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Abstract
Mast cell exocytosis, which includes compound degranulation and vesicle-associated

piecemeal degranulation, requires multiple Q- and R- SNAREs. It is not clear how these

SNAREs pair to form functional trans-SNARE complexes and how these trans-SNARE

complexes are selectively regulated for fusion. Here we undertake a comprehensive exami-

nation of the capacity of two Q-SNARE subcomplexes (syntaxin3/SNAP-23 and syntaxin4/

SNAP-23) to form fusogenic trans-SNARE complexes with each of the four granule-borne

R-SNAREs (VAMP2, 3, 7, 8). We report the identification of at least six distinct trans-

SNARE complexes under enhanced tethering conditions: i) VAMP2/syntaxin3/SNAP-23, ii)

VAMP2/syntaxin4/SNAP-23, iii) VAMP3/syntaxin3/SNAP-23, iv) VAMP3/syntaxin4/SNAP-

23, v) VAMP8/syntaxin3/SNAP-23, and vi) VAMP8/syntaxin4/SNAP-23. We show for the

first time that Munc18a operates synergistically with SNAP-23-based non-neuronal SNARE

complexes (i to iv) in lipid mixing, in contrast to Munc18b and c, which exhibit no positive

effect on any SNARE combination tested. Pre-incubation with Munc18a renders the

SNARE-dependent fusion reactions insensitive to the otherwise inhibitory R-SNARE cyto-

plasmic domains, suggesting a protective role of Munc18a for its cognate SNAREs. Our

findings substantiate the recently discovered but unexpected requirement for Munc18a in

mast cell exocytosis, and implicate post-translational modifications in Munc18b/c activation.

Introduction
Mast cells play critical roles in immunity and allergic inflammation through regulated release
of various biologically active mediators (e.g., histamine, proteases, and cytokines) [1]. Many of
these mediators are pre-stored in secretory lysosomes/granules that, upon mast cell activation,
undergo signaling-dependent compound degranulation (homotypic fusion with one another
and heterotypic fusion to the plasma membrane) [2] or piecemeal degranulation (granule-asso-
ciated cargos are packaged into small vesicles that subsequently transport to and fuse with the
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cell surface) [3]. Like all fusion events along the endocytic and secretory pathways, mast cell
exocytosis requires SNAREs {SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attach-
ment protein] receptors} anchored to apposed membranes to form a fusogenic 4-helical bun-
dle, the so-called trans-SNARE complex [4]. A functional or fusogenic trans-SNARE complex
is typically formed by three Q-SNAREs (Qa, b, c) emanating from one membrane and one
R-SNARE from the other [4]. However, for mast cell exocytosis, the nature of the underlying
trans-SNARE complex(es) has been elusive, in part due to the presence of quite a number of
degranulation-relevant SNAREs [5,6,7,8,9,10,11,12,13].

Localization studies of resting murine mast cells indicate that secretory lysosomes/granules
are decorated with R-SNAREs VAMP2, 3, 7, 8 [6,7,12,13,14,15] and Qa-SNARE syntaxin3
[7,12,13,14], whereas the plasma membrane is enriched with Qa-SNARE syntaxin4 [13,16] and
Qb,c-SNARE SNAP-23 [6,13]. During mast cell compound degranulation, syntaxin3 relocates
from the secretory lysosomes to the plasma membrane [9], whereas SNAP-23 relocates from
the plasma membrane to the secretory lysosomes [13]. According to the 3Q: 1R rule [17], these
seven SNAREs can potentially form eight distinct trans-SNARE complexes. Among them,
VAMP8 (R)/syntaxin4 (Qa)/SNAP-23 (Qbc) represents best established trans-SNARE com-
plex for mast cell degranulation [18], supported by degranulation assays involving knockout
mice, primary cells and cultured cell lines [5,6,7,10,11,13,15,19], biochemical characterizations
[7,10,19,20] and reconstitution studies [21,22]. However, multiple trans-SNARE complexes are
required in activated mast cells to fulfill a number of roles. First, the homotypic and heterotypic
fusion in degranulation may each exploit a distinct trans-SNARE complex. A particularly
promising candidate for the homotypic granule fusion is syntaxin3, which appears to be the
only known Qa-SNARE on the secretory lysosomes. It effectively binds SNAP-23 and VAMP8
[20] and is critical for optimal secretion of β-hexosaminidase in RBL (rat basophilic leukemia)-
2H3 cells, a tumor analog of mucosal mast cells [9]. Second, piecemeal degranulation may play
a prominent role under conditions where compound exocytosis is compromised and might
exploit R-SNAREs other than VAMP8, as suggested by the lack of complete inhibition of β-
hexosaminidase release in VAMP8-knockout mast cells [7,15]. In accordance with this,
increasing amounts of VAMP2 and VAMP3 were found in association with SNAP-23 in
VAMP8 deficient cells [7,8], suggesting a VAMP2- or VAMP3- based trans-SNARE complex
might account for the remaining secretory activity. Third, there is heterogeneity within the
secretory lysosome population in mast cells [23]. A recent study using mast cells derived from
VAMP8-knockout mice showed that while VAMP8 is required for the regulated release of β-
hexosaminidase and serotonin, it is dispensable for TNF-alpha and histamine secretion [15].
Thus, VAMP8-independent trans-SNARE complex(es) must exist for regulated degranulation
in these cells. A leading alternative to VAMP8, besides VAMP2 and VAMP3, is VAMP7,
which has been shown to mediate granule exocytosis in mature human mast cells [10].

The involvement of multiple exocytic trans-SNARE complexes in mast cell is in line with
the observation that all three mammalian Munc18 isoforms specific for regulated exocytosis
are linked to mast cell degranulation. Munc18s are members of the conserved Sec1-Munc18
(SM) protein family that regulate fusion by exploiting different modes of association with the
fusion machinery [24,25]. Noted for its ability to activate the neuronal trans-SNARE complex
[26], Munc18a has been thought to function mainly in synaptic transmission, but it is also
expressed in non-neuronal tissues [27,28,29]. Very recently, a double knockdown of Munc18a
and Munc18b in RBL cells was found to eliminate β-hexosaminidase release, whereas reintro-
ducing Munc18a alone fully rescued the secretion defect [30]. However, through which set of
SNAREs Munc18a operates in mast cell exocytosis is not clear. The functional requirement for
Munc18b in mast cell exocytosis has long been recognized [16,31], but it was recently that its
participation in microtubule-dependent granule translocation, a stage preceding granule
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fusion, was delineated [9]. Whether Munc18b acts exclusively in translocation during mast cell
degranulation or multitasks in both translocation and fusion awaits further clarification.
Munc18c is ubiquitously expressed in mammals and interacts with syntaxin4 in a wide range
of cells including RBL cells [31]. Although both negative and positive roles of Munc18c in
SNARE-mediated GLUT4 exocytosis have been observed [32,33,34,35] [36], the functional
importance of Munc18c in mast cell exocytosis remains to be established.

In this study, we used reconstitution to explore the functional pairing of each of the four
granule-borne R-SNAREs (VAMP2, 3, 7, 8) with Q-SNAREs syntaxin3, syntaxin4, and SNAP-
23. We then investigated the effects of three Munc18 isoforms respectively in each of the recon-
stituted fusion reactions. We report that Munc18a selectively promotes the lipid mixing medi-
ated by VAMP2 and VAMP3, in a fashion that prevents the inhibitory action of R-SNARE
cytoplasmic domains.

Materials and Methods

cDNA Constructs
The cDNA encoding rat SNAP-23 in the pGEX vector (gift from Paul Roche) was amplified
using PCR and inserted in between the NcoI and EcoRI sites of the pMBP-parallel1 vector [37]
to generate pMBP-TCS (TEV Cleavable Site)-SNAP23. Similarly, pMBP-TCS-Syx3 (rat),
pMBP-TCS-Syx4 (rat), pMBP-TCS-VAMP2 (rat), pMBP-TCS-VAMP2CD (rat)
pMBP-TCS-VAMP3 (rat), pMBP-TCS-VAMP8 (rat) and pMBP-TCS-VAMP8CD (rat) were
generated respectively from pGEX-syntaxin3 (gift from Reinhard Jahn), UB339 (Syx4 con-
struct; gift from Ulrich Blank), pGEX-Syb1-116 (gift from Jose Rizo), rat reference cDNA (for
VAMP3; Zyagen), and pGEX-KG-endobrevin (gift from Reinhard Jahn). These constructs
contain a 4-aa-long linker sequence (GAMG) between the TCS and the start codon of each
SNARE for efficient cleavage by TEV, except the VAMP8 constructs which contain a 2-aa-long
linker (GA). The cDNA for VAMP7 was amplified from rat reference cDNA and inserted into
the LIC site of pET MBP His6 LIC cloning vector (gift from Scott Gradia; Addgene plasmid #
37237) to generate pET-VAMP7-TCS-MBP-His6. The cDNA for rat Munc18a was purchased
from ThermoScientific (Clone ID #7315868), amplified using PCR and inserted in between the
EcoRI and SalI sites of pMBP-parallel1 to generate pMBP-TCS-Munc18a. Rat Munc18b cDNA
was generated from pCMV-Munc18-2 (gift from Thomas Südhof) and the rat reference cDNA
using overlapping PCR to mitigate a point mutation near the 3’ end in pCMV-Munc18-2 and
an insertion mutation near the 5’ end in the reference cDNA. The PCR product containing the
correct sequence of Munc18b was initially insert into the EcoRI/SalI sites of pMBP-parallel1
for bacterial expression but later subcloned into the BamHI/SalI sites of pFAST-BAC-HT-JS
(gift from Jingshi Shen) for insect cell line expression. All the cDNA constructs above were ver-
ified via DNA sequencing. Sequences of cloning primers are in S1 Table. pET28a-NSF (ham-
ster) and pET28a- αSNAP (cow) were kind gifts from Reinhard Jahn. pFL-38His6-TEV was a
kind gift fromWilliamWickner. pFAST-BAC-HT-JS-Munc18c (mouse), pET28a-syntaxin4
and pET15b-SNAP23 were kind gifts from Dr. Jingshi Shen).

Proteins
All recombinant proteins purified in this study were quantified using the Bradford assay
(BioRad) according to manufacturer’s instruction, snap-frozen in small aliquots in liquid N2,
and stored at– 70°C. To purify MBP-tagged SNAREs, E. coli Rosetta2 (Novagen) transformed
with the respective plasmid was inoculated into 100 mL LB medium containing 100μg/mL
ampicillin and 25μg/mL chloramphenicol. Following overnight growth at 37°C, the culture was
added to 1L of Terrific Broth (TB) medium containing 100μg/mL ampicillin and 25μg/mL
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chloramphenicol, and shaken at 37°C until the OD600 � 1.5. IPTG (1M) was added to a final
concentration of 0.5mM. After 4 hours of continual growth at 37°C, bacteria were harvested by
centrifugation (5k rpm, 5 min, room temperature, GS3 rotor). The pellet was resuspended in
20 mL of Buffer A (50mMHEPES-KOH, pH 7.5, 0.5M KCl, 10% glycerol, 1mM DTT) contain-
ing 5mM benzamidine, 1mM PMSF, 1x PIC (0.62μg/mL leupeptin, 4μg/mL pepstatin A, and
24.4μg/mL pefabloc-SC), and subject to two passes through a French Press at 900 psi. Except
for SNAP-23, VAMP2cd and VAMP8cd, one-tenth volume of 1M n-octyl-β-D-glucoside (β-
OG; Affymetrix) was added and incubation was continued at 4°C for 1 h with nutation. The
lysates were then centrifuged at 40 k rpm for 1 h in a Beckman 70Ti rotor. The supernatants
were added to 4mL of amylose resin (NEB) pre-equilibrated with the wash buffer (50mM
HEPES-KOH, pH 7.5, 0.3M KCl, 10% glycerol and 0.1M β-OG). Following 1 h nutation at 4°C,
the resin was packed into an empty Biorad Econo-column at 4°C, washed with 40mL of wash
buffer, and eluted with 10mMmaltose in wash buffer. MBP-SNAP-23, MBP-VAMP2cd and
MBP-VAMP8cd were purified in the same fashion except without introducing β-OG in the
wash and elution buffer. To purify untagged syntaxin4 and His6-SNAP-23, BL21(DE3) co-
transformed with pET28a-syntaxin4 and pET15b-SNAP23 was induced with 0.5mM IPTG as
described above. The cell pellet from 1L of culture was resuspended in 20mL of Buffer B
(25mMHEPES-KOH, pH 7.5, 0.4M KCl, 10% glycerol, 20mM imidazole and 2mM β-mercap-
toethanol) containing 5mM benzamidine, 1mM PMSF, 1x PIC, and subject to two passes
through a French Press at 900 psi. Following detergent treatment and ultracentrifugation (as
above), the supernatant was applied to 3mL of Ni-NTA resin (Qiagen) pre-equilibrated with
Buffer B containing 100mM β-OG, and nutated for 2 h at 4°C. Resins were then washed with
30mL of Buffer B containing 100mM β-OG. Proteins were eluted in 25mMHEPES-KOH, pH
7.5, 0.4M KCl, 10% glycerol, 200mM imidazole and 100mM β-OG.

To purify MBP-Munc18a, Rosetta2/pMBP-TCS-Munc18a was grown in 1L of TB at 37°C
and induced with 0.2mM IPTG at OD600 � 1.0. The culture was subsequently incubated at
22°C overnight before cell pellets were harvested by centrifugation (5k rpm, 5 min, RT, GS3
rotor). Cell pellet was resuspended in 20mL of Buffer C (50mM Tris-Cl, pH 8.0, 500mM KCl,
5mM EDTA) containing 5mM benzamidine, 1mM PMSF and 1x PIC, and then passed twice
through a French Press at 900 psi. The Supernatants were collected through ultracentrifugation
with a Beckman Type 70 Ti rotor (4°C, 1 hr, 40,000 rpm) and applied to 4mL of amylose resin
pre-equilibrated with Buffer C. Following nutation at 4°C for 2 h, the amylose resin was washed
with 20mL of Buffer C, then eluted with 20mL of Buffer C containing 10mMmaltose.
MBP-Munc18a was dialyzed 1,000,000-fold in RB150 (20mMHEPES-NaOH, pH 7.4, 150mM
NaCl, 10% glycerol) overnight at 4°C. His6-Munc18b and His6-Munc18c were affinity-purified
using Ni-NTA resin from lysates of transfected Sf9 cells (gift from Fengwei Bai) according to
the published procedures [36]. His6-Munc18b was dialyzed 27783-fold in RB150, and His6-
Munc18c was dialyzed 27783-fold into RB150 containing 0.5mMDTT. Proteins were concen-
trated to desired concentration using 30k MWCOMicrosep™ Advanced Centrifugal Device
(Pall Corporation) before storage.

Recombinant His6-NSF, His6-αSNAP and His6-tev were each expressed in Rosetta2(DE3)
in 1L of Terrific Broth at 37°C. Following addition of 0.5mM IPTG at OD600 = 1.2, the cultures
were incubated for 4 h before cell pellets were harvested by centrifugation. His6-NSF cell pellets
were resuspended in 20mL of Buffer D (50mMHEPES-KOH, pH 7.6, 100mM KCl, 0.5mM
MgCl2, 0.5mM ATP, 5% glycerol, 1mM DTT) containing 10mM imidazole and 1x PIC,
whereas His6-αSNAP and His6-Tev cell pellets were resuspended in 20mL of Buffer A contain-
ing 10mM imidazole and 1x PIC. Follow French Press and ultracentrifugation (as above),
supernatants were applied to 4mL of Ni-NTA resin (pre-equilibrated with Buffer D or A, each
containing 10mM imidazole), and nutated for 2 h at 4°C. After the resins were washed with
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20mL of Buffer D or Buffer A (each containing 20mM imidazole), proteins were eluted in the
respective buffers that contain 200mM imidazole. Prior to storage, His6-αSNAP and His6-Tev
were dialyzed 1,000,000-fold in RB150 overnight at 4°C, whereas His6-NSF was concentrated
using 30k MWCOMicrosep™ Advanced Centrifugal Device.

Proteoliposome Preparation
All the fluorescent lipids were obtained from Invitrogen whereas the non-fluorescent lipids
were from Avanti Polar Lipids, Inc. Unless otherwise specified, donor proteoliposomes contain
60% POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), 17% POPE (1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphoethanolamine), 10% DOPS (1,2-dioleoyl-sn-glycero-3-phos-
phoserine), 10% cholesterol, 1.5% NBD-DHPE [N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)-
1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine] and 1.5% rhodamine DHPE (Lissa-
mine™ Rhodamine B 1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine), and acceptor
proteoliposomes contain 60% POPC, 19% POPE, 10% DOPS or POPS, 10% cholesterol and
1% Dansyl DHPE [N-(5-Dimethylaminonaphthalene-1-Sulfonyl)-1,2-Dihexadecanoyl-sn-
Glycero-3-Phosphoethanolamine]. Proteoliposomes were prepared by detergent dilution and
isolated on a Histodenz density gradient flotation as previously described [38]. SNARE pro-
teins were kept at similar densities as other reconstitution studies [26], with protein: lipid
rations at or below 1:200 for R-SNARE-bearing donor RPLs (reconstituted proteoliposomes)
and at or below 1:500 for Q-SNARE-bearing acceptor RPLs. His6-tev was added at 60μg/mL in
each reconstitution to remove the N-terminal tags [38].

Lipid-Mixing Assay
Unless otherwise specified, a standard fusion reaction (20μL) contained R-SNARE donor RPLs
(50μM lipids) and Q-SNARE acceptor RPLs (400μM lipids) in RB150. Reactions performed in
the presence of NSF/αSNAP also included 0.5mMMgCl2, 0.5mM ATP, and an ATP regenerat-
ing system (0.5mg/mL creatine kinase and 14.5mM creatine phosphate). Wherever Munc18s
were used, the N-terminal MBP or His6 tag was removed by premixing the chimeric Munc18s
with His6-Tev at a molar ratio of 2:1. To monitor lipid mixing, reaction mixtures (prepared on
ice, incubated overnight at 4°C or on ice) were transferred to a 396 well plate and the NBD
fluorescent signal was measured (λex = 460 nm, λem = 538 nm, λcutoff = 515 nm) in a Spectra-
MAX Gemini XPS plate reader (Molecular Devices) at 37°C. The maximal, early rate of
dequenching was calculated as the increased fluorescence at any time divided by the fluores-
cence at the first minute [(Ft—F0)/F0]. An increase of 1 in this parameter is defined as one unit.
For donor RPLs, the dequenching [(Fd /F0)-1] in the presence of 2% (v/v) Triton X-100 was
around 6 units in this study. To compare two sets of data, dequenching units from multiple
repeats of each experimental condition were imported pair-wise into KaleidaGraph 3.6, where
p values were calculated using Student’s t test.

Results

Seven SNAREs Implicated in Mast Cell Exocytosis Form Multiple
Fusogenic Trans-SNARE Complexes
In a systematic effort to identify the putative trans-SNARE complexes in mast cell exocytosis,
we purified all seven SNAREs (VAMP2, 3, 7, 8, syntaxin3, 4, and SNAP-23) that are either bio-
chemically or functionally implicated in the degranulation process. As shown in Fig 1A, syn-
taxin3 and syntaxin4 (lanes 5 and 6) were incorporated along with SNAP-23 into the acceptor
proteoliposomes (without NBD-DPPE or Rh-DPPE), whereas comparable amounts of
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VAMP2, 3, 7, 8 (lanes 1 to 4) were incorporated into the donor proteoliposomes, with
NBD-DPPE and Rh-DPPE at quenching concentrations. Upon fusion, the mixture of the
donor and acceptor membranes relieves this quenching effect via dilution, leading to increased
NBD fluorescence [39]. The fluorescent signal was recorded in a plate reader every minute (Fig
1B to 1E). The maximal, early rate of dequenching was calculated (see Materials and Methods)
to more effectively compare lipid mixing from different reaction conditions (Fig 2). In our
standard assay, low but detectable levels of lipid mixing were observed in six combinations
(Figs 1B to 1E and 2, lanes 1 to 3): i) VAMP2/syntaxin3/SNAP-23, ii) VAMP2/syntaxin4/
SNAP-23, iii) VAMP3/syntaxin3/SNAP-23, iv) VAMP3/syntaxin4/SNAP-23, v) VAMP8/syn-
taxin3/SNAP-23, and vi) VAMP8/syntaxin4/SNAP-23. VAMP8 appears to be the most potent
R-SNARE whereas VAMP7 shows no activity.

In eukaryotic cells, trans-SNARE pairing is facilitated by tethering factors (e.g., HOPS for
vacuole fusion and the exocyst for neurotransmission), which bring vesicles/membranes into
close proximity. This can be mimicked in vitro by increasing the concentrations of SNARE-
bearing liposomes or by introducing synthetic polymer polyethylene glycol (e.g., PEG6000)
[38,40]. Enhancing the concentrations of SNARE-bearing liposomes enhances the rate of the
specific interaction between cognate SNAREs located on the donor and the acceptor, promot-
ing their tethering and docking. PEG on the other hand induces nonspecific membrane tether-
ing, which has been exploited extensively in previous studies of reconstituted SNARE-bearing

Fig 1. Reconstituted proteoliposomes (RPLs) bearing R- and Q- SNAREs involved in mast cell exocytosis. (A) Coomassie blue-stained SDS-PAG of
reconstituted proteoliposomes. A total of 20 nmol (based on total lipids) of donor RPLs (lanes 1 to 4) and acceptor RPLs (lanes 5 and 6) were used in each
lane. Small amounts of His6-Tev used in the reconstitution get incorporated as well (specified by the arrowhead). The positions of protein markers are
indicated on the left. (B to E) Standard fusion reactions. The fluorescence of NBD-DHPE reconstituted in the donor RPLs was measured every min and the
dequenching of NBD-DHPE fluorescence (due to lipid mixing) is presented as Ft/F0, with Ft being the NBD-DHPE fluorescence at any time point and F0

being the fluorescence at the first minute. Represented by x are controls (not readily visible in C and D), in which donor RPLs were incubated with the
SNARE-free acceptor RPLs. A representative result frommore than three biological replicates is shown.

doi:10.1371/journal.pone.0138683.g001
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proteoliposomes [41,42]. As shown in Fig 2, except for VAMP7, a 4-fold increase of both
donor and acceptor liposomes modestly increased the rates of SNARE-mediated lipid mixing
(compare lanes 2 and 5, 3 and 6). More drastic effects were observed when PEG was adminis-
tered (lanes 8 and 9). Notably, the lipid mixing mediated by VAMP2/syntaxin3/SNAP-23 or
VAMP3/syntaxin3/SNAP-23 that is almost negligible under standard reaction conditions now
becomes readily detectable (Fig 2A and 2B, compare lanes 8 and 2). Even for VAMP7,
Q-SNARE-dependent lipid mixing can be observed relative to the control (Fig 2C, compare

Fig 2. Functional pairing of SNAREs examined under enhanced tethering conditions. Donor RPLs bearing VAMP2 (A), VAMP3 (B), VAMP7 (C) or
VAMP8 (D) were incubated with acceptor RPLs in standard fusion reactions (lanes 1 to 3), 4 x reactions (lanes 4 to 6), where the concentrations of the donor
and acceptor RPLs were increased 4 fold to 200mM and 1600mM respectively. Fusion reactions including 4% PEG6000 (v/v) are presented in lanes 7 to 9.
The maximal early rates of dequenching/lipid mixing were calculated as described in Materials and Methods. The mean values are presented and error bars
represent standard deviations from at least three independent experiments. Where appropriate, p values calculated using Student’s t test are presented.

doi:10.1371/journal.pone.0138683.g002
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lanes 8 and 9 to 7). These data indicate that an accurate assessment of trans-SNARE pairing in
reconstitution may require conditions where the efficiency of tethering is optimized.

Recapitulated SNARE-Dependent Mast Cell Exocytic Fusion Is
Sensitive to SNAP and NSF
We went on to examine the nature of lipid mixing by introducing SNARE disassembly chaper-
ones (αSNAP and NSF) into all except the VAMP7-based reactions. This is because the sub-
dued VAMP7 activity—likely due to its inhibitory N-terminal longin domain [43]–prevents
accurate assessment of αSNAP /NSF-dependent inhibition. Even in the presence of PEG, the
fold change between the signal (Fig 2C, lanes 8 and 9) and the background (lane 7) would be
too small for such investigation. For the other R-SNAREs (e.g., VAMP2, VAMP3, and
VAMP8), the addition of αSNAP at high concentrations (S1 Fig) clearly inhibits reconstituted
lipid-mixing reactions, which reflects αSNAP’s ability to prevent membrane fusion by binding
to individual SNAREs, its bona fide receptors, or to the partially assembled trans-SNARE com-
plex, as observed in other membrane fusion systems [44,45,46]. At non- or sub- inhibitory con-
centrations of αSNAP, addition of NSF, an ATPase, diminished the rates of lipid mixing (Fig
3). NSF by itself had minimal effect on most fusion reactions (Fig 3, compare lanes 1 and 6).
Therefore, the cooperation of αSNAP and NSF is required to disassemble either the trans-
SNARE complexes or the Q-SNARE subcomplexes prior to trans-SNARE zippering. Taken
together, we conclude that all six sets of fusion reactions reconstituted in this study are under-
pinned by authentic trans-SNARE interactions.

Munc18a Promotes the Lipid Mixing Mediated by Four Sets of SNAREs
To investigate if Munc18a, b, and c operate through any of the trans-SNARE complexes we
have identified, we purified recombinant forms of these proteins either from E. coli lysates or
from cultured Sf9 cells (recombinant Munc18b and Munc18c expressed in E.coli are largely
insoluble and difficult to purify). The N-terminal tags are readily removed by Tev protease (S2
Fig). When we initially tested Munc18a in lipid-mixing assays, it potently stimulated the rate of
VAMP2-mediated lipid mixing in a concentration-dependent fashion (S3 Fig). At the subopti-
mal level (e.g., 2μM), it stimulated the lipid mixing mediated by VAMP2 (Fig 4, lanes 1 to 3),
VAMP3 (lanes 4 to 6), but not by VAMP7 (lanes 7 to 9) or VAMP8 (lanes 10 to 12). The speci-
ficity of Munc18a for VAMP2 mirrors what had been previously observed in SNAP-25-medi-
ated neurotransmission, where selectively replacing VAMP2 residues in the SNARE domain
with corresponding residues in VAMP8 decreased Munc18a stimulation in vitro and reduced
exocytosis in vivo [26]. Munc18a does not have any effect unless acceptor liposomes bear either
syntaxin3/SNAP-23 or syntaxin4/SNAP-23, suggesting the presence of cognate Q-SNAREs on
the apposing membrane is important for Munc18a action.

Intriguingly, neither Munc18b nor Munc18c exhibits positive effects in the fusion reactions
(S4A and S4B Fig) as we had expected. The pull-down assay shows that Munc18c interacted
with full-length syntaxin4 but not syntaxin3 (S4C Fig), which corroborates with published
studies [31,47]. This interaction might be necessary for Munc18c-dependent inhibition of lipid
mixing catalyzed by VAMP8/syntaxin4/SNAP-23 (S4B Fig, lane 12; S5D Fig), but does not
appear to be the exclusive underlying mechanism since VAMP3-mediated lipid mixing was
not negatively affected (S4B Fig, lane 6). In contrast to Munc18c, Munc18b had little effect on
virtually all combinations tested. In addition to its reported ability to bind directly to syntaxin3
cytoplasmic domain [47], Munc18b also appears to bind membrane-anchored full-length syn-
taxin3 and syntaxin4 (S4C Fig). The significance of Munc18b/syntaxin4 interaction in mast
cell exocytosis and membrane fusion requires future investigation.
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Fig 3. αSNAP/NSF-dependent inhibition of SNARE-mediated lipid mixing. (A and B) VAMP2-bearing
donor RPLs were incubated with specified acceptor RPLs in fusion reactions containing 0.5mM ATP, 0.5mM
MgCl2, and 4% PEG6000. Also included in the reactions are specified amounts of NSF along with 0.5μM
αSNAP (A) or 0.15μM αSNAP (B). (C and D) VAMP3-bearing donor RPLs were incubated with specified
acceptor RPLs in fusion reactions containing 1mM ATP, 1mMMgCl2, and 4% PEG6000. Also included in the
reactions are specified amounts of NSF along with 0.15μM αSNAP. (E and F) VAMP8-bearing donor RPLs
were incubated with specified acceptor RPLs in standard reactions containing 0.5mM ATP and 0.5mM
MgCl2. Also included in the reactions are specified amounts of NSF along with 0.1μM αSNAP (E) or 0.02μM
αSNAP (F). All samples contained the same amounts of αSNAP buffer and NSF buffer. The maximal early
rates of lipid mixing for the SNARE-only reactions were used to generate the “standard” value (the lipid-
mixing rate from SNARE-free RPLs was treated as a background and subtracted) and set as 100%. The
values for other conditions were adjusted relative to the “standard” value. Error bars represent standard
deviations from three independent experiments.

doi:10.1371/journal.pone.0138683.g003
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Because Munc18s could regulate exocytosis via reversible interaction with the N-peptide in
cognate syntaxins [48,49], we wished to address the concern whether the tetrapeptide (GAMG)
remaining at the N-terminus of syntaxin4 after Tev cleavage might interfere with Munc18
function. We acquired an untagged syntaxin4 construct and co-expressed it along with His6-
SNAP-23 as previously described [36]. Acceptor RPLs bearing untagged syntaxin4 behaved
similarly to tagged syntaxin4, in their response to Munc18 isoforms (S5 Fig), suggesting that
the extra N-terminal tetrapeptide had caused minimal impact in our assay. Based on reported
studies in other secretory events [34,50], we propose that Munc18b or Munc18c might receive
post-translational modifications in activated mast cells in order to promote SNARE-dependent
granule exocytosis (see discussion).

Munc18a-Dependent Stimulation Is Sensitive to Soluble Fragments of
R-SNAREs at an Early Stage
To further characterize the synergistic effect between Munc18a and VAMP2/syntaxin4/SNAP-
23 in lipid mixing, we introduced the cytoplasmic domains of VAMP8 and VAMP2 at a con-
centration 8 fold of the full-length VAMP2 on the donor liposomes. These inhibitory proteins
prevent SNARE-dependent fusion by competing for cognate Q-SNAREs [19,51]. When they
were incubated with RPLs overnight on ice before the addition of Munc18a, very little lipid-
mixing activities were observed (Fig 5A), showing that Munc18a-promoted lipid mixing
requires functional trans-SNARE pairing. Intriguingly, when these inhibitory proteins were
introduced to the reaction mixture 90 min after Munc18a addition, and the mixture was then
incubated on ice overnight, there was very little inhibition (Fig 5B). These observations indicate
that VAMP8cd or VAMP2cd does not poison the lipid-mixing reaction in any unspecific fash-
ion. Rather, they act in a particular stage in the fusion cascade that is kinetically earlier than
Munc18a action. We suggest that Munc18a either promotes the partial zippering of the trans-

Fig 4. Munc18a selectively regulates different trans-SNARE complexes. Various combinations of donor and acceptor RPLs as specified were incubated
overnight at 4°C with Munc18a (2μM) or control buffer, before transferring to 37°C. Error bars represent standard deviations from three independent
experiments. p values were calculated using Student’s t test. ** indicates p < 0.01.

doi:10.1371/journal.pone.0138683.g004
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SNARE complex on ice, which becomes inaccessible to VAMP2cd or VAMP8cd, or the bind-
ing of Munc18a to the SNAREs prevents the access of the inhibitory proteins. Future studies
are needed to distinguish these scenarios.

Discussion
Identification of functional trans-SNARE complexes in mast cell exocytosis is often challenged
by the presence of both compound degranulation and piecemeal degranulation, which can be
further compounded by the heterogeneity of granule population inside the cell [7,15]. Never-
theless, in addition to VAMP8/syntaxin4/SNAP-23, biochemical characterizations, cellular
localization studies, and cell-based functional analysis have collectively indicated the require-
ment of syntaxin3-based trans-SNARE complexes in mast cell exocytosis [9,16,20,52]. Our
reconstitution of several fusogenic syntaxin3-containing trans-SNARE complexes under
enhanced tethering conditions lends strong support to the notion that distinct trans-SNARE
complexes underscore various types of granule/lysosome exocytosis in mast cells.

All the SNARE-only fusion reactions tested in this study are sensitive to action of ATPase
NSF and its cofactor αSNAP. This is consistent with the reported behavior of proteoliposomes

Fig 5. Munc18a-dependent stimulation is sensitive to inhibitory proteins at an early stage of the
fusion reaction. (A). Acceptor RPLs bearing untagged syntaxin4/His6-SNAP-23 and VAMP2-bearing donor
RPLs were incubated with inhibitory proteins VAMP2cd (2μM) or VAMP8cd (2μM) or buffer on ice overnight
and then received 5μMMunc18a or MBP (control). The incubation was continued on ice for another 90 min
before shifting to 37°C. Fold increases in the initial lipid-mixing rates of the fusion reactions are shown. In (B),
the same RPLs were incubated first with 5μMMunc18a on ice for 90 min before the addition of VAMP2cd
(2μM) or VAMP8cd (2μM). Following overnight incubation on ice, samples were transferred to 37°C to
monitor NBD fluorescence. The maximal early rates of lipid mixing for the Munc18a-only reactions were used
to generate the “standard” value and set as 100%. The values for other conditions were adjusted relative to
the “standard” value. Error bars represent standard deviations from three independent experiments.

doi:10.1371/journal.pone.0138683.g005
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bearing vacuolar SNAREs, which do not fuse at all in the presence of Sec17p (αSNAP homolog
in yeast) and Sec18p (NSF homolog in yeast) unless the HOPS tethering complex is also pres-
ent [38] [53]. Intriguingly, the reconstituted synaptic vesicle fusion appears to resist the disas-
sembly effects of αSNAP and NSF [54]. In the absence of a self-inhibitory domain of
syntaxin1A, the addition of αSNAP and NSF could even accelerate the lipid mixing. It is con-
ceivable that, due to the differences in the SNARE complexes or the different lipid composition
in different proteoliposome fusion systems, the neuronal trans-SNARE complex executes
fusion at rate faster than the rate of turnover by αSNAP and NSF [53].

How could Munc18a promote β-hexosaminidase release [30] if it does not operate through
VAMP8-based trans-SNARE complexes (Fig 4, lanes 11 and 12)? Our observation that
Munc18a stimulates VAMP2- and VAMP3- dependent lipid mixing implies that a distinct set
of trans-SNARE complex might form in the event that VAMP8-dependent degranulation is
compromised. In agreement to this, a ternary complex of VAMP2, syntaxin4 and SNAP-23
was identified in the lipid rafts during mast cell exocytosis [55], and more importantly, increas-
ing amounts of VAMP2 and VAMP3 were found in association with SNAP-23 in VAMP8--
knockout cells [7,8]. Similar compensatory mechanisms have previously been observed in
intracellular traffic. In baker’s yeast, a predominantly Golgi-localized SNARE Ykt6p is up-regu-
lated in sec22 deletion strains to sustain ER to Golgi traffic [56] and in nyv1 deletion strains to
sustain vacuolar fusion [57]. In animal cells, VAMP3 can partially compensate for the deletion
of VAMP2 in calcium-triggered exocytosis [58,59]. Although blocking or knocking down
VAMP2 or VAMP3 alone had limited effects on β-hexosaminidase release [10,19], we hypoth-
esize that simultaneously knocking out VAMP2, VAMP3, and VAMP8 would abolish mast cell
exocytosis.

Concerning the activators for VAMP8-based degranulation, Munc18 isoforms remain the
top candidates. Although none of the three unmodified Munc18s operate synergistically with
VAMP8-based trans-SNARE complexes in this study, a number of reports have documented
the importance of reversible phosphorylation in Munc18 activity. For example, site-specific
phosphorylation of Munc18a by PKC has been found critical for neurotransmission [60]. Since
the PKC pathway is also active in mast cell degranulation [61,62,63], it will be interesting to
examine if the same Munc18a modifications also takes place and whether they alter the speci-
ficity of Munc18a. Similarly, polarized secretion in epithelial cells requires CDK5-dependent
phosphorylation of Munc18b at Thr572, which promotes the assembly of the functional
Munc18b/VAMP2/syntaxin3/SNAP-25 membrane fusion machinery [50]. For GLUT4 exocy-
tosis in fat and muscle cells, Munc18c phosphorylation at Y521 promotes SNARE complex for-
mation between VAMP2, syntaxin4, and SNAP-23 [34], whereas the unmodified Munc18c
inhibits membrane fusion via specific interaction with syntaxin4 [34,35]. Future studies of sig-
naling-dependent modifications of Munc18 in activated mast cells will provide new insights
into the selective regulation of degranulation-relevant trans-SNARE complexes.
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