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Abstract
Ecologically	 relevant	 references	 are	 useful	 for	 evaluating	 ecosystem	 recovery,	 but	
references	 that	 are	 temporally	 static	may	be	 less	 useful	when	 environmental	 con-
ditions	and	disturbances	are	spatially	and	temporally	heterogeneous.	This	challenge	
is	particularly	acute	for	ecosystems	dominated	by	sagebrush	(Artemisia	spp.),	where	
communities	may	 require	 decades	 to	 recover	 from	disturbance.	We	demonstrated	
application	of	a	dynamic	 reference	approach	 to	studying	sagebrush	 recovery	using	
three	decades	of	sagebrush	cover	estimates	from	remote	sensing	(1985–	2018).	We	
modelled	recovery	on	former	oil	and	gas	well	pads	(n =	1200)	across	southwestern	
Wyoming,	USA,	relative	to	paired	references	identified	by	the	Disturbance	Automated	
Reference	Toolset.	We	also	used	quantile	regression	to	account	for	unmodelled	het-
erogeneity	 in	 recovery,	and	projected	recovery	 from	similar	disturbance	across	 the	
landscape.	Responses	to	weather	and	site-	level	factors	often	differed	among	quan-
tiles,	and	sagebrush	recovery	on	former	well	pads	increased	more	when	paired	refer-
ence	sites	had	greater	sagebrush	cover.	Little	(<5%)	of	the	landscape	was	projected	
to	recover	within	100	years	for	low	to	mid	quantiles,	and	recovery	often	occurred	at	
higher	elevations	with	cool	and	moist	annual	conditions.	Conversely,	48%–	78%	of	the	
landscape	recovered	quickly	(within	25	years)	for	high	quantiles	of	sagebrush	cover.	
Our	study	demonstrates	advantages	of	using	dynamic	reference	sites	when	studying	
vegetation	recovery,	as	well	as	how	additional	inferences	obtained	from	quantile	re-
gression can inform management.
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1  |  INTRODUC TION

The global extent and magnitude of anthropogenic disturbance are 
unprecedented,	 and	 widespread	 preservation	 and	 restoration	 ef-
forts	are	needed	to	avert	or	reverse	losses	in	biodiversity	and	eco-
system	function	(Wolff	et	al.,	2018).	Restoring	ecosystems	through	
different	methods	and	across	scales	provides	many	promising	ben-
efits	 to	mitigate	 environmental	 degradation	 (Perring	 et	 al.,	 2015).	
However,	 challenges	 remain	 in	 identifying	 appropriate	 restoration	
targets	 in	dynamic	 landscapes	and	when	working	at	 large	extents.	
To	calibrate	restoration	strategies	and	evaluate	outcomes,	reference	
sites are needed to represent the expected or potential state of an 
ecosystem	at	recovery	(Aronson	et	al.,	1995;	Brinson	&	Rheinhardt,	
1996;	 Herrick	 et	 al.,	 2019;	 Society	 for	 Ecological	 Restoration	
International	Science	&	Policy	Working	Group,	2004).	A	reference	
condition	is	identified	spatially,	such	as	via	ecological	site	potentials	
(Herrick	et	al.,	2019;	Nauman	&	Duniway,	2016),	but	defining	its	rel-
evant	 timeframe	 is	not	 trivial	 (White	&	Walker,	1997).	 Indeed,	en-
vironmental	contexts	and	disturbance	vary	over	space	and	time	 in	
frequency,	magnitude,	and	scale,	and	conditions	that	produced	a	his-
torical	reference	may	no	longer	exist	for	contemporary	restoration	
(Jackson	&	Hobbs,	2009;	Kirkman	et	al.,	2013;	Seastedt	et	al.,	2008).	
Relevance	of	a	temporally	static	reference	to	recovering	systems	can	
therefore	be	ambiguous	(Hiers	et	al.,	2012;	Hobbs,	2007;	Thorpe	&	
Stanley,	2011;	White	&	Walker,	1997).

The	 temporal	 conundrum	 of	 identifying	 reference	 conditions	
may	be	resolved	by	defining	a	reference	that	can	change	over	time	
(hereafter,	 dynamic	 reference),	 whereby	 restoration	 objectives	 are	
more	 likely	 to	 resemble	 current	 and	 future	 states	of	 the	 reference	
(Choi,	2004;	Hobbs	&	Norton,	1996;	Pickett	&	Parker,	1994).	Previous	
applications	 of	 the	 dynamic	 reference	 concept	 used	 time-	varying	
measurements	of	community	composition	and	distance-	based	ordi-
nation	to	evaluate	the	state	and	trajectory	of	restoration	(Hiers	et	al.,	
2012;	Kirkman	et	al.,	2013).	While	these	studies	determined	targets	
for	 restoration	 in	 a	 changing	 environment,	 identifying	mechanisms	
behind	variation	 in	 recovery	 is	necessary	when	making	predictions	
over	space	and	time	(Brudvig,	2017).	Examining	recovery	relative	to	
dynamic	 reference	sites,	 for	example,	may	 indicate	 factors	 that	ac-
celerate	recovery,	or	reveal	when	and	why	deviations	from	a	desired	
trajectory	occur,	thereby	signaling	the	need	for	additional	interven-
tions.	 Furthermore,	 a	 dynamic	 reference	 approach	 can	 reduce	 un-
certainty	when	assessing	 restoration	 treatments	by	 accounting	 for	
factors such as climatic variation and sensor noise in remote sensing 
studies	 (Fick	 et	 al.,	 2021).	 Such	 an	 approach	 also	 could	 reveal	 res-
toration	constraints	including	abiotic	conditions,	legacy	factors,	and	
landscape	context	(Aronson	&	Le	Floc'h,	1996;	Suding,	2011).

Across	western	North	America,	semi-	arid	ecosystems	are	often	
dominated	by	sagebrush	(Artemisia	spp.),	a	keystone	species	import-
ant	 for	 a	 variety	 of	wildlife	 species	 including	 greater	 sage-	grouse	
(Centrocercus urophasianus;	 Fedy	 et	 al.,	 2014).	 In	 these	 environ-
ments,	 sagebrush	 communities	may	 require	 over	 a	 century	 to	 re-
cover	 from	disturbance	 (Avirmed	et	 al.,	 2015;	Baker,	2006;	 Lesica	
et	al.,	2007),	and	in	the	intervening	recovery	time,	temperature	and	

moisture	 availability	 naturally	 fluctuate	 but	 also	 are	 projected	 to	
change	 across	 the	 sagebrush	 range	 (Kleinhesselink	&	Adler,	 2018;	
Renwick	et	al.,	2017;	Schlaepfer	et	al.,	2012a).	Interannual	variabil-
ity	and	 long-	term	trends	 in	climate	 indicate	 that	conditions	during	
restoration	and	recovery	will	 likely	differ	 from	historic	 references.	
Therefore,	we	 argue	 the	 importance	 of	 using	 dynamic	 references	
and	 accounting	 for	mechanisms	 that	 underly	 variation	 in	 order	 to	
monitor	and	evaluate	post-	disturbance	outcomes	effectively.

Restoration	 efforts	 generally	 require	monitoring	 and	 interven-
tion	to	increase	success,	such	as	additional	treatment	or	maintenance	
(Tischew	et	al.,	2010),	and	multiple	decades	of	monitoring	sagebrush	
ecosystems	may	be	required	to	produce	conclusive	results.	To	fur-
ther	complicate	matters,	sagebrush	ecosystems,	and	restoration	ef-
forts	within,	extend	across	a	vast	and	variable	landscape.	Together,	
these temporal and spatial considerations highlight the need for 
alternatives	to	long-	term,	ground-	based	monitoring	for	broad-	scale	
inferences,	such	as	using	remote	sensing	and	archived	data	to	track	
change	over	time	(Kennedy	et	al.,	2014;	Shi	et	al.,	2018;	Xian	et	al.,	
2015).	For	example,	recovery	rates	on	former	oil	and	gas	well	pads	
were	estimated	across	a	study	landscape	while	considering	factors	
such	as	weather	and	soils	(Monroe	et	al.,	2020);	however,	this	study	
did	not	consider	dynamic	reference	conditions	and	instead	evaluated	
recovery	relative	to	a	static,	pre-	disturbance	condition.	By	restricting	
analyses	to	well	pads	with	pre-	disturbance	data	within	the	timeframe	
of	 historical	 remote	 sensing	 imagery	 (<30	 years),	 inferences	were	
substantially	constrained	for	a	system	that	may	require	>70	years	to	
recover	(Avirmed	et	al.,	2015).	Concomitantly,	Nauman	and	Duniway	
(2016)	 developed	 the	 Disturbance	 Automated	 Reference	 Toolset	
(DART)	 to	 identify	 areas	with	 equivalent	 ecological	 potential	 near	
disturbed sites based on a suite of environmental attributes. This lat-
ter	approach	was	then	used	to	compare	reference	and	disturbed	sites	
(Nauman	et	al.,	2017).	While	DART	indicated	relative	differences	in	
recovery	at	a	fixed	point	in	time,	the	assumption	of	equivalence	be-
tween	space	and	 time	 is	often	uncertain	and	may	obscure	mecha-
nisms	behind	trends	 in	recovery	(Pickett,	1989).	Further	work	with	
DART	looked	at	time	series	analysis	of	differences	in	a	soil	adjusted	
total	vegetation	index	(SATVI)	at	oil	and	gas	well	pads	and	selected	
reference	areas	to	understand	timing	of	recovery	better,	but	the	gen-
eralized	nature	of	SATVI	was	often	confounded	by	annual	 invasive	
species	when	interpreting	recovery	trends	(Waller	et	al.,	2018).

Here,	we	demonstrated	a	dynamic	 reference	approach	 to	study-
ing	sagebrush	recovery	following	energy	development	 in	southwest-
ern	Wyoming,	USA,	by	applying	DART	to	back-	in-	time	remote	sensing	
products	 specifically	 representing	 sagebrush	 cover.	 First,	 we	 used	
DART	to	identify	ecologically	relevant	reference	areas	near	former	oil	
and	gas	well	pad	areas	(hereafter,	well	pads),	and	second,	we	estimated	
annual sagebrush cover in both disturbed and reference areas over 
three	decades.	We	then	modelled	annual	sagebrush	cover	on	disturbed	
sites	relative	to	paired,	dynamic	references	while	considering	multiple	
environmental	 factors,	 thereby	circumventing	assumptions	of	 space-	
for-	time.	 Finally,	 we	 used	 these	models	 to	 project	 time	 to	 recovery	
across	 the	study	 landscape.	Sagebrush	recovery	depends	on	various	
local,	landscape,	and	historical	factors	(Pyke,	2011),	only	a	fraction	of	



    |  3 of 22MONROE Et al.

which	can	be	reliably	quantified	and	included	as	covariates	in	models.	
Disturbance	 also	 may	 push	 sites	 into	 alternative	 states	 that	 cannot	
recover	without	 additional	 interventions	 (Hobbs,	 2007;	 Pyke,	 2011),	
and	therefore	may	show	different	responses	to	environmental	factors	
than	sites	in	other	ecological	states.	A	novel	aspect	of	the	approach	de-
scribed	here	is	our	use	of	quantile	regression	(Koenker	&	Bassett,	1978)	
to	model	recovery	with	dynamic	references.	In	addition	to	dispensing	
with	typical	assumptions	of	linear	regression	that	may	be	untenable	in	
complex	 ecological	 systems,	 such	 as	 specific	 error	 distributions	 and	
homogeneity	 of	 variance,	 quantile	 regression	 is	 useful	 for	modelling	
trends	that	are	likely	to	be	influenced	by	limiting	factors	and	unmod-
elled	variation	(Cade	&	Noon,	2003;	Shinneman	&	McIlroy,	2016).

2  |  STUDY ARE A

The	 study	 area	 encompassed	 the	 overlap	 of	 two	 datasets	
(Figure	1):	an	updated	DART	dataset	for	the	Upper	Colorado	River	
Basin	(building	on	Nauman	et	al.,	2017)	and	well	pad	data	compiled	
for	the	Wyoming	Landscape	Conservation	Initiative	area	(Garman	&	
McBeth,	2014,	2015).	This	area	encompassed	44,339	km2	of	mostly	
intermountain	basins	characterized	by	cold,	semi-	desert	conditions	
where	snow	and	early	spring	rain	produce	most	annual	precipitation	
(Bowen	et	al.,	2008).	Elevation	ranged	from	1842	m	to	4194	m	(U.S.	
Geological	 Survey,	 2017),	 and	 ecosystems	 within	 the	 study	 area	
consisted	 of	 sagebrush,	 grassland,	 salt	 desert,	 and	 cushion	 plant	
communities.	Southwesterm	Wyoming	also	contains	substantial	re-
serves	of	fossil	fuels	(Biewick	&	Wilson,	2014),	and	development	of	
these	resources	could	further	impact	sagebrush-	dependent	wildlife	
(Copeland	et	al.,	2009;	Garman,	2018;	Heinrichs	et	al.,	2019).

3  |  METHODS

3.1  |  Well pad data

We	created	timestamped	well	pad	data	by	joining	production	start	
and	end	years	reported	by	the	Wyoming	Oil	and	Gas	Conservation	
Commission	 (https://wogcc.wyo.gov/,	 accessed	 June	9,	2017)	with	

hand-	digitized	well	pads	within	the	study	area	(Garman	&	McBeth,	
2014,	2015;	Monroe	et	al.,	2020).	Well	pad	spatial	data	extended	up	
to	2012	so	we	excluded	any	wells	initiated	after	2012.	For	each	pad,	
we	determined	the	likely	apparent	reclamation	year	and	drilling	year	
(Monroe	et	al.,	2020),	with	the	difference	indicating	production	du-
ration.	We	retained	well	pads	with	≥1	years	of	production	and	with	
>1	years	of	remote	sensing	data	following	apparent	reclamation	to	
model	trends	in	sagebrush	cover	(see	Statistical	analyses).

3.2  |  Remote sensing data

We	used	a	remote	sensing	product	characterizing	sagebrush	cover	
over	time	and	across	the	study	area	(Homer	et	al.,	2020;	Rigge	et	al.,	
2019).	This	product	was	developed	 from	a	2016	baseline	map	 for	
percent	 cover	 of	 sagebrush	 based	 on	 high-	resolution	 satellite	 im-
agery	 (2-	m	Digital	Globe/World	View	 II;	n = 331 sites trained on 
ocular	estimation,	2013–	2017),	2013–	2018	Landsat	8	imagery,	and	
an	additional	pool	of	field	measurements	collected	at	a	30-	m	scale	
using	two	30-	m	transects	(from	5382	locations,	2013–	2017)	distrib-
uted	across	the	Western	United	States	(Rigge	et	al.,	2020).	From	this	
baseline	map,	a	record	of	annual	sagebrush	cover	 (1985−2018,	ex-
cluding	2012)	was	estimated	at	30-	m	resolution	with	summer	and	
fall	imagery	from	Landsat	5	to	8	using	a	change	vector	and	change	
fraction	 approach	 and	 regression	 tree	 models	 (Rigge,	 Shi,	 et	 al.,	
2019).	 Training	 data	 for	 the	 1985–	2018	 predictions	 were	 derived	
from	 areas	 and	 times	where	 no	 spectral	 change	 occurred	 relative	
to	the	2016	base	year,	while	2016	cover	values	were	applied	to	un-
changed	areas.	A	series	of	post-	processing	methods	was	applied	to	
ensure	accurate	post-	burn	trajectories	and	reduce	noise	(detailed	in	
Rigge,	Shi,	et	al.,	2019).	Sagebrush	cover	estimates	consisted	mostly	
of	 big	 sagebrush	 (Artemisia tridentata	 Nutt),	 including	 primarily	
Mountain	 (A. t. ssp. vaseyana)	and	Wyoming	 (A. t. ssp. wyomingen-
sis)	subspecies,	with	less	abundance	of	low	sagebrush	(A. arbuscula),	
black	 sagebrush	 (A. nova),	 three	 tip	 sagebrush	 (A. tripartita),	 silver	
sagebrush	 (A. cana),	 and	basin	big	 sagebrush	 (A. t. ssp. tridentata). 
Areas	with	non-	rangeland	cover	were	masked	including	urban,	agri-
culture,	forest,	open	water,	and	elevations	>approximately	2700	m	
(Rigge	et	al.,	2020).	For	each	well	pad	(i)	and	year	(t),	we	calculated	

F I G U R E  1 Locations	of	former	
oil	and	gas	well	pads	(n = 1200; a) in 
southwestern	Wyoming,	USA	(b).	The	
study	area	overlaps	the	Wyoming	
Landscape	Conservation	Initiative	
area	and	the	extent	of	the	Disturbance	
Automated	Reference	Toolset	developed	
for the Upper Colorado River Basin. 
We	also	present	percent	cover	(a)	of	
sagebrush	(Artemisia spp.; c) summarized 
by	95th	percentile	across	the	data	time	
series	(1985–	2018,	excluding	2012).	Photo	
by	M.	Holloran

(a) (b)

(c)

https://wogcc.wyo.gov/
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mean	sagebrush	cover	 in	the	pad	area	 (padit) and respective refer-
ence	pixels	(refit;	see	DART	process).

3.3  |  DART process

We	used	an	updated	version	of	DART	that	relied	on	new	soil	map-
ping	data	available	for	the	Upper	Colorado	River	Basin	(Appendix	S1,	
Table	S1;	Nauman	&	Duniway,	2020),	where	an	average	of	0–	60	cm	
soil	 electrical	 conductivity	 (EC)	 replaced	 the	 Landsat	 minerology	
layers	 in	 previous	DART	 applications	 (Nauman	&	Duniway,	 2016).	
Soil	EC	measures	salinity	and	 is	a	key	determinant	of	composition	
and	behavior	of	vegetation	communities	regionally	(Duniway	et	al.,	
2016).	Additionally,	 the	underlying	 raster	covariates	 from	Nauman	
and	Duniway	(2020)	were	used	in	DART	to	create	an	expanded	soil	
particle	 size	 class	map	 (summarizing	 soil	 texture,	 depth,	 and	 rock	
content)	 consistent	with	Nauman	 and	Duniway	 (2016).	 Reference	
pixels	(30-	m	resolution)	were	chosen	from	pixels	outside	of	the	well	
pad	within	 a	 2-	km	 radius	 to	 balance	 our	 objectives	 of	 identifying	
ecologically	similar	references	and	tracking	climate	histories	similar	
to	the	well	pad	while	also	selecting	a	sufficient	sample	of	reference	
pixels.	We	selected	reference	pixels	using	the	following	four	steps	
(Appendix	S1,	Figure	S1):	(1)	eliminate	masked	areas	(see	below),	(2)	
subset	to	pixels	with	a	particle	size	class	seen	in	the	well	pad	area,	(3)	
subset	to	pixels	within	5%	of	the	minimum	and	maximum	soil	EC	in	
the	well	pad	area,	and	(4)	of	the	remaining	pixels,	pick	the	100	most	
similar	pixels	based	on	topographic	multivariate	similarity	of	remain-
ing	candidates	to	all	pixels	of	a	given	well	pad.	Topographic	similarity	
was	calculated	using	Gower's	distance	 (Gower,	1971;	van	der	Loo,	
2017)	from	a	broad	set	of	digital	elevation	model	(DEM)	terrain	met-
rics	as	described	in	Nauman	and	Duniway	(2016).	The	result	was	a	
selection	of	100	reference	pixels	within	2	km	that	were	most	similar	
in	soil	and	topographic	properties	to	pixels	in	the	well	pad	area.

We	applied	 several	masks	 to	exclude	areas	 that	were	unlikely	
to	support	reference	conditions	for	sagebrush	ecosystems	(summa-
rized	in	Appendix	S1,	Table	S1).	These	masked	areas	included	burned	
areas,	irrigated	land	and	reservoirs,	wind	turbines,	coal	mines,	other	
well	pads,	roads,	building	footprints,	and	local	disturbance	data.	We	
also	excluded	areas	subjected	to	vegetation	treatments	reported	in	
the	Land	Treatment	Digital	Library	(Pilliod	&	Welty,	2013),	 includ-
ing	exclosures	(n =	3),	chemical	treatments	(n =	24),	prescribed	fire	
(n =	57),	seedings	(n =	33),	and	other	vegetation/soil	manipulations	
(n =	45).	Additionally,	we	excluded	pixels	where	2011	National	Land	
Cover	Dataset	(NLCD)	classes	indicated	open	water,	development,	
pasture/hay,	and	cultivated	crops	 (Jin	et	al.,	2013).	Finally,	we	ex-
amined	whether	a	more	general	approach	to	identifying	reference	
pixels	could	replace	the	more	detailed	masks	available	only	within	
our	 study	 area	 using	 only	 masks	 based	 on	 national	 datasets	 ex-
tending	beyond	our	 study	area.	This	more	general	mask	 included	
NLCD	classes,	 burned	 areas,	 roads,	 building	 footprint,	 vegetation	
treatments,	 and	 other	well	 pad	 locations	 but	 not	 datasets	 for	 ir-
rigated	 land	 and	 reservoirs,	 wind	 turbines,	 coal	 mines,	 and	 local	
disturbance.

To	 increase	 the	 likelihood	 that	 well	 pads	 and	 reference	 pixels	
were	 located	 in	 sagebrush	 ecosystems,	 we	 excluded	 pads	 from	
our	 sample	based	on	several	 criteria.	First,	we	excluded	well	pads	
with	<100%	overlap	with	sagebrush	remote	sensing	data.	Second,	
we	 excluded	well	 pads	 if	mean	 sagebrush	 cover	 among	 reference	
pixels	was	≤5.9%	in	any	year	following	apparent	reclamation,	corre-
sponding	with	the	root	mean	square	error	for	sagebrush	estimates	
when	compared	with	independent	high	resolution	data	(Rigge	et	al.,	
2019)	and	therefore	potentially	lacking	sagebrush.	Third,	we	used	a	
LANDFIRE	dataset	 for	Existing	Vegetation	Type	 (LF	2.0.0;	Rollins,	
2009)	with	a	crosswalk	to	Society	of	American	Foresters-	Society	for	
Range	Management	cover	types	to	retain	pads	if	at	least	one	refer-
ence	pixel	was	 classified	 as	 “Mountain	Big	 Sagebrush,”	 “Wyoming	
Big	 Sagebrush,”	 “Sagebrush-	Grass,”	 or	 “Big	 Sagebrush-	Bluebunch	
Wheatgrass.”

3.4  |  Covariates affecting recovery

We	acquired	several	datasets	characterizing	biotic	and	abiotic	fac-
tors	that	may	account	for	variation	in	sagebrush	recovery	(Monroe	
et	 al.,	 2020).	 We	 used	 daily	 precipitation	 and	 temperature	 esti-
mated	at	each	well	pad	from	1	km	Daymet	climate	data	(1986−2018;	
Thornton	et	al.,	1997,	2016).	Minimum	temperatures	and	precipita-
tion	during	winter	and	spring	can	 impact	sagebrush	establishment	
and	survival	 (Apodaca	et	al.,	2017;	Brabec	et	al.,	2017;	Germino	&	
Reinhardt,	2014;	Maier	et	al.,	2001;	Monroe	et	al.,	2020),	so	for	each	
year	we	calculated	precipitation	totals	and	mean	minimum	tempera-
tures	during	winter	(December–	February)	and	spring	(March−May).	
Sagebrush	 growth	 also	may	 be	 related	 to	maximum	 temperatures	
and	 annual	 precipitation	 (Apodaca	 et	 al.,	 2017),	 so	 we	 calculated	
total	precipitation	and	mean	maximum	temperature	by	water	year	
(October–	September).	Other	seasons	and	indices	of	moisture	avail-
ability	could	be	considered;	however,	here	we	aimed	to	identify	sev-
eral	plausible	factors	and	evaluate	their	relative	effects	on	projected	
sagebrush	recovery.	To	account	for	missing	estimates	of	sagebrush	
cover	in	2012,	we	averaged	weather	covariates	from	2011	to	2013.

Additionally,	we	 quantified	 static	 site	 conditions	 of	 soils	 and	
elevation.	We	determined	mean	elevation	of	each	well	pad	using	
a	1/3	arc-	second	DEM	(U.S.	Geological	Survey,	2017)	with	hydro-
logical	 corrections	 from	Optimized	Pit	Removal	 software	 (Soille,	
2004).	 Soil	 characteristics	may	 influence	 growth	 and	 survival	 of	
sagebrush,	 including	 soil	 texture,	 soil	 depth,	 and	 salinity,	 among	
other	 factors	 (Barnard	 et	 al.,	 2019;	Germino	&	Reinhardt,	 2014;	
Renne	 et	 al.,	 2019).	We	 therefore	 used	 a	 recent	 soil	 properties	
dataset	(Nauman	&	Duniway,	2020)	to	represent	several	important	
soil	variables.	For	each	pad,	we	extracted	mean	values	for	percent	
sand	(indicator	of	texture)	and	EC	(indicator	of	salinity)	 from	the	
surface	down	 to	60	cm.	We	also	used	 results	 from	Nauman	and	
Duniway	 (2020)	 to	 estimate	 depth	 to	 restrictive	 layer	 (primarily	
bedrock)	as	an	indication	of	the	physical	soil	profile	for	water	ca-
pacity	and	rooting	zone.	We	excluded	seven	well	pads	that	lacked	
soil	 property	 estimates.	 Like	 climate	 factors,	many	 physical	 and	
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biochemical	soil	properties	may	affect	plant	growth,	and	here	we	
sought	to	 identify	a	set	of	variables	to	 indicate	soil–	recovery	re-
lationships rather than evaluate all possible soil characteristics. 
Finally,	we	recorded	each	well	pad's	size	(ha),	years	since	apparent	
reclamation,	and	production	duration.	We	acquired	and	formatted	
all	data	with	the	packages	daymetr	v.	1.4	(Hufkens,	2019),	raster v. 
3.4–	5	 (Hijmans,	2020),	and	 rgdal	v.	1.5–	23	 (Bivand,	2021)	 in	R	v.	
3.6.3	(R	Development	Core	Team,	2020).

3.5  |  Statistical analyses

At	 each	 well	 pad	 i	 and	 year	 t	 (1986−2018,	 excluding	 2012),	 we	
modelled variation in the natural log of mean sagebrush cover 
(log[padit]) in response to covariates using generalized additive 
models	(GAM),	which	permit	modelling	both	linear	and	nonlinear	
variation	over	space	and	time	(Monroe	et	al.,	2020;	Wood,	2017).	

We	excluded	pad-	by-	year	samples	with	0%	mean	sagebrush	cover	
for	the	pad	area	in	the	current	or	previous	year	to	facilitate	mod-
eling	cover	on	the	log	scale	(Tredennick	et	al.,	2016).	We	fit	linear	
effects	of	well	pad	size	(areai);	soils	(sandi,	eci,	resdti); temperature 
(tempit),	 precipitation	 (precipit),	 elevation	 (elevi),	 and	 their	 inter-
actions;	 and	 smooth	 terms	 for	 years	 since	 apparent	 reclamation	
(timeit)	 and	 production	 duration	 (durationi) based on penalized 
regression	splines.	Prior	 to	analysis,	we	standardized	continuous	
covariates	 by	 subtracting	 the	 sample	 mean	 and	 dividing	 by	 the	
sample	 standard	 deviation.	 In	 addition	 to	 direct	 effects	 on	 veg-
etation,	 soil	 texture	 and	 depth	 also	 can	 affect	water	 infiltration	
and	 soil	 water	 storage	 capacity,	 and	 therefore	 we	 specified	 in-
teractions	 between	 precipit and sandi	 and	 between	 precipit and 
resdti	to	account	for	potential	soil–	climate	relationships.	We	also	
specified	a	spatio-	temporal	dependence	term	from	the	natural	log	
of	 the	previous	year's	well	pad	sagebrush	cover	 (log[padit-	1]),	ap-
proximating	a	Gompertz	population	model	 (Ives	et	al.,	2003).	To	
account for rates of change in sagebrush cover relative to each 
dynamic	reference,	we	included	a	covariate	for	the	natural	log	of	
mean sagebrush cover in refit.	Because	we	lacked	annual	estimates	
of	 sagebrush	 cover	 for	 2012,	we	 used	 an	 offset	 for	 differences	
in	time	intervals	between	years	(intervalt).	Finally,	we	specified	a	
tensor	 product	 of	 thin	 plate	 regression	 splines	 (fte[xi,	yi]) for the 
centroid	 location	 of	 each	well	 pad	 (with	 geographic	 coordinates	
xi and yi;	Hefley	 et	 al.,	 2017;	Wood,	 2017)	 to	 accommodate	 ad-
ditional,	 unmodelled	 spatial	 variation	 across	 the	 study	 area.	We	
determined	 collinearity	 among	 linear	 effects	 was	 acceptable	
based	on	variance	inflation	factors	(VIF	<	3.0;	Zuur	et	al.,	2010).	

Concurvity	can	 indicate	 that	 smooth	 terms	are	approximated	by	
one	 or	more	 other	 smooth	 terms	 in	 a	model	 (Wood,	 2008),	 but	
observed	concurvity	was	 low	 to	moderate	among	 smooth	 terms	
and	quantiles	(0.09–	0.53).

Instead	of	fitting	models	to	the	mean	of	the	response	variable,	
we	estimated	parameters	independently	at	different	quantiles	of	the	
response	with	the	package	qgam	v.	1.3.2	(Fasiolo,	2020)	in	R.	As	an	
extension	 of	 GAM	 methodology	 developed	 previously	 (Wood,	
2017),	 this	 package	 efficiently	 estimates	 smoothing	 functions	 at	
each	quantile	via	an	empirical	Bayesian	approach	by	minimizing	the	
Extended	Log-	F	(ELF)	loss	with	a	belief-	updating	framework	(Fasiolo	
et	al.,	2020).	We	obtained	standard	errors	for	regression	coefficients	
from	 the	model	variance/covariance	estimated	with	Bayesian	cali-
bration	(Fasiolo	et	al.,	2020).	We	considered	quantiles	from	τ = 0.1 to 
τ =	0.9	at	intervals	of	0.1,	and	we	modelled	sagebrush	cover	on	well	
pads Qlog(padit) at the τth	 quantile	 given	 data	 X	with	 the	 following	

model:

We	fit	three	models	with	either	winter,	spring,	or	annual	weather	
covariates	 and	 compared	 their	 support	 at	 each	 quantile	 using	
Akaike's	 Information	Criterion	 (AIC;	Akaike,	1973).	To	 facilitate	 in-
terpretation	of	covariate	relationships,	we	selected	five	quantiles	to	
represent	a	range	in	recovery	trends	(τ =	0.1,	0.2,	0.5,	0.8,	and	0.9).	
We	evaluated	 covariate	 relationships	by	predicting	well	 pad	 sage-
brush	cover	at	each	quantile	with	increasing	values	of	each	covariate	
while	maintaining	other	covariates	at	their	sample	mean,	 including	
padit-	1 =	7.0%	and	refit =	12.8%.	The	above	analyses	were	based	on	
DART	reference	pixels	identified	after	applying	local	and	general	dis-
turbance	masks,	but	we	also	compared	results	from	reference	pixels	
after	only	applying	general	masks	to	evaluate	the	utility	of	our	ap-
proach	beyond	the	study	area.

To	evaluate	predictive	performance	of	our	models,	we	used	split	
conformalized	quantile	regression	(Romano	et	al.,	2019).	For	this	ap-
proach,	we	created	two	within-	sample	training	datasets	by	exclud-
ing	approximately	10%	of	the	well	pads	in	the	local	dataset	(n = 120 
well	pads)	or	three	randomly	selected	years	(1987,	2000,	and	2011)	
to	evaluate	spatial	or	 temporal	prediction	errors,	 respectively.	We	
then	predicted	log(padit)	for	the	withheld	(test)	data	and	computed	
conformity	scores	(E(τ)) as:

We	determined	the	proportion	(p) of E(τ) > 0.0 for τ <	0.5,	and	
1	–		p for τ	≥	0.5,	where	differences	in	p relative to their respective 

Qlog(padit) (τ|X) =β0 (τ) +β1 (τ) areai+β2 (τ) sandi+β3 (τ) eci+β4 (τ) resdti+β5 (τ) tempit

+β6 (τ) precipit+β7 (τ) sandi×precipit+β8 (τ) resdti×precipit+β9 (τ) elevi

+β10 (τ) tempit×precipit+β11 (τ) tempit×elevi+β12 (τ) precipit×elevi

+β13 (τ) tempit×precipit×elevi+β14 (τ) log
(
padit−1

)
+β15 (τ) log

(
refit

)

+ fte (τ)
(
xi , yi

)
+ fs (τ)

(
timeit

)
+ fs (τ)

(
durationi

)
+offset

(
log

(
intervalt

))
.

E(τ) = �Qlog(padit) (τ|X) − log
(
padit

)
for τ < 0.5, and

E(τ) = log
(
padit

)
− Q̂log(padit) (τ|X) for τ ≥ 0.5.
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quantile	 indicate	 predictive	 lack-	of-	fit.	We	 also	 calculated	 confor-
malized	quantile	predictions	by	determining	the	τth	empirical	quan-
tile,	QEpred(τ),	of	E(τ) for τ	≥	0.5	and	1	−	τth	empirical	quantile	 for	
τ <	0.5.	QEpred(τ) is then added to Q̂log(padit) (τ|X) for τ	≥	0.5	or	sub-

tracted for τ < 0.5. Comparing conformalized predictions to 
Q̂log(padit) (τ|X)	 thereby	 indicated	the	marginal	degree	of	bias	 in	our	

spatial or temporal predictions.
We	used	models	fit	at	each	quantile	to	project	the	number	of	

years	until	 recovery	 (padit	≥	refi)	 for	pixels	across	the	study	area	
that	 recovered	 within	 100	 years,	 and	 relative	 recovery	 after	
100	years	(padi100

refi
× 100%)	for	pixels	that	did	not	recover	(recovered	

pixels	had	recovery	fixed	at	100%).	At	finer	scales	(such	as	for	in-
dividual	disturbance	areas),	DART	can	be	used	to	identify	relevant	
references	and	inform	recovery	projections.	In	this	case,	however,	
it	was	not	practical	 to	use	DART	to	 identify	 reference	pixels	 for	
each	individual	pixel	across	the	study	area.	Instead,	we	created	a	
reference	for	each	pixel	(refi)	by	first	identifying	the	temporal	95th	
percentile	 of	 each	 pixel	 across	 the	 33-	year	 time	 series	 of	 sage-
brush	cover,	which	should	 indicate	the	pixel's	potential	for	sage-
brush	 cover	 while	 avoiding	 annual	 anomalies	 in	 estimates	 from	
remote	 sensing	 products	 (temporal	 error).	We	 then	 calculated	 a	
135-	m	 radius	average	of	 sagebrush	cover	centered	at	each	pixel	
(equivalent	to	a	9-	pixel	diameter	circle)	to	reduce	 influence	from	
spatial	errors	and	consider	local	contexts.	Thus,	these	projections	
were	based	on	models	fit	with	references	identified	by	DART	but	
applied	 to	 a	 landscape	where	 references	were	 identified	 by	 the	
approach	described	above.	We	removed	pixels	with	refi	≤5.9%	to	
avoid	projections	in	non-	sagebrush	ecosystems.	We	assumed	30-	
year	 averages	 (1989−2018)	 of	 temperature	 and	 precipitation	 for	
each	pixel	and	iteratively	predicted	padit given padit-	1,	refi,	eleva-
tion,	and	soil	properties	across	the	study	area	(Appendix	S1,	Figure	
S2).	For	the	first	year	(t =	1),	we	assumed	sagebrush	cover	at	the	
pad	 in	 the	 previous	 year	 was	 1%	 of	 the	 paired	 reference	
(padi0 = 0.01 × refi).	We	further	assumed	sample	mean	values	for	
pad	 size	 and	production	duration,	whereas	 years	 since	 apparent	
reclamation	increased	over	time.	As	a	measure	of	model	selection	
uncertainty,	 for	 each	 quantile	we	 calculated	 root	mean	 squared	
error	(RMSE)	between	projections	of	percent	recovery	and	years	
to	recovery	from	the	best-	supported	model	and	projections	from	
models	fit	with	the	other	two	weather	covariates.

For	 a	 practical	 application,	we	 used	 our	models	 to	 project	 re-
covery	of	sagebrush	in	greater	sage-	grouse	habitat.	We	first	delin-
eated	landscape	areas	that	were	previously	identified	as	nesting	and	
summer	(i.e.,	late	brood-	rearing)	habitat	for	sage-	grouse	(Fedy	et	al.,	
2014).	For	pixels	in	each	habitat	type,	we	determined	the	95th	per-
centiles	 in	sagebrush	cover	 (as	described	above)	and	used	the	me-
dian	across	pixels	as	a	recovery	threshold:	16%	and	18%	sagebrush	
cover	 for	nesting	and	summer	habitat,	 respectively.	Although	rep-
resenting	a	different	scale	(30-	m	pixels	vs.	transect-	level	measure-
ments),	 these	values	are	consistent	with	 thresholds	 recommended	
in	the	Sage-	grouse	Habitat	Assessment	Framework	(15–	25%	cover	
for	nesting	and	10–	25%	cover	for	summer;	Stiver	et	al.,	2015).	We	

repeated	the	projection	exercise	described	above	to	determine	the	
number	of	 years	 to	 reach	each	 sage-	grouse	habitat	 threshold	 and	
percent	recovery	after	100	years	(relative	to	each	threshold,	rather	
than the reference).

4  |  RESULTS

We	analyzed	records	data	from	1200	well	pads	and	sagebrush	cover	
1986–	2018	(19,558	pad	by	year	samples).	Time	since	apparent	rec-
lamation	ranged	1–	98	years	(median	=	13	years)	and	production	du-
ration	ranged	1–	90	years	 (median	=	10	years).	The	annual	weather	
model	 was	 almost	 always	 better	 supported	 (based	 on	 AIC)	 than	
models	with	other	weather	covariates	(Table	1).	Including	a	term	for	
spatio-	temporal	dependence	of	sagebrush	cover	on	well	pads	in	the	
prior	year	 (t–	1)	 substantially	 increased	model	 support	 compared	 to	
the	same	model	but	without	a	spatio-	temporal	dependence	term.	We	
also	noted	greater	support	for	models	with	the	paired	reference	co-
variate.	Based	on	these	results,	we	interpreted	covariate	relationships	
from	the	full	annual	weather	model	and	compared	projections	from	
winter	and	spring	weather	models.	Conformal	score	distributions	and	
conformalized	 quantile	 predictions	 indicated	 predictive	 lack-	of-	fit	
and slight overestimates in spatial test data for τ	≥	0.5,	whereas	tem-
poral	test	data	indicated	slight	underestimates	in	temporal	test	data,	
particularly	for	τ	≤	0.5	(Appendix	S1,	Table	S2,	Figure	S3).

Several	 patterns	 emerged	 across	 quantiles	 from	 the	 annual	
weather	 model,	 assuming	 all	 else	 equal.	 Generally,	 change	 in	
sagebrush	 cover	 responded	 more	 to	 annual	 variation	 in	 weather	
(Figure	2)	 than	 static,	 site-	level	 covariates	 (well	pad	 size	and	soils)	
and	smoothed	temporal	terms	for	years	since	apparent	reclamation	
and	production	duration	 (Figures	3	 and	4).	We	also	estimated	 im-
portant	 spatial	 patterns	 across	 the	 study	 area	 that,	 depending	 on	
the	 quantile,	 tended	 to	 reduce	 changes	 in	 sagebrush	 cover	 in	 the	
north	 and	 southeast	 of	 the	 study	 area,	 and	 increase	 in	 south	 and	
southcentral	areas	(Figure	5).

The	interaction	between	elevation,	precipitation,	and	tempera-
ture	was	supported	(p < 0.05) for most τ < 0.5 and τ >	0.7	(Table	2,	
Figure	2).	Sagebrush	cover	was	consistently	lowest	during	warm	and	
dry	weather	conditions	across	elevation	and	quantiles,	although	de-
clines	were	greatest	among	the	lower	quantiles	(τ <	0.5;	Figure	2).	
Sagebrush	 cover	 increased	 among	 higher	 quantiles	 (τ > 0.5) irre-
spective	of	weather	or	elevation	combinations.	Among	lower	quan-
tiles,	 sagebrush	cover	 increased	under	warm	and	moist	conditions	
at	both	high	and	low	elevations,	but	sagebrush	cover	declined	more	
under	cool	and	moist	annual	conditions	at	high	elevations	than	low	
elevations.	Low	quantiles	also	suggested	greater	increases	in	sage-
brush	cover	than	high	quantiles	for	warm	and	moist	conditions,	par-
ticularly	at	high	elevations,	which	may	 indicate	 lack-	of-	fit	 for	 such	
weather	combinations.

Sagebrush	cover	at	well	pads	 increased	with	greater	 reference	
sagebrush	cover,	particularly	among	high	quantiles	(Figure	3).	Effects	
of	other	site-	level	covariates	were	modest	but	often	differed	by	quan-
tile.	Sagebrush	cover	declined	slightly	with	pad	size	(mean	=	1.2	ha,	
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range =	 0.2–	6.3	 ha)	 for	 high	 quantiles	 but	 not	 low	 quantiles,	 and	
sagebrush	cover	declined	with	increasing	EC	(mean	= 0.85 dS m–	1,	
range =	0.01–	4.50	dS	m–	1)	 for	 low	quantiles	but	 increased	slightly	
among	high	quantiles.	Sagebrush	cover	increased	slightly	with	years	
since	 apparent	 reclamation	 and	 production	 duration	 among	 low	
quantiles,	but	we	also	estimated	an	increase	in	sagebrush	cover	for	
high	quantiles	with	recent	apparent	reclamation	or	relatively	short	
production	duration	(<15	years).	For	several	quantiles,	interactions	
were	supported	between	annual	precipitation	and	depth	to	restric-
tive	layer	(mean	=	131	cm,	range	=	58–	200+ cm) and percent sand 
(mean	=	52%,	range	=	31–	75%;	Table	2).	Our	model	suggested	a	pos-
itive	effect	of	precipitation	among	low	to	mid	quantiles,	particularly	
for	more	sandy	but	shallower	soils	(Table	2,	Figure	4).	This	relation-
ship	was	not	apparent	among	high	quantiles,	where	sagebrush	cover	
increased regardless of precipitation or soils.

Among	 low	quantiles,	close	to	none	of	the	 landscape	was	pro-
jected	to	recover	within	100	years	(<0.01% recovered for τ0.1,	0.07%	
recovered for τ0.2;	 Figures	 6	 and	 7).	 For	 the	median,	 4.7%	 of	 the	
landscape	 recovered	 in	 52–	100	 years	 since	 apparent	 reclamation	
(median	 τ0.5 =	 87	 years;	 Figure	 6).	High	 elevation	 areas	with	 cool	
and	moist	conditions	in	the	southwest	and	north	of	the	study	area	
reached >70%	of	their	reference	condition	after	100	years	(Figure	7).	
A	greater	proportion	of	the	landscape	recovered	for	high	quantiles	
(τ0.8 =	 48.0%	 recovered,	 τ0.9 =	 78.3%	 recovered),	 and	 relatively	
quickly	(median	τ0.8 =	16	years,	range	9−25,	median	τ0.9 =	9	years,	
range	5−15).	Areas	that	did	not	recover	still	reached	>32%	(median	
τ0.8 =	 89.9%,	 median	 τ0.9 =	 89.8%)	 of	 their	 reference	 condition.	
Projections	across	quantiles	were	generally	consistent	 (low	RMSE)	
among	much	of	 the	 study	 area	 (Figure	8).	However,	we	 identified	
areas	with	 higher	 RMSE,	 particularly	 for	 percent	 recovery	 projec-
tions	from	low	to	mid	quantiles.

Using	a	more	general	dataset	to	mask	potential	reference	pixels,	
we	retained	a	larger	sample	(1274	well	pads	and	20,232	pad	by	year	
samples)	 than	after	applying	 the	more	restrictive	masks	with	 local	
datasets.	The	annual	weather	model	was	again	most	often	best	sup-
ported	 (Appendix	S1,	Table	S3).	Covariate	 relationships	 (Appendix	
S1,	 Figures	 S4–	S7)	were	 generally	 similar	 to	 estimates	 from	more	
restrictive	 masks	 (Figures	 2−5).	 Again,	 we	 projected	 little	 recov-
ery	 within	 100	 years	 for	 low	 quantiles	 (Appendix	 S1,	 Figures	 S8	
and	S9),	with	<0.01% and 0.10% of the landscape recovering in as 
quickly	 as	47	 and	46	 years	 for	τ0.1 and τ0.2,	 respectively	 (τ0.1 me-
dian =	93	years,	τ0.2 median =	95	years).	Slightly	more	of	the	land-
scape	recovered	for	the	median	than	with	the	more	restrictive	masks	
(8.4%	vs.	4.7%,	respectively),	with	median	recovery	time	of	87	years	
(range	 τ0.5 =	 46–	100	 years).	Most	 of	 the	 landscape	 recovered	 for	
high	 quantiles	 (τ0.8 =	 78.4%,	 τ0.9 =	 90.0%)	 and	 relatively	 quickly	
(τ0.8 median =	16	years,	range	=	9–	100	years;	τ0.9 median =	9	years,	
range =	5–	100	years).	Correlations	between	projections	from	gen-
eral	and	more	restrictive,	 local	masks	were	high	among	mid	quan-
tiles	(r =	0.93	and	0.99	for	years	to	recovery	and	percent	recovery,	
respectively).	 Projections	 differed	 somewhat	 for	 high	 quantiles,	
but	generally	followed	the	same	patterns	(τ0.8 r = 0.50 and 0.82 for 
years	to	recovery	and	percent	recovery,	 respectively;	τ0.9 r =	0.45	
and	0.84	for	years	to	recovery	and	percent	recovery,	respectively).	
Errors	in	percent	recovery	and	recovery	time	projections	(Appendix	
S1,	 Figure	 S10)	 also	 generally	 corresponded	with	broad-	scale	 pat-
terns	indicated	by	more	restrictive	masks	(Figure	8).

Examining	recovery	to	a	threshold	for	achieving	potential	sage-	
grouse	nesting	habitat	 (16%	sagebrush	cover),	 few	to	no	pixels	re-
covered	among	low	quantiles	(τ0.1 <	0.01%,	τ0.2 =	0.37%;	Appendix	
S1,	Figure	S11).	We	projected	more	pixels	would	recover	at	the	me-
dian	using	 thresholds	 than	based	on	 a	 reference	 (τ0.5 =	 16.9%	vs.	

TA B L E  1 Generalized	additive	models	fit	to	different	quantiles	of	sagebrush	(Artemisia	spp.)	cover	on	former	oil	and	gas	well	pads	in	
southwestern	Wyoming,	USA,	ranked	by	Akaike's	Information	Criterion	(AIC)

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Full

Annual	weather 44486.4 19065.0 8273.0 8077.8 5947.3 2773.8 3094.1 6717.0 17164.1

Winter	weather 48812.9 18951.4 9549.5 10946.2 7557.7 3662.1 3375.3 6803.3 17844.7

Spring	weather 47290.3 18660.9 8877.5 10038.1 6876.1 3649.1 3258.9 6624.1 17942.9

No	Dependence

Annual	weather 74249.3 55331.1 44811.4 40401.2 37632.7 35723.2 35225.3 36037.2 39874.7

Winter	weather 71972.3 55488.4 44685.8 40516.7 38086.2 35817.3 35430.2 36005.7 39304.9

Spring	weather 71671.6 54580.8 44409.5 40197.4 37917.8 35554.0 35043.7 35991.0 39837.6

No	Dependence,	No	Reference

Annual	weather 74604.0 56980.9 48678.7 44197.2 41898.9 40093.1 39895.2 40631.2 48158.8

Winter	weather 74781.9 57974.9 49005.0 44241.1 42122.2 40102.8 39802.3 40777.5 48278.7

Spring	weather 74694.9 57183.8 48966.7 44314.9 42034.9 39903.4 39735.0 40684.1 48543.2

Note: Models	varied	by	weather	covariates	summarized	annually	(by	water	year,	or	October–	September),	by	winter	(December–	February),	or	by	
spring	(March–	May)	each	year.	Values	in	bold	indicate	the	lowest	AIC	for	each	quantile.	We	report	AIC	for	the	full	model	and	two	reduced	models,	
one	without	spatio-	temporal	dependence	terms	for	sagebrush	cover	on	well	pads	in	t–	1	(No	Dependence),	and	the	other	without	both	spatio-	
temporal	dependence	terms	for	sagebrush	cover	on	well	pads	and	paired	references	(No	Dependence,	No	Reference).
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F I G U R E  2 Predicted	sagebrush	
(Artemisia	spp.)	cover	with	increasing	
annual precipitation and maximum 
temperature	at	low	(left)	and	high	
(right)	elevation	and	across	quantiles	
(τ)	for	former	oil	and	gas	well	pads	in	
southwestern	Wyoming,	USA.	Areas	
shaded	gray	denote	an	annual	increase	
in sagebrush relative to sagebrush cover 
on	well	pads	in	the	previous	year	(7.0%).	
We	also	assumed	sagebrush	cover	on	
reference	pixels	in	the	current	year	
(12.8%)	based	on	a	sample	mean
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F I G U R E  3 Predicted	sagebrush	(Artemisia	spp.)	cover	(x ±	2	SE)	with	increasing	well	pad	area	(ha),	electrical	conductivity	(dS	m−1),	years	
since	apparent	reclamation,	production	duration	(years),	and	sagebrush	cover	(%)	in	reference	pixels,	and	across	quantiles	(τ) for former oil 
and	gas	well	pads	in	southwestern	Wyoming,	USA.	For	predictions,	we	assumed	7.0%	sagebrush	cover	on	well	pads	in	the	previous	year	
(indicated	by	the	horizontal	dashed	line)
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F I G U R E  4 Predicted	sagebrush	
(Artemisia spp.) cover from interactions 
between	annual	precipitation	and	percent	
sand	(left)	and	depth	to	restrictive	layer	
(cm;	right)	across	quantiles	(τ) for former 
oil	and	gas	well	pads	in	southwestern	
Wyoming,	USA.	Areas	shaded	gray	denote	
an annual increase in sagebrush relative 
to	sagebrush	cover	on	well	pads	in	the	
previous	year	(7.0%).	We	also	assumed	
sagebrush cover on reference pixels in the 
current	year	(12.8%)	based	on	a	sample	
mean
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τ0.5 =	10.3%,	respectively),	whereas	fewer	pixels	recovered	at	high	
quantiles	 (τ0.8 =	31.3%,	τ0.9 =	41.1%	 recovered	 relative	 to	 thresh-
olds vs. τ0.8 =	51.6%,	τ0.9 =	79.6%	recovered	relative	to	reference).	
We	 similarly	 observed	 little	 recovery	 to	 a	 threshold	 that	 should	
support	 summer	 habitat	 (18%	 sagebrush	 cover)	 at	 low	 quantiles	
(τ0.1 <	0.01%,	τ0.2 =	0.40%;	Appendix	S1,	Figure	S12),	higher	recov-
ery	 at	 the	median	 (τ0.5 =	 16.2%),	 and	 lower	 recovery	 among	 high	
quantiles	(τ0.8 =	23.1%,	τ0.9 =	31.9%).	Patterns	in	percent	recovery	
and	 time	 to	 recovery	with	 thresholds	were	 comparable	 to	projec-
tions	from	across	the	study	area	based	on	references,	albeit	with	less	
recovery	(Appendix	S1,	Figure	S13–	S14).

5  |  DISCUSSION

Using	ecologically	relevant	reference	sites	and	a	 long-	term	remote	
sensing	dataset,	we	applied	a	dynamic	reference	approach	to	study	
and	project	sagebrush	recovery	on	former	oil	and	gas	well	pads.	Such	
an	application	could	help	land	managers	anticipate	site	recovery	for	
large	geographic	extents,	thereby	guiding	restoration	efforts	and	fu-
ture	disturbance.	A	benefit	of	our	approach	was	that	we	could	model	
post-	disturbance	trends	relative	to	the	ecological	potential	of	a	site	
and	annual	variability	of	its	reference.	We	also	used	quantile	regres-
sion	to	consider	heterogeneity	in	unmodelled	factors,	and	quantiles	

could	 be	 interpreted	 as	 reflecting	 different	 levels	 of	 recovery	 po-
tential	at	a	given	site	and	year.	Some	sites,	for	example,	may	expe-
rience	 effects	 of	 legacy	 land-	use,	 landscape	 context,	 restoration	
failure,	 ongoing	 disturbance,	 and	 other	 environmental	 conditions	
that	make	recovery	unlikely,	which	were	reflected	in	 low	quantiles	
in	sagebrush	cover	(conditional	on	the	predictors).	Conversely,	high	
quantiles	 likely	 represented	 optimistic	 scenarios	 where	 multiple	
conditions	and	factors	converged	for	more	favorable	recovery	tra-
jectories.	Indeed,	we	found	little	of	the	landscape	was	projected	to	
recover	from	a	potential	disturbance	after	100	years	among	quan-
tiles	less	than	or	equal	to	the	median	response,	whereas	much	of	the	
landscape	 recovered	 quickly	 (in	<25	 years)	 among	 high	 quantiles.	
These	results	suggest	recovery	in	some	areas	could	be	expedited	if	
restoration	conditions	are	favorable	(e.g.,	Germino	et	al.,	2018;	Pyke	
et	 al.,	 2020;	 Schlaepfer	 et	 al.,	 2014;	 Shinneman	 &	Mcilroy,	 2016;	
Shriver	et	al.,	2018).	Additionally,	we	increased	our	spatio-	temporal	
sample	from	previous	analyses	 (1200	vs.	375	well	pads	 in	Monroe	
et	 al.,	2020)	with	near-	annual	 remote	 sensing	products	and	by	 in-
cluding	well	pads	disturbed	long	before	the	earliest	remote-	sensing	
imagery.	Finally,	we	demonstrated	how	this	approach	can	be	applied	
to	pressing	conservation	questions,	such	as	recovery	of	sagebrush	in	
sage-	grouse	habitat.

Quantifying	 sagebrush	 cover	 on	 paired	 reference	 pixels	 over	
time	not	only	offered	a	dynamic	reference	from	which	to	evaluate	

F I G U R E  5 Heat	maps	for	smoothed	tensor	product	of	location	(Northing	and	Easting)	on	sagebrush	(Artemisia	spp.)	cover	(linear	
predictor	scale)	across	quantiles	(τ)	for	former	oil	and	gas	well	pads	in	southwestern	Wyoming,	USA.	Pixels	values	increase	from	red	to	white
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F I G U R E  6 Projected	time	to	recovery	(years)	of	sagebrush	(Artemisia	spp.)	cover	across	the	study	area	(left)	by	quantile	(τ) for former 
oil	and	gas	well	pads	in	southwestern	Wyoming,	USA.	We	also	present	histograms	for	each	projection	indicating	the	percentage	of	the	
sagebrush	landscape	grouped	by	years	to	recovery	(right)
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F I G U R E  7 Projected	percent	recovery	of	sagebrush	(Artemisia	spp.)	cover	after	100	years	(relative	to	reference	areas)	across	the	study	
area	(left)	by	quantile	(τ)	for	former	oil	and	gas	well	pads	in	southwestern	Wyoming,	USA.	We	also	present	histograms	for	each	projection	
indicating	the	percentage	of	the	sagebrush	landscape	grouped	by	percent	recovery	(right)
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F I G U R E  8 Root	mean	squared	error	for	each	quantile	(τ)	in	projected	percent	recovery	of	sagebrush	(Artemisia	spp.)	cover	after	100	years	
(left)	and	years	to	recovery	(right)	between	a	model	with	annual	weather	and	models	with	winter	or	spring	weather.	Areas	in	gray	did	not	
recover	within	100	years	based	on	projections	from	one	or	more	models
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recovery	trajectories	but	also	explained	additional	variation	in	sage-
brush	cover	on	 former	well	pads,	 such	as	greater	 recovery	among	
pads	with	high	 sagebrush	 cover	 at	paired	 references.	For	 the	me-
dian,	and	all	else	being	equal,	reference	sagebrush	cover	may	help	
predict	whether	well	pad	sagebrush	will	decline	or	increase	in	sub-
sequent	years.	Areas	with	high	sagebrush	cover	in	reference	pixels	
likely	 corresponded	with	more	 suitable	 conditions	 for	 growth	and	
resiliency,	such	as	relatively	cooler	and	moister	soil	conditions	within	
a	semi-	arid	landscape	(Schlaepfer	et	al.,	2012a)	which	are	expected	
to	exhibit	greater	potential	for	restoration	success	(Chambers	et	al.,	
2014).	 This	 relationship	 also	 may	 reflect	 ability	 of	 the	 DART	 ap-
proach	to	identify	ecologically	relevant	references	based	on	a	suite	
of	 soil	 and	 topographic	covariates	 (i.e.,	matching	of	pad	ecological	
potential;	Herrick	et	al.,	2019).	However,	declines	in	sagebrush	cover	
among	low	quantiles	even	when	reference	sagebrush	cover	was	high	
suggest	relying	on	reference	sagebrush	cover	alone	is	insufficient	for	
anticipating	a	site's	recovery	rate.

Although	negative	effects	of	warm	and	dry	conditions	were	ap-
parent	 across	 quantiles,	 lower	 quantiles	 tended	 to	 respond	 more	
strongly	to	weather	than	higher	quantiles	of	sagebrush	cover.	This	
result	suggests	among	low	quantiles,	when	site	conditions,	reclama-
tion	history,	or	both	are	less	suitable	for	recovery,	the	outsized	influ-
ence	of	weather	warrants	consideration	when	planning	restoration.	
For	example,	warmer	temperatures	during	periods	of	low	moisture	
can	 stress	 sagebrush,	 reducing	 sagebrush	 establishment,	 growth,	
and	 survival	 (Schlaepfer	et	 al.,	 2012b,	2014).	We	also	estimated	a	
positive	response	to	warm	and	moist	conditions	among	low	to	mid	
quantiles,	 consistent	with	 a	 previous	 study	 in	 the	 region	 (Monroe	
et	al.,	2020)	and	for	sagebrush	in	other	cool	climates	(Kleinhesselink	
&	Adler,	2018;	Perfors	et	al.,	2003;	Renwick	et	al.,	2017;	Rigge,	Shi,	
et	 al.,	 2019).	Despite	 stronger	 responses	 to	 annual	weather,	 how-
ever,	 study	 area	projections	 from	 low	quantiles	 seldom	 recovered	
within	100	years,	which	may	partly	reflect	slight	underestimates	in	
temporal	predictions	we	observed	with	conformalized	predictions.	
These	 results	 also	may	 indicate	 the	 importance	 of	 other,	 unmod-
elled	 factors	 determining	 rates	 of	 recovery.	 Indeed,	 temperature	
and	moisture	 conditions	near	 the	 time	of	 planting,	 even	 at	 a	 very	
fine	temporal	resolution	(e.g.,	daily;	O’Connor	et	al.,	2020),	may	be	
significant	for	subsequent	recovery	(Maier	et	al.,	2001;	Shinneman	
&	McIlroy,	2016;	Shriver	et	al.,	2018;	Ziegenhagen	&	Miller,	2009).	
We	also	 lacked	data	on	 the	 type,	 timing,	and	occurrence	of	 recla-
mation	practices	applied	to	former	well	pads	(Monroe	et	al.,	2020).	
For	example,	seed	depth	is	critical	to	persistence	and	germination	of	
sagebrush	(Jensen	et	al.,	2001;	Schlaepfer	et	al.,	2014),	and	success	
from	reseeding	is	often	low	(Davies	et	al.,	2013;	Shaw	et	al.,	2005).	
Lack	of	recovery	also	may	indicate	transitions	to	alternative	or	de-
graded	states.	Planting	crested	wheatgrass	at	disturbed	sites,	includ-
ing	well	pads,	 for	example,	was	once	common	 for	 stabilizing	 soils,	
but	this	may	inhibit	recolonization	by	sagebrush	(Davies	et	al.,	2013).	
We	caution,	however,	that	these	projections	should	be	interpreted	
in	the	context	of	their	underlying	assumptions.	We	assumed	30-	year	
averages	for	weather	when	making	projections,	corresponding	with	
climatic	conditions	from	which	we	fit	sagebrush	trend	models,	but	

these	may	differ	from	future	growing	conditions	(Homer	et	al.,	2015;	
Palmquist	et	al.,	2016;	Renwick	et	al.,	2017;	Tredennick	et	al.,	2016).	
Overall	 trajectories	 of	 ecological	 systems	 are	 unlikely	 to	 be	 static	
with	a	changing	climate	(e.g.,	Bradford	et	al.,	2019),	and	our	research	
highlights	 a	 need	 to	 better	 understand	 how	 broad-	scale	 variation	
due	to	a	changing	climate	may	alter	plausible	restoration	goals	(e.g.,	
Lavorel	et	al.,	2015;	Wintle	et	al.,	2011).

Responses from median sagebrush cover indicated a small per-
centage	 of	 the	 landscape	 would	 recover	 within	 100	 years,	 while	
much	of	the	rest	reached	some	level	of	partial	recovery,	often	among	
higher	 elevations	where	 conditions	 tend	 to	be	 cooler	 and	moister	
(Appendix	S1,	Figure	S2).	Mountain	big	sagebrush	located	at	higher	
elevations	may	recover	in	19–	100	years	(Baker,	2006;	Lesica	et	al.,	
2007;	Moffet	et	al.,	2015;	Nelson	et	al.,	2014),	whereas	for	Wyoming	
big	sagebrush,	occurring	at	lower	elevations	with	warmer	and	drier	
conditions,	recovery	is	estimated	to	take	longer	(Baker,	2006;	Bates	
et	al.,	2020).	We	note,	however,	direct	comparisons	are	limited	be-
cause	 many	 previous	 estimates	 of	 sagebrush	 recovery	 are	 based	
on	 disturbance	 from	 fire,	 and	 recovery	 conditions	 likely	 differ	 for	
former	well	pads.	For	example,	under	current	well	pad	reclamation	
practices,	topsoil	is	removed,	stockpiled,	and	replaced,	and	seed	bed	
preparation	can	 include	recontouring,	soil	amendments	to	address	
salinity	or	low	organic	matter,	and	other	intensive	practices	not	used	
following	wildfire	 (U.S.	Department	of	the	Interior-	Bureau	of	Land	
Management,	2012;	U.S.	Department	of	the	Interior-	Bureau	of	Land	
Management	 &	 U.S.	 Department	 of	 Agriculture,	 2007).	 Previous	
studies	 in	 Wyoming	 estimated	 Wyoming	 big	 sagebrush	 recovery	
in	87	or	more	years	on	 individual	well	pads	 (Avirmed	et	al.,	2015).	
At	broader	scales,	21%	of	 the	 landscape	was	projected	to	recover	
within	 60	 years,	whereas	 remaining	 sites	may	 require	>100	 years	
(Monroe	et	 al.,	 2020).	Our	 current	 study	 suggests	 that	 these	pre-
vious	analyses	(Avirmed	et	al.,	2015;	Monroe	et	al.,	2020)	may	not	
have	 fully	 considered	 spatio-	temporal	 heterogeneity	 among	 well	
pads	within	this	landscape.

Interestingly,	we	projected	relatively	 fast	 recovery	among	high	
quantiles	at	lower	elevation	sites	(warm	and	dry	ecotype)	even	after	
accounting	for	lower	sagebrush	cover	among	references	(lower	res-
toration	target,	but	also	slower	growth	than	for	sites	with	high	sage-
brush	 cover	 references).	While	 there	 are	 reports	 of	Wyoming	 big	
sagebrush	 communities	 recovering	 relatively	 quickly	 (9–	35	 years;	
Wambolt	et	al.,	2001;	Shinneman	&	McIlroy,	2016),	our	projections	
may	reflect	possible	factors	that	facilitate	recovery,	such	as	favor-
able establishment conditions and successful restoration practices 
(Pyke	et	 al.,	 2020).	 Indeed,	we	estimated	 faster	 recovery	with	 re-
cent	 apparent	 reclamation	 among	 high	 quantiles,	 but	 this	 effect	
dissipated	with	longer	time	periods,	possibly	because	fitting	spatio-	
temporal	 dependence	 accounted	 for	 variation	 in	 the	 years	 since	
apparent	 reclamation	smooth	 term.	Our	projections	also	 indicated	
areas	unlikely	to	recover	even	among	high	quantiles,	and	again	mul-
tiple	factors	not	explicitly	 incorporated	 in	the	model	 (e.g.,	 invasive	
annual	grasses)	may	nevertheless	drive	spatial	variation	in	recovery	
across	the	landscape.	From	a	practical	standpoint,	areas	not	recov-
ering	among	high	quantiles	could	temper	expectations	for	potential	
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restoration	 efforts	 or	 guide	 disturbance	 away	 from	 these	 areas	
when	 feasible.	Additionally,	we	 identified	 areas	where	projections	
were	sensitive	to	choice	of	weather	covariate	in	our	models,	as	indi-
cated	by	larger	RMSE,	particularly	among	northern	and	southcentral	
areas	where	we	lacked	well	pad	data	(Figure	1).	Numerous	weather	
and soil moisture covariates have been proposed for explaining vari-
ation	in	sagebrush	recovery,	quantified	at	varying	spatial	and	tempo-
ral	resolutions	(e.g.,	from	30-	year	averages	[Davidson	et	al.,	2019]	to	
daily	weather	[O’Connor	et	al.,	2020]),	and	further	exploring	these	
covariates	with	additional	data	may	reduce	projection	error.

Several	 site-	level	 covariates	 minimally	 influenced	 sagebrush	
trends	in	this	system,	although	the	strength	and	direction	of	these	
effects	often	varied	by	quantile.	Among	low	to	mid	quantiles,	sage-
brush	cover	increased	with	greater	precipitation,	and	slightly	more	
so	with	sandier	and	shallower	soils.	This	 result	could	 reflect	 sage-
brush	response	to	permeable	soils	and	their	ability	to	retain	acces-
sible	moisture	for	sagebrush	growth	and	survival	(but	see	Germino	
&	Reinhardt,	2014;	Renne	et	al.,	2019;	Sturges,	1989).	Quantiles	also	
responded	differently	to	the	size	of	former	well	pads	and	EC	of	soils.	
Among	high	quantiles,	 recovery	 declined	with	 increasing	well	 pad	
size,	 consistent	 with	Monroe	 et	 al.	 (2020)	 and	 possibly	 reflecting	
short	dispersal	distances	of	sagebrush	seeds	(Schlaepfer	et	al.,	2014)	
into	 former	well	 pads	 from	 intact	 sagebrush.	Declines	 among	 low	
quantiles	with	increasing	EC	may	reflect	salinity-	related	limitations	
to	sagebrush	 recovery	 (Cook,	1961),	but	 this	would	contradict	 the	
slight	increases	observed	with	EC	among	high	quantiles.	The	latter	
result	may	be	a	correlation	with	more	sparse	sagebrush	in	reference	
communities	 and	 thus	 a	 lower	 threshold	 for	 recovery	 (Thatcher,	
1959).	Differences	 in	covariate	relationships	among	quantiles	 illus-
trate	a	benefit	of	using	quantile	regression	as	these	patterns	could	
be	 useful	 when	 considering	 local	 management	 opportunities	 but	
may	be	overlooked	when	fitting	models	to	the	mean	response.

Identifying	appropriate	reference	sites	requires	matching	eco-
logical	site	potential,	but	additional	information	of	on-	site	manage-
ment	and	disturbance	history	may	further	refine	these	comparisons	
to	areas	representative	of	well-	managed	and	 less	disturbed	refer-
ence	 ecosystems,	 thereby	 providing	 a	more	 appropriate	manage-
ment	target	(Herrick	et	al.,	2019).	For	this	reason,	we	used	several	
relevant	 spatial	 products	 to	mask	 reference	pixels	based	on	 local	
and national datasets. Comparing inferences from a more general 
mask	 that	 lacked	data	on	 local	 conditions,	we	 found	slight	differ-
ences	 in	covariate	relationships	and	sample	size,	but	overall	 infer-
ences	were	 largely	consistent	between	projections.	These	 results	
suggest	our	approach	could	be	applied	to	landscapes	that	lack	data	
on	local	conditions,	but	outcomes	may	vary	with	spatial	extent	and	
sample size.

Finally,	we	 applied	 our	 approach	 to	 project	 potential	 recovery	
of	 sagebrush	 in	 greater	 sage-	grouse	 nesting	 and	 summer	 habitat	
after	 similar	 oil	 and	 gas	 disturbances.	 We	 emphasize	 that	 sage-
brush	 is	 only	 one	 component	 of	 sage-	grouse	 habitat	 (Fedy	 et	 al.,	
2014),	 albeit	 an	 important	one	 for	 this	 sagebrush-	obligate	 species	
(Connelly	et	al.,	2000).	We	also	acknowledge	that	using	thresholds	

may	be	counterproductive,	particularly	when	extrapolated	beyond	
study	areas	where	they	were	first	determined	(Smith	et	al.,	2020).	
Nevertheless,	 land	managers	often	use	minimum	thresholds	to	es-
tablish	objectives	(Connelly	et	al.,	2000;	Stiver	et	al.,	2015),	and	we	
determined a threshold based on a distribution of sagebrush cover 
estimated	from	habitat	within	the	study	area.	Using	a	fixed	thresh-
old	 for	 sagebrush	 recovery	 greater	 than	 a	 site's	 reference	 sage-
brush	cover	led	to	identifying	more	areas	that	failed	to	recover	after	
100	years	 for	 high	quantiles,	whereas	more	of	 the	 landscape	was	
projected	to	recover	at	the	median	when	the	threshold	was	below	
a	 site's	 reference.	 Overall,	 this	 exercise	 illustrates	 how	 conserva-
tion	 targets	 for	 sage-	grouse	 could	 directly	 inform	 where	 limited	
resources are applied to help meet management goals; restoration 
success	to	create	usable	habitats.	However,	evaluating	recovery	rel-
ative	to	references	also	may	indicate	where	restoration	thresholds	
are	less	appropriate	for	an	ecosystem.

6  |  CONCLUSIONS

Using	reference	sites	 in	recovery	analyses	is	 invaluable	for	guiding	
restoration	and	evaluating	outcomes	(Bestelmeyer	et	al.,	2009;	Fick	
et	al.,	2021;	Herrick	et	al.,	2019;	Nauman	et	al.,	2015).	In	this	study,	
we	used	the	DART	process	to	identify	reference	areas,	and	we	ap-
plied	these	to	time-	varying	remote	sensing	maps	of	sagebrush	cover,	
allowing	 for	 a	 dynamic	 characterization	 of	 reference	 conditions	
through time and ensuring continued relevance of reference sites 
for	 this	 slow-	growing	 shrub.	 Time-	varying	 sagebrush	 cover	 from	
paired reference pixels explained additional variation in sagebrush 
trends,	and	modelling	trends	for	low,	mid,	and	high	quantiles	offered	
insights	into	trends	(and	controls	of	trends)	likely	under	poor,	typical	
(median),	and	optimal	 restoration	conditions.	Projections	 indicated	
little	of	the	 landscape	might	recover	after	100	years	for	sites	with	
sagebrush	quantiles	equal	to	or	less	than	the	median,	whereas	much	
of	 the	 landscape	 recovered	 for	high	quantiles	of	 sagebrush	 cover.	
This approach could be useful for informing management and resto-
ration	efforts	in	this	system,	such	as	by	identifying	areas	unlikely	to	
recover	even	under	optimal	conditions.	Projections	from	this	work	
also could be incorporated into restoration prioritization tools cur-
rently	in	development	(Duchardt	et	al.,	2021).
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