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Abstract With an increasing number of air quality monitoring stations installed around the Chinese mainland, high-resolution
aerosol observations become available, allowing improvements in air pollution monitoring and aerosol forecasting. However, the
multi scales (especially small-scale) information included in high-resolution aerosol observations could not be effectively
utilized by the traditional three-dimensional variational method (3DVAR). This study attempted to extend the traditional 3DVAR
to a multi-scale 3DVAR with two iteration steps, two-scale-3DVAR (TS-3DVAR), to improve the effectiveness of assimilating
high-resolution observations. In TS-3DVAR, the large-scale and small-scale components of observation information were
decomposed from the original high-resolution observations using a Gaussian smoothing method and then assimilated using the
corresponding large-scale or small-scale background error covariances which were derived from the partitioned background
error samples. The data assimilation (DA) analysis field generated by TS-3DVAR is more accurate than 3DVAR in reproducing
the field’s multi-scale characteristics, which could thus be used as the initial chemical field of the air quality model to improve
aerosol forecasting. Particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) and 10.0 μm (PM10) from the
surface air quality monitoring stations from November 01 to November 30, 2018 at 00:00 were assimilated daily to verify the
effects of TS-3DVAR and 3DVAR on the aerosol analysis and forecast accuracy. The results showed that TS-3DVAR better
constrained both large-scale and small-scale, especially the spatial wavelengths in a range of 54–216 km and those above
351 km. The average power spectra of the TS-3DVAR assimilation increment in the two wavelength ranges were 71.70% and
35.33% higher than those of 3DVAR. As a result, the TS-3DVAR was more effective than 3DVAR in improving the accuracy of
the initial chemical field, and thereby the forecasting capability for PM2.5. In the initial chemical field, the 30-day average
correlation coefficient (Corr) of PM2.5 of TS-3DVAR was 0.052 (6.12%) higher than that of 3DVAR, and the root mean square
error (RMSE) of TS-3DVAR was 3.446 μg m−3 (16.4%) lower than that of 3DVAR. For the forecasting capability for PM2.5 mass
concentration, the 30-day average Corr of TS-3DVAR during the 0–24 hour forecast period was 0.025 (5.08%) higher than that
of 3DVAR, and the average RMSE was 2.027 μg m−3 (4.85%) lower. The positive effect of TS-3DVAR on the improvement of
forecasting capability can last for more than 24 h.
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1. Introduction

An air pollution monitoring network, with over 2000 mon-
itoring stations, has been established across the Chinese
mainland to provide observations for controlling air pollu-
tion and improving air quality forecast (Sun et al., 2020).
High-resolution aerosol observations collected by the net-
work have been used for systematic air quality assessments
and air quality model (AQM) development. It has been de-
monstrated that a three-dimensional variational (3DVAR)
data assimilation (DA) method allows sufficiently utilizing
observations to improve the accuracy of the initial chemical
field and the aerosol emissions for AQM (Benedetti et al.,
2009; Tang et al., 2016; Peng et al., 2017; Chen et al., 2019;
Feng et al., 2020; Hu et al., 2022), which consequently im-
prove AQM forecast and in turn, enables appropriate man-
agement of air pollution to ensure safe air quality levels (Bai
et al., 2008; Niu et al., 2008; Sandu and Chai, 2011; Pa-
gowski and Grell, 2012; Jiang et al., 2013; Dai et al., 2014;
Bocquet et al., 2015; Yin et al., 2016; Zhu et al., 2018; Xia et
al., 2019). However, the traditional 3DVAR is not effective
in assimilating multi-scale observations information, espe-
cially small-scale components, with high-resolution mea-
surements, which is the major difficulty addressed in this
study.
The background error covariance matrix (BEC or B ma-

trix) is an important parameter in 3DVAR. It determines the
shape and magnitude of DA increments (Ide et al., 1997;
Bannister, 2008a, 2008b; Ha and Lee, 2012; Chen et al.,
2016; Bannister, 2017; Pang and Wang, 2021). In advanced
AQMs, the B matrix is too high-dimensional to directly
calculate in DA. A simplification is necessary. In general,
several other statistical measures, such as the background
error standard deviation (BESD), background error vertical
correlation coefficients (BEVCC), and horizontal correlation
length scale (L), are required to compute (Cheng et al., 2019;
Wang et al., 2022). The length scale L is single and set to a
fixed value in a traditional 3DVAR method. A given L de-
termines the DA to assimilate observational information on
certain scales associated, causing loss of multi-scale in-
formation—particularly small-scale information (Xie et al.,
2011; Li et al., 2015, 2016). Therefore, there is high potential
in DA using high-resolution observational to improve the
accuracy of DA analysis and capability of AQM prediction,
which has not been fully exploited to date.
Meteorological and oceanographic DA studies have ex-

amined the limit when a single L is used. Xie et al. (2011)
have indicated that 3DVAR essentially corresponds to a
single correction of the Barnes analysis, and that a single
Barnes iteration does not yield a good objective analysis. A
single correlation length scale 3DVAR may not yield a good
analysis if the covariance is unknown or contains incomplete
or partial information. Additionally, Li et al. (2015, 2016)

argued that the traditional 3DVAR method is inherently in-
effective for fine-resolution models due to its filtering
properties; therefore, a multi-scale 3DVAR method was
suggested instead. According to Zhang et al. (2014), the
BECs corresponding to models with different resolutions
have different scales of structure and properties; therefore, it
is necessary to develop a multi-scale approach to DA
methods to assimilate observations that contain information
on different scales. In the context of the utilization rate of
observational data, L plays the role of spreading out ob-
servational information to nearby grid-points, wherein the
larger the L, the larger the spread range which observational
information extends in the DA analysis. In general, this
means that a larger L is necessary to assimilate more large-
scale observational information. However, a larger L also
causes the DA to have a stronger filtering effect (Li et al.,
2016), by virtue of which it cannot fully utilize small-scale
information; hence, giving rise to a notable conflict between
the utilization rate of the large-scale and small-scale ob-
servational information.
To address the above conflict, researchers in the field of

meteorological and oceanographic DA have explored multi-
scale DA methodologies. Xie et al. (2011) established a se-
quential space and time multi-scale analysis system
(STMAS) for meteorological data assimilation, wherein
observational information on a specific scale was assimilated
in each of the multiple iteration steps, indicating that the
STMAS could generate an analysis field with multi-scale
characteristics. Zhang et al. (2014, 2015) applied a DA
scheme that used BEC with multi-scale characteristics to
assimilate meteorological data. In the DA analysis incre-
ment, there is not only the large-scale information from
background fields but also the local information from ob-
servations. Thus, the forecast of precipitation with the multi-
scale increment is improved. Peng et al. (2010) and Wang et
al. (2016) used the scale-selective data assimilation (SSDA)
method to adjust the model variables on large scales while
keeping them consistent on small scales to preserve the
large-scale observational information and the original small-
scale information in the model. Li et al. (2015, 2016) de-
veloped a multi-scale three-dimensional variational (MS-
3DVAR) DA scheme, particularly for high-resolution ocean
data assimilation. This resulted in the decomposition of the
observational data into different scales, as well as its in-
dividual assimilation that depended on the BEC of the cor-
responding scale. A set of one-dimensional DA experiments
to assimilate simulated and actual ocean observations were
conducted by Li et al. (2015), Muscarella et al. (2014),
Miyazawa et al. (2017) to illustrate how MS-3DVAR im-
proves the effectiveness of the assimilation. The results
showed that MS-3DVAR had reduced analysis errors com-
pared with a traditional 3DVAR scheme.
Although significant progress in multi-scale DA methods
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has been made in the fields of meteorological and oceano-
graphic DA, its application in aerosol data assimilation is
still not explored. The aerosol distribution is inherently
multi-spatial and small-scale by nature (Xu et al., 2005) due
to complex factors such as multi-scale weather systems
(Zhang, 2005; Zhu et al., 2013; Liu et al., 2015; Huang et al.,
2017), localized emission sources, and small-scale photo-
chemical processes (Chen P L et al., 2017; Chen S Y et al.,
2017, Han and Zhang, 2021). On the other hand, the hor-
izontal spatial resolution of the monitoring network has
reached up to 10 km in a number of cities and surrounding
areas in eastern China and thus could provide observational
information on multi scales. So in-depth studies on the use of
the multi-scale DA method are necessary to capitalize the
high-resolution aerosol observations and ultimately improve
the aerosol forecasting capabilities.
Hence, this study aims to develop a multi-scale 3DVAR

method with two iteration steps, two-scale-3DVAR (TS-
3DVAR), based on the traditional 3DVAR system by Li et al.
(2013), Zang et al. (2016), Wang et al. (2020), and Liang et
al. (2020). This study also leveraged the AQM of WRF-
Chem [Weather Research and Forecasting (WRF) model
coupled with online chemistry]. The actual PM2.5 and PM10

mass concentrations measurements across the Chinese
mainland were assimilated to illustrate the advantages of the
TS-3DVAR over 3DVAR.

2. Materials and methods

2.1 AQM and data source

This study used the WRF-Chem model version 3.9.1 as the
AQM, wherein the simulation region contained 164×155
grid points with a spacing of 27 km, and the center of the
region was located at 109.4°E, 36°N (Figure 1). The physical
and chemical schemes that were used followed that of Liang
et al. (2020), while the aerosol scheme was the Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC)
with 4 bins (MOSAIC_4bins; Zaveri et al., 2008). With the
MOSAIC_4bins, the atmospheric aerosols were divided into
8 components: black/elemental carbon (EC/BC), organic
carbon (OC), sulfate (SO4), nitrate (NO3), ammonium salt
(NH4), chloride (Cl), sodium salt (Na), and other un-
classified inorganic compounds (OIN). Further, the aerosol
size was classified into 4 classifications (4bin), namely:
0.0390625–0.15625, 0.15625–0.625, 0.625–2.5, and
2.5–10 μm. Thus, the various aerosols with various sizes
were represented by 32 model variables.
The mass concentration (MC) measurements of PM2.5 and

PM10 (PMs) were obtained from 1579 air quality monitoring
stations. To ensure the temporal and spatial representative-
ness of PM data adopted in DA, a quality control process
similar to that employed by Liang et al. (2020) was followed,

wherein data thinning was performed in accordance with the
model resolution. Specifically, when multiple PM measure-
ments are in one grid cell, all data deviating from the mean
values of the PM by more than two times the standard de-
viation were removed. Thereafter, arithmetic mean values
were obtained and considered for both DA and validation
(Sun et al., 2020). Among the 720 observation times in
November 2018, there were 706 times (98.06%) when the
data volume was between 600 and 624, while there were only
14 times (1.94%) when there were no valid observation data.

2.2 The MS-3DVAR algorithm

The MS-3DVAR scheme that was applied in this study in-
cludes two scales: large-scale and small-scale, and is referred
to as TS-3DVAR. The incremental form of the cost function
for the traditional 3DVAR is as follows (Liu et al., 2011; Li et
al., 2013):
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here, the δx represents the incremental analysis variable,
which is an n-vector defined as δx=x−xb, where x represents
the analysis variable; and xb is the background variable ob-
tained from the model forecast. B represents the BEC (error
covariance associated with xb) and is an n×nmatrix. The d=y
−Hxb represents the observation innovation and is an m-
vector, y is the observation vector and the m×n matrix H is
the observational operator that maps the model state variable
to the observation. R represents the observational error
covariance and is an m×m-matrix.
Without partitioning the cost function and its parameters

into two scales, the TS-3DVAR algorithm is essentially si-
milar to the basic 3DVAR algorithm. The cost functions of
the TS-3DVAR are as follows:
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here, all variables are equivalent to the 3DVAR algorithm
except for the L and S subscripts which represent the para-
meters on the large-scale and small-scale. Both are also
partitioned from their original parameters, which is further
discussed in Section 2.3. The TS-3DVAR involves a two-
step sequential iteration wherein the large-scale observa-
tional innovation dL is first assimilated to obtain the large-
scale incremental field δxL. This is followed by the assim-
ilation of the small-scale observation innovation dS, to obtain
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the small-scale incremental field δxS. As these steps corre-
spond to the scale of parameters (BL, dL or BS and dS), the
final DA analysis field is given by xa=xb+δxL+δxS. To re-
duce the total number of state variables, Liang et al. (2020)
suggested designing two state variables for each aerosol
component. Specifically, one state variable corresponds to
fine particles and the other to coarse particles. In this study,
the former was obtained from the combination of the first
three particle-size bins while the latter from the fourth par-
ticle-size bin. As a result, a total of 16 state variables in the
DA scheme denoted as EC2.5, EC2.5-10, OC2.5, OC2.5-10, SO42.5,
SO42.5-10, NO32.5, NO32.5-10, NH42.5, NH42.5-10, CL2.5,
CL2.5-10, NA2.5, NA2.5-10, OIN2.5, and OIN2.5-10, were obtained.

2.3 Scale decomposition method and B estimation

To implement TS-3DVAR, the observation innovation and
the BEC must be partitioned into two different spatial scales.
This study used a Gaussian smoothing method for spatial
decomposition (Li et al., 2015). Firstly, the observation data
is positioned. Thereafter, all data values in the concentrated
smooth region were averaged with the weight function in eq.
(4). Considerably, this weighted average was used as the
large-scale data value at this particular position. Small-scale
data values are then obtained by subtracting the large-scale
data value from the original data value. The weighted weight
function is expressed as follows:

w w= e , (4)r D
0

/22 2

here, w0 is a normalization factor; e is the base of the natural
logarithm; r is the distance between the data and its neigh-
bors; and D is the Gaussian smoothing length scale.
To distinguish the traditional 3DVAR parameters from the

large-scale or small-scale parameters in the TS-3DVAR, the
former was referred to as the single-scale parameters. The
single-scale observation innovation d was calculated from the
original background field and observations for DA. The d is
partitioned into dL and dS using the scale decomposition
method. The single-scaleBwas estimated from the single-scale
background error samples, whereas the BL and BS were esti-
mated from the large-scale and small-scale background error
samples, which were obtained from the single-scale back-
ground error samples using the scale decomposition method.
The differences between the 24- and 48-h WRF-Chem

forecasts during the same November 2018 period were
considered as the single-scale background error samples to
allow the estimation of B using the National Meteorological
Center (NMC) method (Parrish and Derber, 1992; Cao et al.,
2008; Li et al., 2013). The BESD, BEVCC, and L were
calculated for each of the 16 state variables (Li et al., 2013;
Zang et al., 2015) and its corresponding large-scale and
small-scale parameters (BESDL, BESDS, BEVCCL,
BEVCCS, LL and LS) were also calculated using the scale

decomposition method.

2.4 DA and forecast experimental design and verifica-
tion analysis method

One experiment for each of the 3DVAR (3DVAR) and TS-
3DVAR (TS_3DVAR) methods was designed from 0000
UTC 01 November 2018 to 0000 UTC 01 December 2018 to
examine the differences between the two methods. A control
experiment without observation assimilation (Control) was
also used to examine the effects of DA. In both the DA
experiments, the 24-h forecast was used as the background
field for DA and the PM observations were assimilated at
0000 each day, then the obtained DA analysis field was used
as the initial chemical field and the forecasts were performed
for another 24 h period. To implement the scale partitioning
as described in Section 2.3, the Gaussian smoothing lengthD
was selected as 60 km, or roughly equal to the average sin-
gle-scale L of all state variables.
The results of the experiments were evaluated using the

root mean square error (RMSE) and the correlation coeffi-
cients (Corr) that were calculated based on Liang et al.
(2020).
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whereMi is the simulated sample;Oi is the measured sample;

Figure 1 The experimental domain (light blue rectangular) and the lo-
cations of 1579 ground air quality monitoring stations (red dots).
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N is the number of samples; M is the average simulated
PM2.5; and O is the average of the measurements. Here,
better performances were reflected by smaller RMSE values
and larger Corr values (Boylan and Russell, 2006).

3 Results

3.1 The B matrix on different scales

Table 1 shows the L of the 16 state variables on the single-
scale (L), large-scale (LL), and small-scale (LS). The average
L of all these variables was 60.72 km, which was 2.25 times
the grid spacing of 27 km. In contrast, the mean LL was
107.30 km or 3.97 times the grid spacing, and 76.71% larger
than L, whereas the mean LS was 20.72 km or 0.77 times of
the grid spacing, and 65.88% smaller than the L. This finding
was attributed to the Gaussian smoothing, which had caused
an increase in the horizontal correlation of the background
error samples to make the LL greater than L. Further, since
the small-scale background error samples were obtained
from the difference of the large-scale and single-scale
background error samples, where the former was dominantly
greater, the resulting LS was always smaller than L. Notably,
a larger LL helps spread the large-scale observational in-
formation and a smaller LS helps assimilate more small-scale
component in the TS-3DVAR which can result in a more

accurate DA analyses compared to 3DVAR.
Meanwhile, the domain-averaged BESD vertical profiles

for the 16 state variables on the single-scale (BESD), large-
scale (BESDL), and small-scale (BESDS) are presented in
Figure 2. Here, the BESD was larger than BESDL, which is
in contrast to the relative order of magnitude of L, because
the original BESD had been reduced due to the Gaussian
smoothing. Nevertheless, the relative order of magnitude of
the different state variables was similar for all three scales.
Seven state variables (NO32.5, OIN2.5-10, OIN2.5, NH42.5,
SO42.5, OC2.5 and EC2.5) were observed to have the largest
near-surface values for all three scales.
Figure 3 shows the domain-averaged BEVCC for NO32.5

and OIN2.5-10 on the single-scale (BEVCC), large-scale
(BEVCCL), and small-scale (BEVCCS). For NO32.5 and
OIN2.5-10, the BEVCCL was larger than BEVCC between the
same two levels, whereas the BEVCCS was the smallest. The
relative order of magnitude of BEVCC was similar to that of
the correlation length scale, which indicates that although the
Gaussian smoothing was only implemented in the horizontal
direction, it had caused an adjustment in the vertical correla-
tion of the state variables. This demonstrates that the TS-
3DVAR could also spread large-scale observational informa-
tion in the vertical dimension, and allow for more efficient use
of small-scale information similar to that of the horizontal
dimension, thereby ultimately improving the DA effect.

Table 1 Correlation length scales for the 16 state variables on the single-scale (L), large-scale (LL) and small-scale (LS)

State variable EC2.5 OC2.5 NO32.5 SO42.5 CL2.5 NA2.5 NH42.5 OIN2.5

L (km) 78.08 77.87 70.50 81.00 42.98 42.98 79.65 78.11

LL (km) 116.12 116.12 109.88 118.90 98.46 98.46 117.40 115.41

LS (km) 24.68 24.34 23.08 24.91 16.67 18.37 24.29 25.03

State variable EC2.5-10 OC2.5-10 NO32.5-10 SO42.5-10 CL2.5-10 NA2.5-10 NH42.5-10 OIN2.5-10

L (km) 68.45 69.09 53.73 67.77 25.52 25.52 59.67 50.63

LL (km) 110.87 111.11 103.47 113.02 87.10 87.10 107.79 105.56

LS (km) 21.07 21.15 18.90 20.58 14.92 15.90 19.13 18.44

Figure 2 Domain-averaged BESD vertical profiles for the 16 state variables on the single-scale (BESD), large-scale (BESDL) and small-scale (BESDS).
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3.2 Effects of 3DVAR and TS-3DVAR on the PM2.5
analyses

The DA analysis field has lesser uncertainty than the back-
ground field because the observational information is as-
similated into the background field; therefore, the effect of
the DA is reflected in the accuracy of aerosol analyses As
shown in Figure 4a, there were higher PM2.5 MC values in
north and central China, whereas in other areas, lower values
were observed. Specifically, the PM2.5 MC at 0000 UTC 01
November 2018, was characteristically uneven overall.
There were also monitoring sites whose PM2.5 MCs were
notably different from their neighboring sites, signifying a
large gradient in its locality along with multiple spatial-scale
characteristics of the aerosols. In relation to this, both the
3DVAR (Figure 4b) and TS-3DVAR (Figure 4c) DA fields
have successfully simulated the uneven distribution pattern
of the aerosols as compared with the actual observations.
However, both also contained biases that were dominantly
positive in most of the eastern and central China regions,
based on the contour color map in Figure 4. Although both
the results of the DA analyses were higher than the overall
observation, the resulting difference between the TS-3DVAR
and 3DVAR DA analysis fields was negative in the same

regions (Figure 4d), indicating that the TS-3DVAR DA
analyses were more representative of the observations than
the 3DVAR. Additionally, the analyses also had higher ac-
curacy (Figure 5a–5c) in the small-scale characteristics. In
Figure 5b, there was a large positive bias in the area of
Taiyuan (TY) and Changzhi (CZ;), whereas in the TS-
3DVAR bias field (Figure 5c), there were two separate large
value centers in TYand CZ and with smaller bias than that in
Figure 5b. In addition, there was also a large positive bias in
Luoyang (LY) and Zhengzhou (ZZ; Figure 5b), but the
change was in a decreasing trend due to the higher optimi-
zation of background field data on a small-scale (Figure 5c).
Statistical calculations showed that the Corr and RMSE of
the TS-3DVAR DA field at 0000 on November 1 were 0.889
and 13.35 μg m−3, which were higher by 0.043 (5.08%) and
lower by 3.78 μg m−3 (22.07%) than the 3DVAR DA field
counterparts (Corr=0.846 and RMSE=17.13 μg m−3). These
results demonstrate that the TS-3DVAR generated a more
accurate DA field.
Figure 6 shows the power spectra (30-day average) of the

3DVAR and TS-3DVAR DA increment fields (i.e., differ-
ence between DA analysis field and the background field) in
the simulated areas. It can be observed that both the power
spectra decreased with a decrease in the wavelength. In the
wavelength above 405 km (15 times the grid spacing), the
rate of decrease was relatively small, but the power spectra
were in the order of 107 μg2 m−6. Contrastingly, the rate of
decrease was relatively large, and the power density quickly
decreased to the order of 103 μg2 m−6 in the wavelength be-
low 405 km, indicating the proportion of large-scale in-
formation in the DA increment fields was far greater than
small-scale information, regardless of the DA method.
Compared with 3DVAR, the power spectra of the TS-
3DVAR DA increment field was averaged 71.70% higher
than that of 3DVAR in the wavelength range of 54–216 km
(2–8 times the grid spacing) and 35.33% higher at wave-
lengths above 351 km (13 times the grid spacing), indicating
that the amplitude of the DA increment of TS-3DVAR
around its mean value was greater than that of 3DVAR on
these scales, and that TS-3DVAR could optimize the fluc-
tuations of aerosols to a greater extent.
The scatter plot comparison between the PM2.5 MC ob-

servations and PM2.5 MCs in the 30 DA analysis fields of the
3DVAR and TS-3DVAR (Figure 7) shows that the dots from
both DA analysis fields were scattered on both sides of the
central line, but the dots from the TS-3DVAR (red) were
closer to the central line than the 3DVAR (blue). The Corr
and RMSE for the 3DVAR and the TS-3DVAR were 0.893
and 0.921, and 19.04 and 16.00 μg m−3, respectively. The
Corr of the latter increased by 0.03, but the RMSE decreased
by 3.04 μg m−3, which was 3.37% and 15.97% better than the
former, indicating that the TS-3DVAR generated higher
aerosol analyses accuracy, thereby improving the AQM

Figure 3 Domain-averaged BEVCC for the NO32.5 and OIN2.5-10 on the
single-scale (BEVCC), large-scale (BEVCCL) and small-scale (BEVCCS).
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forecasting capability for PM2.5.

3.3 Effects of 3DVAR and TS-3DVAR on the PM2.5

forecasting capability

It is expected that the forecasting capabilities for PM2.5

would be improved when a more accurate DA analysis field
is used as the initial chemical field of AQM. However, this
improvement as well as the relative positive effects of TS-
3DVAR over 3DVAR may diminish over time due to several
pertinent biases such as those relating to the model and
meteorological conditions, and other factors such as un-
certainties of emissions. As shown in Figure 8, the 30-day
Corr average of the TS-3DVAR was 0.906, which was 0.052
(6.09%) higher than that of 3DVAR (0.854), whereas the
RMSE was 15.044 μg m−3, or 3.446 μg m−3 (18.64%) lower
than 3DVAR (18.490 μg m−3) at the initial time. This result
indicates that the initial chemical field of the TS-3DVARwas
more accurate. It should be noted that the calculation method
employed here was different from those that were discussed
in Section 3.2, as this involved calculating the statistics each
day prior to obtaining the 30-day average. The 30-day Corr

averages of both the DA were observed to fluctuate
throughout the forecast—it decreased rapidly within the first
4 hours before stabilizing within 5–10 h, and by the 11th
hour, it had started rapidly decreasing again. This finding
may indicate that the DA could improve forecast accuracy
only notably in the first 4 hours following the initial DA.
During the 0–24 forecasting hours, the TS-3DVAR has a
more continuous positive effect on the improvement of the
forecasting ability than the 3DVAR. The 30-day Corr and
RMSE averages of the TS-3DVAR within the first 4-hour
were 0.637 and 30.511 μg m−3. These were 0.051 (8.70%)
and 3.267 μg m−3 (9.67%) better than that of their 3DVAR
counterparts (0.586 and 33.778 μg m−3). Between 5 and 10 h,
the 6-hour and 30-day Corr and RMSE averages were 0.559
and 39.269 μg m−3, wherein the former was 0.023 (4.29%)
higher than its 3DVAR counterpart, while the latter was
2.025 μg m−3 (4.90%) lower. The 30-day Corr average at
0–24 h of TS-3DVAR was 0.025, which was 5.08% higher
than that of 3DVAR, while the RMSE was 2.027 μg m−3

which was 4.85% lower. Therefore, TS-3DVAR has a rela-
tively more positive effect on the improvement of forecasting
ability, one which can potentially last over 24 h.

Figure 4 The PM2.5 MC observations (a), the PM2.5 MCs in the analysis field of 3DVAR (b) and its bias (e), in analysis field of TS-3DVAR (c) and its bias
(f), the difference between the analysis of 3DVAR and TS-3DVAR (i.e., the TS-3DVAR DA analysis fields minus the 3DVAR DA analysis fields) (d) at 0000
UTC 01 November 2018.
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4. Discussion and conclusion

To effectively assimilate the observations from the high-re-
solution aerosol observation network around the Chinese
mainland and improve the aerosol forecasting capabilities of
AQM, this study has extended traditional 3DVAR to a multi-
scale scheme with two iteration steps, named TS-3DVAR. In
TS-3DVAR, the original background errors were partitioned
into large-scale and small-scale using the Gaussian
smoothing method, to obtain the background error standard
deviation (BESD), background error vertical correlation
coefficients (BEVCC), and then the horizontal correlation
length scale (L) was estimated for both the large-scale and
small-scale. The original observational innovation dwas also

partitioned and assimilated using the background error
covariance of the corresponding scale. PM2.5 and PM10 ob-
servations from November 1 to November 30, 2018 were
assimilated daily at 0000 UTC to determine the effects of
using TS-3DVAR over 3DVAR in terms of aerosol analysis
and forecast accuracy.
The average correlation length scale on large-scale and

small-scale was 107.30 and 20.72 km, which were 76.71%
larger and 65.88% smaller than that of the original single-
scale one (60.72 km) for traditional 3DVAR. TS-3DVAR
showed to have utilized more observational information on
both large-scale and small-scale. The average power spectra
of the TS-3DVAR assimilation increment were 71.70% and
35.33% higher than those of 3DVAR in the wavelength

Figure 5 (a)–(c) was the sub-area of Figure 4d–4f, respectively, where Figure 5b and 5c are contour color maps derived from site values (TY: Taiyuan; CZ:
Changzhi; LY: Luoyang; ZZ: Zhengzhou).
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ranges of 54–216 km (2–8 times the grid spacing) and those
over 351 km (13 times the grid spacing). With these results,
it can be concluded that TS-3DVAR had a more accurate DA
analysis field by a more effective use of observational in-
formation. In the obtained initial chemical field of TS-
3DVAR, the 30-day Corr of PM2.5 was 0.052, which was
6.12% higher than that of 3DVAR. Meanwhile, the RMSE
was 3.446 μg m–3, or 16.4% lower. Similarly, the 30-day
Corr and RMSE averages during the 0–24 hour forecast
period was 0.025 and 2.027 μg m–3, or 5.08% higher and
4.85% lower than its 3DVAR counterparts. Hence, the po-
sitive effects on the improvement of forecasting capability
can even last for more than 24 h.

Although the results in this study showed that the TS-
3DVAR can more effectively improve the accuracy of the
DA analysis and subsequent forecasts for PM2.5, enhance-
ments may still be made on the addition of standard pro-
cesses for parametric calculation and selection (i.e.,
horizontal correlation length scales or Gaussian smoothing),
as the guidelines presented in Li et al. (2015), Muscarella et
al. (2014), and Miyazawa et al. (2017) were diverse. Speci-
fically, the optimization of these parameters was found to be
associated with different factors such as the dynamic scale
characteristics of assimilated observations, resolution of the
observations and the model (Barker et al., 2004; Gong, 2007;
Chen et al., 2015). Therefore, this aspect should be explored
further. This study was limited to DA experiments for ground
PM2.5 and PM10 observations, wherein aerosol optical
thickness, extinction coefficient, or backscatter coefficient
observations are not considered. Unconventional aerosol
data assimilation and the simultaneous assimilation of multi-
source aerosol could be different from in-situ data assim-
ilation and be difficult as in traditional 3DVAR. As a result,
there may be negative effects on the DA such as bias in the
observation operator of unconventional data, redundancies
and mutual interferences of multi-source data, or differences
in the spatial representation of different observational data.
Hence, further studies should be conducted to address these
issues when using multi-scale 3DVAR. Finally, as the ob-
servation errors had been assumed in previous studies to be

Figure 6 The power spectra (30-day average) of 3DVAR and TS-3DVAR
DA increment fields (i.e., DA analysis fields minus the background field) in
the simulated area.

Figure 7 Scatter plot comparison between the PM2.5 MC observations
and the PM2.5 MCs in 30 DA analysis fields of 3DVAR and TS-3DVAR.

Figure 8 Variations of the 30-day average Corr and RMSE of surface
PM2.5 MC forecasted by the Control, 3DVAR and TS-3DVAR experiments
over forecast time.
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uncorrelated, the correlation of observation errors in the
multi-scale 3DVAR should be incorporated as the resolution
of the observations increases, which may ultimately impact
data assimilation.
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