
28: Output: DT[P] . Object completed
29: else if LT[P].L2 = 0 then . Only one link
30: DT[LT[P].L1] := DT[LT[P].L1]⊕ DT[P] . Accumulate feature data
31: else . Two links
32: DT[LT[P].L2] := DT[LT[P].L2]⊕ DT[P] . Accumulate feature data
33: LINK(LT[P].L1 → LT[P].L2) . Maintain linkages
34: end if
35: end if
36: end for
37: end for
38: procedure LINK(X → Y) . Link two nodes
39: if LT[X].L1 = 0 then . No links
40: LT[X].L1 := Y . Add link
41: else if LT[X].L2 = 0 and LT[X].L1 6= Y then . Only one link
42: LT[X].L2 := Y . Add second link
43: else if LT[X].L1 6= Y and LT[X].L2 6= Y then . Two links
44: LINK(LT[X].L2 → Y) . Pass link on
45: end if
46: end procedure
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At the end of a run on the previous row ( , line 26), the associated index is never
accessed again. Therefore, a Retire operation is performed, removing the corresponding
node from the graph. The feature vector associated with the retired node is accumulated
into a linked node (⊕ on lines 30 and 32). If there are no linked nodes then the object is
detected as completed, and the feature vector of the connected component is output. If
there are two linked nodes then it is necessary to insert a link between the nodes to maintain
connectivity within the graph as the node is removed.

To simplify the description, Algorithm 1 omits end-of-line corner cases, and therefore
expects a blank pixel at the end of each line. The hardware realisation explicitly handles
these cases without the need to add an extra column of blank pixels.

4. Hardware Implementation

When implementing the UR-CCA algorithm on an FPGA, we are working with the
following constraints:

• The input image is assumed to be streamed in a raster manner with a throughput of
one pixel per clock cycle. This will require many of the operations to be pipelined,
especially those that update data structures in memory.

• The hardware realisation must be able to work on a continuous stream, i.e., one
without any blanking at the end of the line (EOL) or frame (EOF). This implies that
additional blank pixels cannot be inserted at the end of line and frame to facilitate
transition from one image row to the next, or from one frame to the next.

• To minimise latency, it is desired that the feature vectors for each connected component
be output as soon as the end of the component is detected.

As indicated in Algorithm 1, the link and data processing are loosely coupled, simpli-
fying the hardware architecture. The architecture for UR-CCA comprises three main blocks
as identified in Figure 1:

• Forming the 2× 2 window from the incoming binary pixel stream, and assigning each
run of pixels a corresponding node index.

• Link processing identifies linkages between runs on the current row and runs on the
previous row, and maintains the graph structure, which represents the connectivity as
each pixel is processed.

• Data processing builds the feature vector associated with each connected component,
and outputs this when the component is completed.

2 × 2 Window

Link
processing

Data
processing

Pixel
stream

Feature vector
stream

Figure 1. The basic hardware architecture for UR-CCA.

4.1. Forming the 2× 2 Window

The input pixel stream is a continuous sequence of binary pixel data, following a
standard row-wise raster scan, as illustrated in Figure 2. The absence of blanking between
rows and frames requires two control signals, one to indicate the last pixel in each row
(EOL), and the other to indicate the last pixel in a frame (EOF).

The 2× 2 window processing is straight forward to implement, with the detailed
architecture represented in Figure 3. A 2× 2 array of one-bit registers contains the neigh-
bourhood pattern associated with processing the current pixel. The row buffer delays the
incoming pixels by one row, making them available when processing the next row.



J. Imaging 2022, 8, 89 6 of 21

0

0 0 0 0 0 0

00 01 1

1 1 1 1 1 2 2 2

1W-1 W-1 W-1 W-1

H-1 H-1 H-1

Pixel clock

Pixel data

End of Line ( )EOL

End of Frame ( )EOF

Row

Figure 2. Continuous pixel stream, and associated control signals. The stream for one frame
is highlighted.

Pixel stream

Window

P-counter

C-counter

Row buffer

Run counters
(node indices)

Window pattern

Figure 3. Architecture for constructing the 2× 2 window and providing node indices for each run.
The current pixel within the window is shaded.

Each run of consecutive object pixels is represented by a node in the connectivity
graph. Since the node indices are allocated sequentially, a run counter suffices for labelling
the runs on the current row (the C-counter). This increments the node index at the start
of a new run (an object pixel following a background pixel ( ), or an object pixel in the
first pixel of a row). Once a run leaves the previous row within the window, it is never
encountered again. This enables the indices associated with the nodes to be recycled,
reducing the size of the link and data tables. The maximum number of indices required at
any one time is based on the width of the image [3], and is given by bW

2 c+ 2. Therefore,
the counter goes from 1 for the first run, up to bW

2 c+ 2, after which it resets to 1 again.
Note that index 0 is reserved to indicate empty links within the link table.

The indices are also deterministic (they do not depend on any linking operations),
so the runs on the previous row can also be directly labelled using a similar counter (the
P-counter). This avoids the need for the row buffer and window to contain the actual labels
(as most previous label-based methods require). A single counter for each window row is
sufficient (rather than labelling each window pixel) because there can be at most one active
index on each row of the window at a time. The exception is the transition from one row to
the next, where the last pixel of the previous row, and the first pixel of the current row (two
different indices) are both within the window; the handling of this EOL case by the link
and data processing will be discussed in the following sections.

The outputs of this module are the node indices from the two run counters and the
2× 2 window pattern, which are used to control the link and data processing modules.

4.2. Link Processing

The UR-CCA algorithm, as originally formulated, assumes that each pixel is processed
completely before considering the next pixel in the incoming pixel stream. However, when
using a memory-based data structure to represent the graph, a hardware system is unable
to realise the required operations within a single clock cycle. Adding a link between two
nodes (X → Y) requires two memory operations: the first to read LT[X] to determine the
current outgoing links associated with node X, and a second to write the updated links
back to memory. Therefore, on an FPGA with synchronous memory, adding a link will
need to be pipelined over at least two memory clock cycles. Delaying the update as a result
of pipelining may potentially create read-before-write data hazards (reading a link from
memory before it has been properly updated).

Since a link is always from an earlier index to a later index, node P (associated with
the run on the previous row) is always updated whenever a link is added. In addition,
a chain link is also added (so that each node may have at most two outgoing links [3]).
This creates a potential bandwidth issue with multiple links having to be updated each
clock cycle. To reduce this bandwidth, the link table entry associated with the node on the
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previous row, LT[P], is cached within a register, LP, enabling it to be accessed immediately,
and updated within a single clock cycle.

In terms of pixel patterns within the 2× 2 window, there are four key operations on
the link table:

• N-operation: , at the start of a new run on the current row. This requires the link
table entry for the new node to be initialised by clearing the links to zero (since node
indices are recycled, and the link table may contain old links), LT[C] := {0, 0} (a write
operation).

• P-operation: , at the start of a run on the previous row. The link table entry for the
corresponding node is read into the cache to facilitate adding links, LP := LT[P] (a
read operation).

• L-operation: one of , at the end of a run on the current or previous row, while
there in an object pixel in the other row. A Union adds a link from the node on the
previous row to the node on the current row, P→ C. There are two variations to this:
if the cache is empty (LP = {0, 0}), or the cache contains a link.

– If the cache is empty, an F-operation adds the first link to the cache, LP := {C, 0}
(no memory operations).

– Otherwise, a chained link is added to the graph from the most recent link,
LP.L→ C (this requires a read and a write memory operation), and the link
is replaced, LP.L := C.

• R-operation: , at the end of a run on the previous row, a Retire removes node P
from the graph. If the cache has fewer than two links (LP.L2 = 0) then no operation
is required because removing the node does not affect the connectivity. Otherwise,
a link must be added between the two connected nodes to maintain connectivity of
the object graph when node P is removed, LP.L1 → LP.L2 (a read and a write).

4.2.1. Link Table Memory Bandwidth

In terms of these operations, the worst-case image pattern is a checkerboard pattern,
shown in Figure 4. From this pattern, the following memory accesses are implied:

• An N-operation every second pixel requires a write in every second cycle;
• A P-operation every second pixel requires a read in every second cycle;
• An L-operation with every pixel requires a read followed by a write in every clock

cycle;
• An R-operation every second pixel requires, in the worst case, a read followed by a

write in every second cycle.

Based on this worst case, two reads and two writes are required for every pixel,
whereas the dual-port RAMs available on FPGAs only allow two accesses total per clock cycle.

Figure 4. The worst case image pattern for raw memory bandwidth.

However, a more careful analysis reveals that many of these accesses are redundant.
This redundancy can be exploited by implementing the operations using the following rules:

1. Loading the cache for a P-operation must be performed immediately. This ensures
that the links are available for subsequent operations.

2. An F-operation only updates the cache; as this is the first link, a chained link is
not required.
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Figure 5. Memory accesses when processing the worst-case image of Figure 4. The red lines corre-
spond to the EOL boundary. The run/node indices are shown for each 2× 2 window. The -,- for
the cache indicates that the cache content is invalid. In the read address for a link, the number after
the→ indicates the index to be added. Notes: 1. The N-operation initialises LT[C] for the new node.
2. There is no link from this pattern, because this is at the EOL and the start of the next. 3. The
P-operation reads LT[P] into the cache, LP. 4. The F-operation directly updates the cache, and no
chain is required for the first link (rule 2). 5. The P-operation takes priority over the L- or F-operation.
As the cache has not been loaded, processing the link is deferred to the following cycle (rule 3), where.
6. the cache is updated directly and the chained link can be written directly, without first reading
(rule 4). 7. The write for the N-operation is queued for the following clock cycle because the write
port is busy (rule 9). 8. The link directly updates the cache, and the chain is initiated. 9. The link just
read replaces the read for the P-operation, with the link write directly updated in the cache (rule 5).
10. The current link does not need to be added because it is already in the cache (rule 6). 11. The
retired node has two links, requiring a link between them to be added.

3. If a P- and L-operation occur in the same cycle (data pattern: ), then adding the link
must be deferred until the following clock cycle because the links for the previous
row have not yet been loaded into the cache.

4. If an L-operation is deferred and this is followed immediately by another L-operation
( ) then there will be a chain from the first link to the second, C− 1→ C. Since links
are always from an earlier node to a later node, LT[C− 1] must be empty, therefore
the read operation for the chained link is not required, and the link can be written
directly to the table, LT[C− 1] := {C, 0}. (This saves 1 read operation.)

5. If as a result of adding a link, LT[C] is read in the cycle immediately before a P-
operation, then the cache read is redundant (as the index has just been read). The
subsequent write-back of the updated link entry is also not required, as the update
can be made directly on the cache. (This saves 1 read and 1 write operation.)

6. If when adding a link to a node, the destination node is already linked, then the write
is not necessary. (This saves 1 write operation if the write is to memory.)

7. If, when adding a link (X → Y), node X already has 2 outgoing links, it is necessary
to pass the link on , LT[X].L2 → Y. (This requires 1 extra memory read, but does not
occur very frequently.)

8. If an L- and R-operation occur in the same cycle ( ) then the cache is updated to
reflect the link, the retirement link is queued first, (LP.L1 → C) with the chained link
queued second (LP.L2 → C). LP.L1 occurs earlier than LP.L2, so this reduces potential
data hazards.

9. Initialising the link entry for an N-operation has the lowest priority, as it cannot be
used for at least two clock cycles.

The result of applying these rules to the worst-case image of Figure 4 is shown in
Figure 5. Runs (nodes) are assigned an index from 1© to 7©, after which retired indices are
recycled, starting with 1© again.

Processing row 0 consists of a series of N-operations to initialise the link table for the
new nodes.
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In row 1, the P-operation loads the outgoing links for each node in the previous row
from the link table into the cache (for example, cycles 12 and 13). The link in cycle 13
is added directly to the cache. In cycle 14, the link from 2© to 7© cannot be processed
immediately, because 2© has not yet been loaded into the cache. When the link entry for
2© is available in cycle 15, the links from 2© to both 7© and 1© are processed in parallel.

The cache is adjusted to contain the link to 1©, and the chained link from 7©→ 1© can be
written directly to memory. Note that the new link entry for 1© is queued for writing in the
following clock cycle. Similar processing is repeated for the remainder of the row.

In row 2, a similar process is used to link from 7© to 5© and 6© in cycles 24 and 25.
However, this time 7© already has a link (to 1©). This requires two chained links to be
added: from 1©→ 6©, and 5©→ 6©. The link from 5©→ 6© can be written directly, but the link
from 1©→ 6© requires first reading the link table for index 1© (in cycle 25). In cycle 26, it
is necessary to load the entry for 1© into the cache; however, 1© has just been read so this
has three implications. First, it is not necessary to write the updated 1© (from the chain) to
memory, the update can be made directly to the cache; second, since the entry for the index
has just been loaded, another read for the P-operation is unnecessary; and third, the target
of this L-operation is the same as the target of the previous link, so the link is unnecessary
(it is already present in the cache). Then in cycle 27, the link from 1© to 7© results in the
chain 6©→ 7©. When 1© is retired, it has two outgoing links, so it is necessary to add a link
from 2©→ 7© to maintain connectivity. The read of 2© in cycle 27 is similarly in advance
of loading the cache. This pattern repeats in the following cycles in row 2, with a similar
pattern continuing on subsequent rows.

These optimisations introduced have reduced the required link table bandwidth for
this example to one read every second cycle, and one write every cycle. This implies that a
single dual-port RAM is sufficient (with a queue for read and write accesses that cannot be
performed immediately).

4.2.2. EOL Queuing

The next example (shown in Figure 6) has a wider range of patterns, with the timing of
link table accesses illustrated in Figure 7. In particular, issues associated with the transition
from one row to the next are identified and discussed.

Rows 0 and 1 are similar to before. Chaining can be clearly seen in cycle 21. Before the
L-operation, the cache contains a link to 3©, which is replaced by 4©. The chained link from
3©→ 4© is added to memory to maintain connectivity; 3© is read in cycle 21, and updated

in cycle 22. At the end of row 1, another L-operation results in another chain, and the
initialisation of 5© from the N-operation is queued.

However, at the start of row 2 (cycle 23 in Figure 7), run 5© from the previous row is
terminated by the row end, but is contiguous in the window with the new run, 6©. This
results in an N-operation which must be queued. In addition, the write phase for the
previous chain, 4©→ 5© is also due. The previously queued initialisation of 5© is executed,
with the other two writes queued, requiring the write queue to be at least two entries long.

Figure 6. Another example image.
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Figure 7. Memory accesses when processing the example image of Figure 6. Note that some cycles at
the start (where nothing interesting is happening) are skipped. Notes: 1. A chain operation updates
the cache, and adds the chained link to memory. 2. The N-operation is queued because the write port
is busy (rule 9). 3. Two additional writes are initiated (one from the previous chained link, and one
for the new index), both are queued. 4. The L-operation must be delayed because the cache has not
been loaded yet (rule 3). 5. The previous read is used to initialise the cache for the P-operation (rule 5).
6. Since this is the last pixel in the row, an L-operation also started in this cycle. 7. The node already
has two links, so the link must be passed on (rule 7). 8. Both an L- and R-operation are initiated this
cycle; the retirement link is processed first and the chain queued (rule 8).

This situation does not occur in normal processing within a row because each run is
terminated by a background pixel so that successive N-operations are at least two clock
cycles apart. In this case though, the run 5© is terminated by the EOL signal, requiring
N-operations in consecutive clock cycles.

A second EOL issue can be seen in cycles 33 and 34. Normally the link 5©→ 3© would
result in an L-operation in cycle 34 (like a similar L-operation in cycle 29). However, since
this is at the start of the next row, both the P-counter and C-counter have already been
incremented because of the start of runs on the new row. This is solved by detecting the
end of both runs 5© and 3© in cycle 33 (from the EOL signal), and initiating the L-operation
in that cycle.

The other feature of note in this example is the application of rule 7 in cycle 36 (and
again in cycle 40). When adding the link 7©→ 4©, it is discovered that 7© already has two
outgoing links. Therefore the link is passed on to its second linked node, 2©→ 4©, with the
node being written in cycle 37.

4.2.3. EOF Processing

It is also important to manage the transition from one frame to the next to prevent
runs on the last row of a frame linking to those on the first row of the next frame. The
simplest approach to handle this is to disable the L-operations within the link processor
when processing the first row of a frame. This implicitly places a blank row below the last
row and above the first row of a frame, without requiring additional clock cycles. It also
means that additional processing (and logic) is not required on the last line for detecting
completed components. Any objects which extend onto the last image row will be detected
as completed while processing the first row of the next frame using the existing logic.

However, to maintain link and data integrity, the run counter, C, cannot be reset to zero
at the start of a new frame as this could result in overwriting links and data for unfinished
connected components in the previous frame. This is managed by simply continuing the
count sequence from one frame to the next.

4.2.4. Link Table Architecture

The link table processing is implemented with the links stored in a dual-port on-chip
memory as illustrated in Figure 8, with separate ports used for read and write access to the
link table.
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Figure 8. Detailed architecture of the link table processing. Only the data path is shown. The
thickness of the lines represents the width of the data path (whether 1, 2, or 3 indices).

Read accesses are triggered either by:

• A P-operation to load the cache, with the address coming from the P-counter;
• When adding a link into the memory, either when adding a chain from an L-operation,

or from an R-operation, in both cases, the address comes from the cache;
• When adding a link, and the link table already has two entries, the next access is to

one of the links just read.

Note that the synchronous nature of the block memories require a dedicated register
for DataR.When adding a link, it is also necessary to register both the address (AddrR) and
the index being added (WVal) to enable the write to be pipelined into the following cycle.
If two reads are required in any cycle, one is stored in the read queue and delayed until the
following cycle (the read queue must also store the index being written into the memory).
A single entry for the read queue has been found to be sufficient. WVal also holds the
index C when a link is deferred (as a result of rule 3) in case it changes in the following
clock cycle.

Link entries are written to the write port under two conditions:

• Clearing prior use of the index by an N-operation;
• Writing the updated outgoing connections for a node when a link is added.

The ‘update’ block in Figure 8 inserts the link being added into the appropriate field
within the link table entry. The write queue manages the situation when multiple writes
are required in a cycle. As demonstrated earlier, up to two pending writes may need to
be queued.

The cache register, LP, holds the current entry from LT[P]. To enable the value read
from a P-operation to be used immediately, the actual cache value is the the output of the
multiplexer between the cache register and the output of the link table. The ‘replace’ block
replaces the most recent index with the target of a link. The entry is replaced, rather than
inserted, because of the chaining mechanism. LP.L is also output to the data processing
module to enable the feature data to be merged appropriately when node P is retired.
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4.3. Data Processing

The role of the data processing block is to accumulate the feature vector for each con-
nected component in the image. Conceptually, the processing performed is quite straight-
forward:

• Data are accumulated for the run of pixels on the current row (FC ⊕= F(x, y), where
F(x, y) is the feature vector for the current pixel) and saved into a data table at the end
of the current run (DT[C] := FC).

• When a node is retired (at the end of the run on the previous row), its associated
feature datum, FP, is merged into the data table entry of its most recent outgoing link.
Let the merge link be M := LT[P].L, then the data merging is DT[M] ⊕= FP.

• If there are no outgoing links, the connected component is completed, and the feature
vector, FP is streamed out.

The memory accesses to the data table are therefore:

• At the end of the run on the current row (window pattern ), the accumulated feature
vector for the row is written to the data table: DT[C] := FC.

• At the start of the run on the previous row (window pattern ), the feature vector FP
is read from memory, FP := DT[P], in preparation for merging with data from another
run when the node is retired.

• At the end of the run on the previous row (window pattern ) when the node
is retired, it is necessary to merge the feature vector into the feature vector of an
outgoing link.

– If there is an object pixel on the current row ( ), then this will have the index
of the most recent link, and the data can be merged directly into the current row
accumulator (FC ⊕= FP).

– Otherwise ( ) the merge index comes from the link processor cache,
M := LP.L. This requires reading the data table entry for the link, accumulating
the feature vector, and writing the result back to memory: DT[M] ⊕= FP. The
data table read takes one clock cycle (FM := DT[M]) with the accumulated feature
vector written back in the following cycle (DT[M] := FM ⊕ FP).

4.3.1. Data Hazards

Under normal operation (not considering EOL processing), the window pattern
can potentially create a data hazard. The node associated with the first run, P1 is retired
when the background pixel is encountered. The data table for the outgoing link, DT[M1] is
read to accumulate the feature vector into. The combined feature vector is written back to
the data table in the following clock cycle. However, in this cycle, the run P2 is encountered
with DT[P2] being loaded from memory. If P2 = M1 then this results in a read-before-write
hazard because DT[M1] is not updated in memory until the end of that cycle. Such linking
between consecutive runs is actually quite common as a result of chaining. This can easily
be handled by data forwarding, skipping both the write of DT[M1] and the read of DT[P2],
and the accumulated data directly forwarded to FP.

Since synchronous memory reads must be loaded into a dedicated memory register,
any data forwarding must be to a separate register with a multiplexer to select between the
memory register and the data forward register.

4.3.2. EOL Processing

Under normal operation there can be at most one read and one write of the data
table in any clock cycle. This suggests that a simple dual-port memory provides sufficient
access when storing the data table. Indeed, this will be the case if the image is padded
with one extra column of blank pixels at the end of each row. However, as seen with link
processing, the constraint of not introducing an extra column of blank pixels means that
EOL processing can disrupt the regular access patterns. Here, we identify three additional
data hazards and three data table access issues that EOL processing must handle.
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Consider the following window pattern: where the red line indicates the transition
between one row of image pixels and the following row. The EOL ends run P1 on the
previous row, resulting in retirement of the associated node, and starts a new run (with a
new index, P2). The two pixels in the window are not directly connected; they are separated
by the EOL. The retirement requires reading the linked entry, DT[M1] for passing the
feature data on to, and the new run also requires a read of DT[P2] to load the feature data
for that node. This pattern therefore requires two simultaneous data table reads.

There is also a potential data hazard if the first node links directly to the second
(M1 = P2). The data accumulated from the retired node will not be saved before the entry
is read. However, in this case, both read addresses will be the same, and the data from the
retired node can be accumulated directly into FP.

Another potential hazard can occur in the following clock cycle with . In this case,
if the two nodes both link directly to a common third node (M1 = M2), the data for that first
retirement will be written to DT[M1] in the same cycle as the data is read for accumulating
the second retirement, DT[M2]. In this case, the second read can be skipped, with the data
for the second retirement accumulated directly.

A third pattern of interest that gives a data hazard is when the indices for the two
runs are the same (P = C; this will be the case if the run occupies the full width of the
image). The read (for the run on the previous row) is to the same address as the write
(for saving the feature vector for the current run). Again this can be managed through
data-forwarding, skipping both the read and the write.

Finally, the pixel pattern requires two simultaneous writes. The first is the
pipelined write for the retirement of the node on the previous row (DT[M]), and the
second is for saving the feature vector for the node on the current row (DT[C]). The previ-
ous case of two simultaneous reads and this case of two writes mean that the data table
must use true dual-port memory.

Even more serious is the particular pattern , which requires a read in addition
to the two writes. In this case, the write-back of DT[M] is delayed until the following
clock cycle.

4.3.3. EOF Processing

As with the link table processing, the detection of feature vector mergers from the
previous row to the current row is disabled when processing the first row of an image. This
prevents the data from the last row of one frame being accumulated into the data for the
first row of the next frame. The regular data merging process is then able to correctly merge
data for object on the last row of an image, including detecting object completion.

Similar to the previous pattern, (where the horizontal red line represents the
boundary between successive frames) also requires a read and two writes. As before,
the write-back of DT[M] can be delayed until the following clock cycle.

This pattern can also generate a data hazard, in the same way as that described earlier
in Section 4.3.1. Again this is managed by data forwarding, with the associated read and
write both skipped.

4.3.4. Data Table Architecture

In all of the cases described here, a maximum of two data table memory accesses
are required in any cycle. Therefore the data table can be implemented using a true
dual-port memory block as demonstrated in Figure 9, with the reads and writes allocated
depending on the particular window pattern. Referring to Figure 9, port 1 is used for
reading FP := DT[P] and writing the merged data back to DT[M]. Port 2 is used for
reading FM := DT[M] and writing DT[C] := FC. It is also used for writing DT[M] when
port 1 is busy reading FP. C needs to be registered (as CW) in case it changes before writing
FC to memory (for example at the end of a row). M is also registered (as MW) for writing
the merged result back in the following clock cycle.
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Figure 9. Detailed architecture of the data table processing. Only the data path is shown. The thicker
lines represent the feature data. Data forwarding connections are shown in blue. F0 represents the
null feature vector (containing empty data).

On the feature data side of the data table, the three main registers are FC for accumu-
lating the feature vector for the current row, FM for reading DT[M] for merging the data,
and FP for holding the data for the retiring node. With data forwarding, FP2 is required as a
shadow for FP because of the synchronous memory semantics.

There are a wide range of feature vector combinations depending on the window
pattern and data forwarding due to hazards, the most complex of which occurs for the
pattern when there is a link between the two runs on the previous row. This requires
combining four feature vectors (requiring a minimum of three ⊕ operators):

FC := FC ⊕ F(x, y)⊕ FP2 ⊕ FM. (1)

The propagation delay for this combination is reduced by implementing these opera-
tions as a tree ((FC ⊕ F(x, y))⊕ (FP2 ⊕ FM)).

There are also four different destinations for the results: either of the two memory
write ports, the current accumulation register FC, or the data forwarding register FP2 (when
resolving hazards). The top ⊕ operator merges feature vectors to memory as they are
retired. The bottom-left ⊕ operator accumulates the feature vector for object on the current
row. The bottom-right⊕ operator is used to merge the feature vector from the previous row
into the current row. When a particular operation is not required, the null feature vector, F0
is combined; this is an identity operation (F⊕ F0 = F). Multiplexing a null feature vector
(a constant) has a lower propagation delay than multiplexing after the ⊕ operation.

If the retired node has no links (M = 0), then the final feature vector for the completed
connected component is output from FP (or FP2 if there was data forwarding).
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5. Results and Discussion

For testing the design, the feature vector consisted of the bounding box and area of each
connected component {xmin, xmax, ymin, ymax, area}. For this feature vector, the combination
operator consists of the following:

F1 ⊕ F2 ≡


min(xmin 1, xmin 2)
max(xmax 1, xmax 2)
min(ymin 1, ymin 2)
max(ymax 1, ymax 2)

area1 + area2

 (2)

The design was compiled to hardware using Intel Quartus Prime 20.1.1 Lite Edition.
It quickly became apparent that the design had long combinatorial delays. These were
mitigated by pipelining the three main modules, with the data processing delayed by one
clock cycle to enable the merge link from the link processing to be registered. The resources
for the ‘balanced’ optimisation mode are shown in Table 1. Switching to the ‘performance’
optimisation mode gave a 3% improvement in maximum clock frequency, however, this
was at the expense of a 17% increase in logic and 36% increase in registers required.

Table 1. Synthesis results using ‘balanced’ optimisation, for a 1920 × 1080 image, extracting the
bounding box and area of each connected component. ALUTs are Intel’s adaptive lookup tables; FFs
are the number of flip-flops or registers; M10K are the number of Intel’s 10 kbit RAM blocks.

Module
Intel Cyclone V 5SEMA5F31C6

ALUTs FFs RAM (bits) M10K fmax

2× 2 window 50 48 1920 1
Link processing 243 137 19,260 2
Data processing 839 349 62,595 7

Total 1133 534 83,775 10 106.50 MHz

In terms of critical path, this design is fairly well balanced, with several paths having
similar propagation delays. Within the data processing module, one critical path is from
the data table output register, FM, through the two feature vector combination operations
(⊕) with the result written back to memory. This path is required to handle the pattern

when there is a link between the two runs on the previous row. The data for these are
combined, with the result merged with the feature vector of the current row, and written
to the data table (DT[CW ] := (FP2 ⊕ FM)⊕ FC). A similar critical path is for writing the
result into the FC register (FC := (FP2 ⊕ FM)⊕ ([FC⊕]F(x, y), which occurs with the pattern

). In both cases, the majority of the propagation delay comes from the ⊕ operations.
This means that these paths could potentially be pipelined by delaying the processing of
the current row by one cycle relative to the processing of the previous row (although this
would introduce additional timing complications).

However, the critical path within the link processing module has a similar propagation
delay. It runs from the output of the link table (DataR in Figure 8) through the update
and replace blocks, into the cache, LP. While the update and replace blocks are primarily
multiplexers, the critical path involves checking whether or not the link being added is
already present (which is used to control the multiplexers). Adding a pipeline register
within this path would delay the loading of LP by one clock cycle, potentially introducing
additional memory conflicts and read-before-write hazards to those identified in Section 4.2.

In both cases, the processing is made more complex by the constraint not to introduce
an additional clock cycle (containing a background pixel) at the end of each row. If this
was allowed, the queuing requirements of the link processing reduce, and many of the
read-before-write hazards within the data processing disappear. Both of these would
reduce the logic required, and potentially result in a higher maximum clock frequency.
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Overall, the clock frequency of 106.5 MHz is sufficient to process 1920× 1080 images
at 51.4 frames per second (assuming no blanking).

5.1. Comparison with Other CCA Algorithms

The primary goal of the Union-Retire algorithm is to reduce the memory requirements
of implementing single-pass CCA on an FPGA. Therefore, the comparison will focus
primarily on this aspect of the implementations. There are typically four memory-based
data structures required to implement CCA on an FPGA.

The first of these is the data table, which contains the feature vectors of the partially
completed components. The width of the data table depends only on the feature vector
being extracted (extracting more features requires a wider data table). For single-pass CCA
algorithms the depth of the data table depends on the number of active labels, which for
current algorithms, corresponds to half of the width of the image. Consequently, the size
of the data table is generally independent of the particular algorithm. In terms of data
processing, a minimum of two ⊕ operators are required, one for accumulating the feature
vector of the current pixel, and one for managing component mergers.

The second data structure manages the connectivity, mergers, or equivalences, be-
tween labels. This is typically a lookup table that maps a label to the current representative
label. The width of the table is generally the width of a label, although may be wider if
additional information must be stored [8].

The third data structure is a row buffer, which makes processed labels on one row
available for processing the following row, and is a consequence of the window required
for propagating labels and determining connectivity. The length of the row buffer generally
corresponds to the width of the image (although it can be shorter if preprocessing is
used to simplify the image contents by removing noise, and run-length encoding the
relevant information [21]). The width of the row buffer is usually the width of a label (for
propagating labels from one row to the next), although it can be reduced to a single bit for
deterministic labelling [3,20].

Finally, there may be additional auxiliary data structures as required by the algorithm,
for example for

• Recycling labels;
• Keeping track of chains of successive mergers;
• Detecting completed components.

5.1.1. Memory Requirements of Union-Retire

The requirements for the data table for UR-CCA are the same as for other algorithms
(for extracting a given feature vector). The data structure for managing connectivity is
the link table, which has the width of two labels (or indices in this paper). Since UR-
CCA uses deterministic labelling, the row buffer is only a single bit wide. One advantage
of the UR-CCA algorithm is that no additional memory-based auxiliary data structures
are required.

Table 2 compares the resource requirements of several reported systems with the
proposed Union-Retire-based architecture. Note that since reported results differ in terms
of image size, extracted feature vectors, and the FPGA technology used, it is difficult to
make a meaningful direct comparison from Table 2. However, the differences between the
proposed architecture and listed architectures are identified and discussed in the following.
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Table 2. Comparison of several CCA hardware architectures. Abbreviations for the extracted feature
vector are: (A) area, (FOM) first-order moment, (BB) bounding box.

Implementation Technology Image Size Extracted LUTs Registers RAM fmax
of Architecture (pixels) Features (kbits) (MHz)

Single lookup CCA Kintex 7 256× 256 BB 493 296 108 185.59
Klaiber et al. [8] 1920× 1280 723 381 180 151.40

Direct relabelling a
Cyclone IV 640× 480 BB, FOM 36,478 N/A 18 60.58

Jeong et al. [10] 1920× 1080 57,036 N/A 29 58.44

Linked-list Virtex II 256× 256 BB 543 187 72 104.26
Tang et al. [20] 640× 480 654 227 92 97.07

Cyclone V 640× 480 BB, A 778 539 53 113.05
Zig-zag scan 1920× 1080 906 587 131 114.48
Bailey and Klaiber [11] Kintex 7 640× 480 BB, A 907 499 92 185.49

1920× 1080 1343 564 166 192.16

This work Cyclone V 640× 480 BB, A 1013 490 25 109.97
Union-Retire CCA 1920× 1080 1133 534 84 106.50

a Hardware resources are for a maximum of 127 labels [10].

5.1.2. Comparison to Single-Lookup CCA

The single-lookup algorithm [8] represents the most recent refinement of the original
single-pass CCA algorithm (from [6]), where the representative label for a pixel in the
previous row is found using a single lookup of the label from the row buffer.

Unlike the other methods compared here, single-lookup CCA requires processing
time at the end of each row to manage chains of mergers. While for typical images, this
processing time is small (typically less than 1% [6]), in the worst case it can average 20%
overhead per line [1,6], with the pathological worst-case pattern giving 50% overhead
on some lines [6]. Indeed, it was the goal of the other algorithms compared (including
UR-CCA) to eliminate this variable factor from the processing [2].

To correctly select the representative label in the case of mergers, single-lookup CCA
requires the label to be augmented with the row number [1,8]. This makes the merger table
of similar width to the link table used by UR-CCA.

The row buffer makes the assigned labels available for processing the next row, requir-
ing the row buffer to hold a row of labels. UR-CCA significantly reduces the width of the
row buffer (to one bit) by using deterministic labelling.

The single-lookup CCA algorithm requires several auxiliary data structures. Two
stacks are required to enable the single lookup operation: one to resolve chains of mergers
at the end of each row, and one to manage the case where a single lookup is insufficient
to give the representative label. A queue is used for recycling labels, enabling labels (and
associated memory resources) to be reused. This is not required by UR-CCA, because the
deterministic labelling allocates and retires labels in a sequential order enabling the queue
to be replaced by a single counter. Finally a set of active tags are used by a parallel process
to detect completed components. These are not required by UR-CCA because the retirement
operation is able to directly detect completed components as they happen.

Consequently, UR-CCA requires significantly less memory for processing a given
image size. Although the other resources are harder to compare (because of technology
differences), UR-CCA does require more complex processing to maintain the link table
structure, and for managing hazards with the data table processing. This highlights a
trade-off between reducing the memory at the expense of an increase in logic resources.
Part of the difference in clock speed can be attributed to the Cyclone series being lower cost
than the higher-performing Kintex series.

Note that a more optimised double-lookup version has been described [1], although the
associated FPGA resources have not been documented. While this reduces some of the
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auxiliary data structures, and the number of memory accesses required per pixel, it has
many of the limitations of the single-lookup algorithm.

5.1.3. Comparison to Zig-Zag Scan

To eliminate the end of row processing, Bailey and Klaiber [11] observed that the EOL
resolution pass consists of a reverse scan along the row. Therefore, by using a zig-zag
scan, merger chains could be unwound while processing the next line. Compared to the
single-lookup CCA, this removes the need for the two stacks, although the other auxiliary
data structures are still required, as is an additional one-bit row buffer to convert a regular
raster scan into a zig-zag scan. The data table is also larger for the zig-zag scan because it
needs to incorporate tags for detecting the end of completed components. The memory
requirements for UR-CCA are consequently about 36% lower than for the zig-zag scan.

UR-CCA also requires fewer registers, but more logic because of the cost of managing
data hazards. The more complex processing also gives a slightly reduced maximum
clock frequency.

5.1.4. Comparison to Direct Relabelling

Jeong et al. [10] eliminated the end of row overhead by directly updating all of the old
labels in the row buffer with the new representative label whenever a merger occurs. This
eliminates the need for a table to maintain the connectivity, but instead requires the row
buffer to be content addressable (to enable the old labels to be found and replaced). On an
FPGA, this requires the row buffer to be implemented in logic rather than using memory
blocks, hence the large resource count and lower operating speed compared to UR-CCA.

The implementation also limited the processing to only 127 labels. While this may be
adequate for small images, or with preprocessing to eliminate small noise components, it is
unable to process all possible images. This reduces the RAM required for the data table,
hence the lower RAM requirements than UR-CCA.

5.1.5. Comparison to Linked-List Based Processing

Tang et al. [20] introduced the deterministic labelling method of allocating labels to
runs of pixels sequentially within the image, reducing the row buffer to a single pixel
wide. However, the algorithm described in [20] only processes four-connected compo-
nents. Eight-connected components can be converted to four-connected components,
although this requires an extra bit within the row buffer to enable correct accumulation of
the feature vector.

The connectivity is represented using a linked list, with three pointers per label (one
to point to the list head, which is the representative label; one to the next run in the set; and
one to the list tail, where new runs are added). Mergers are managed by manipulation of
the pointers within this list structure. UR-CCA improves on this by moving the focus away
from finding a representative label, and focusing solely on the connectivity. This reduces
the number of links required for each label from three to two, effectively reducing the size
required by the link table by 33%. The cost of moving away from a linear structure to a
more general graph representation is more complex processing. This is reflected in the
increase in logic resources required by UR-CCA (although the Virtex and Cyclone have
different logic cell architectures making direct comparison difficult). However, the trade-off
between memory and logic resources is again apparent.

The feature vector reported in [20] consists only of the bounding box, which will
require less memory for the data table. Measuring the area as well would further increase
the memory from that reported in Table 2.

5.1.6. Discussion of UR-CCA

Overall, the adoption of the Union-Retire paradigm results in a significant reduction
in the memory required to implement single-pass CCA on an FPGA. Use of deterministic
labelling of runs enables the row buffer to be reduced to a single bit width (a total of W bits
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for an image of width W). This cannot be reduced any further. Maintaining the connectivity
through the link table requires only two pointers per node. This is accomplished by
building chains within the connectivity graph. Occasionally, though, the restriction of
only two links does require additional processing (when a link needs to be added to an
already full node). The cost of this is a small price for the significant reduction in memory.
The data table cannot be reduced, although this is common for all single-pass algorithms.
No additional auxiliary memory structures are required for ensuring correct connectivity
or for determining completed objects. Therefore, it is difficult to see how the memory
requirements could be further reduced.

One bottleneck of the algorithm is the bandwidth required to access the link table. The
architecture described here detects several pixel patterns that result in redundant operations.
This detection logic significantly increases the complexity of the control logic. One potential
avenue for improvement is to split the link table into two parallel banks, containing the
even and odd indices in separate banks. This would double the available bandwidth with
almost no additional memory cost, and may be able to simplify the control logic.

Much of the complexity of the data processing results from read-before-write hazards,
which must be detected and then resolved using data forwarding. This is relatively ex-
pensive, especially for wide-feature vectors, because an additional multiplexer is required
for each bit within the feature vector. Most of these hazards result from managing EOL
conditions where there is not a background pixel between two successive object pixels.
While this issue may be avoided by inserting a background pixel between each row, this
would violate the constraint of no row overheads. However it may be more productive
to relax this constraint (since the timing is fixed; it is always one pixel per row), and run
the connected component analysis at a slightly higher clock rate than the incoming pixel
stream (with appropriate clock domain synchronisation on the input).

Some of the complexity of the data table processing results from the decision to
perform a ‘lazy’ retire, merging the data at the end of a run on the previous row. It may
be worth exploring whether merging the feature vectors earlier can reduce the processing
complexity. Potentially, this could enable the accumulation to be pipelined, reducing the
propagation delay.

The depth of on-chip memories is a power of two. This can cause more memory to
be used than strictly required for images where the width is a power of two (for example
1024× 768) because both the link table and data table are of depth bW

2 c + 3 (from 0 to
bW

2 c+ 2). The next largest power of two almost doubles the memory allocated for the
tables. The 0 index is required to indicate empty links, so strictly speaking, this does not
require an entry within the tables. Index 0 can be used for holding links and data by making
the observation that a node never links to itself. Therefore, self-links could be used to
represent empty links. The other two extra indices are required to ensure that a node is
retired before the index is allocated again on the following line. (This case occurs where
every second pixel is an object pixel.) However, such links would always belong to the
same connected component, so if an index is reallocated before it is retired, the retirement
step can simply be skipped. These changes would enable the depth of the link and data
tables to be reduced to dW

2 e, although at the complexity of some additional control logic.

6. Conclusions

Although the Union-Retire algorithm of [3] is conceptually quite simple, an FPGA
implementation poses several challenges. In software, each pixel can be processed com-
pletely before considering the next pixel. However, in hardware several clock cycles are
required to read and update the memory structures representing the connectivity. To
process one pixel per clock cycle, the memory accesses must be pipelined. For the link
table, the main complexity is detecting and eliminating redundant memory operations
to enable the memory bandwidth requirements to be met. For the data table, the main
complexity is the deep processing path to manage mergers onto the current row, and to
resolve read-before-write data hazards through data forwarding.
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The dominant resource required by single-pass CCA algorithms is memory. When
compared with other architectures that have no end-of-row processing overhead, it has
been shown that the memory requirements are reduced by 36% compared to zig-zag
based connected components analysis, and the link table is reduced by 33% compared to
linked-list based processing. However this reduction in memory has come at the cost of a
modest increase in logic resources required for pipelining, in particular managing memory
bandwidth and overcoming data hazards. The significant memory reduction reduces the
footprint on an FPGA, enabling a smaller device to be used. This makes Union-Retire-based
processing the most memory-efficient design to date.
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Abbreviations
The following abbreviations are used in this manuscript:

⊕ Combination operator for feature vectors
ALUT Intel’s adaptive lookup table
C Index of the run on the current row within the window
CCA Connected components analysis
CCL Connected components labelling
DT Data table containing feature vectors for each index
EOF End of frame
EOL End of line
F(x, y) Feature vector for point (x, y)
FF Flip-flop
FPGA Field programmable gate array
LT Link table containing arcs for each node/index
M Index for merging data into when retiring a node
M10K 10 kbit RAM block
P Index of the run on the row within the window
RAM Random access memory
UR-CCA Union-retire-based CCA

References
1. Klaiber, M.; Bailey, D.G.; Simon, S. Comparative study and proof of single-pass connected components algorithms. J. Math.

Imaging Vis. 2019, 61, 1112–1134. [CrossRef]
2. Bailey, D.G. History and evolution of single pass connected component analysis. In Proceedings of the 35th Interna-

tional Conference on Image and Vision Computing New Zealand (IVCNZ), Wellington, New Zealand, 25–27 November 2020;
pp. 317–322. [CrossRef]

3. Bailey, D.G.; Klaiber, M.J. Union-Retire: A new paradigm for single-pass connected component analysis. In Geometry and
Vision. ISGV 2021; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2021; Volume 1386, pp.
273–287. [CrossRef]

4. Rosenfeld, A.; Pfaltz, J. Sequential operations in digital picture processing. J. Assoc. Comput. Mach. 1966, 13, 471–494. [CrossRef]
5. Dillencourt, M.B.; Samet, H.; Tamminen, M. A general approach to connected-component labeling for arbitrary image representa-

tions. J. Assoc. Comput. Mach. 1992, 39, 253–280. [CrossRef]

http://doi.org/10.1007/s10851-019-00891-2
http://dx.doi.org/10.1109/IVCNZ51579.2020.9290585
http://dx.doi.org/10.1007/978-3-030-72073-5_21
http://dx.doi.org/10.1145/321356.321357
http://dx.doi.org/10.1145/128749.128750


J. Imaging 2022, 8, 89 21 of 21

6. Bailey, D.G.; Johnston, C.T. Single pass connected components analysis. In Proceedings of the Image and Vision Computing New
Zealand (IVCNZ), Hamilton, New Zealand, 5–7 December 2007; pp. 282–287.

7. Ma, N.; Bailey, D.; Johnston, C. Optimised single pass connected components analysis. In Proceedings of the International
Conference on Field Programmable Technology (FPT), Taipei, Taiwan, 8–10 December 2008; pp. 185–192. [CrossRef]

8. Klaiber, M.J.; Bailey, D.G.; Baroud, Y.O.; Simon, S. A resource-efficient hardware architecture for connected component analysis.
IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 1334–1349. [CrossRef]

9. Zhao, F.; Lu, H.Z.; Zhang, Z.Y. Real-time single-pass connected components analysis algorithm. EURASIP J. Image Video Process.
2013, 21, 10. [CrossRef]

10. Jeong, J.W.; Lee, G.B.; Lee, M.J.; Kim, J.G. A single-pass connected component labeler without label merging period. J. Signal
Process. Syst. 2016, 84, 211–223. [CrossRef]

11. Bailey, D.G.; Klaiber, M.J. Zig-zag based single pass connected components analysis. J. Imaging 2019, 5, 45. [CrossRef] [PubMed]
12. Spagnolo, F.; Perri, S.; Corsonello, P. An efficient hardware-oriented single-pass approach for connected component analysis.

Sensors 2019, 19, 3055. [CrossRef] [PubMed]
13. Kumar, V.S.; Irick, K.; Maashri, A.A.; Narayanan, V. A scalable bandwidth-aware architecture for connected component labeling.

In VLSI 2010 Annual Symposium; Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2011; Volume
105, pp. 133–149. [CrossRef]

14. Klaiber, M.J.; Bailey, D.G.; Ahmed, S.; Baroud, Y.; Simon, S. A high-throughput FPGA architecture for parallel connected
components analysis based on label reuse. In Proceedings of the International Conference on Field Programmable Technology
(FPT), Kyoto, Japan, 9–11 December 2013; pp. 302–305. [CrossRef]

15. Klaiber, M.J. A Parallel and Resource-Efficient Single Lookup Connected Components Analysis Architecture for Reconfigurable
Hardware. Ph.D. Thesis, Stuttgart University, Stuttgart, Germany, 2017.

16. Kowalczyk, M.; Ciarach, P.; Przewlocka-Rus, D.; Szolc, H.; Kryjak, T. Real-time FPGA implementation of parallel connected
component labelling for a 4K video stream. J. Signal Process. Syst. 2021, 93, 481–498. [CrossRef]

17. Lacassagne, L.; Zavidovique, B. Light speed labeling: Efficient connected component labeling on RISC architectures. J. Real-Time
Image Process. 2011, 6, 117–135. [CrossRef]

18. Cabaret, L.; Lacassagne, L.; Oudni, L. A review of world’s fastest connected component labeling algorithms: Speed and energy
estimation. In Proceedings of the International Conference on Design and Architectures for Signal and Image Processing (DASIP),
Madrid, Spain, 8–10 October 2014; pp. 1–6. [CrossRef]

19. Lemaitre, F.; Hennequin, A.; Lacassagne, L. How to speed connected component labeling up with SIMD RLE algorithms. In
Proceedings of the 2020 Sixth Workshop on Programming Models for SIMD/Vector Processing (VPMVP’20), San Diego, CA,
USA, 22 February 2020; Association for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

20. Tang, J.W.; Shaikh-Husin, N.; Sheikh, U.U.; Marsono, M.N. A linked list run-length-based single-pass connected component
analysis for real-time embedded hardware. J. Real-Time Image Process. 2018, 15, 197–215. [CrossRef]

21. Trein, J.; Schwarzbacher, A.T.; Hoppe, B.; Noffz, K.H.; Trenschel, T. Development of a FPGA based real-time blob analysis circuit.
In Proceedings of the Irish Signals and Systems Conference (ISSC), Derry, UK, 13–14 September 2007; pp. 121–126.

http://dx.doi.org/10.1109/FPT.2008.4762382
http://dx.doi.org/10.1109/TCSVT.2015.2450371
http://dx.doi.org/10.1186/1687-5281-2013-21
http://dx.doi.org/10.1007/s11265-015-1048-7
http://dx.doi.org/10.3390/jimaging5040045
http://www.ncbi.nlm.nih.gov/pubmed/34460483
http://dx.doi.org/10.3390/s19143055
http://www.ncbi.nlm.nih.gov/pubmed/31373307
http://dx.doi.org/10.1007/978-94-007-1488-5_8
http://dx.doi.org/10.1109/FPT.2013.6718372
http://dx.doi.org/10.1007/s11265-021-01636-4
http://dx.doi.org/10.1007/s11554-009-0134-0
http://dx.doi.org/10.1109/DASIP.2014.7115641
http://dx.doi.org/10.1145/3380479.3380481
http://dx.doi.org/10.1007/s11554-016-0590-2

	Introduction
	Related Work
	Union-Retire Algorithm
	Hardware Implementation
	Forming the 22 Window
	Link Processing
	Link Table Memory Bandwidth
	EOL Queuing
	EOF Processing
	Link Table Architecture

	Data Processing
	Data Hazards
	EOL Processing
	EOF Processing
	Data Table Architecture


	Results and Discussion
	Comparison with Other CCA Algorithms
	Memory Requirements of Union-Retire
	Comparison to Single-Lookup CCA
	Comparison to Zig-Zag Scan 
	Comparison to Direct Relabelling 
	Comparison to Linked-List Based Processing 
	Discussion of UR-CCA


	Conclusions
	References

