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Abstract
Ecologically relevant references are useful for evaluating ecosystem recovery, but 
references that are temporally static may be less useful when environmental con-
ditions and disturbances are spatially and temporally heterogeneous. This challenge 
is particularly acute for ecosystems dominated by sagebrush (Artemisia spp.), where 
communities may require decades to recover from disturbance. We demonstrated 
application of a dynamic reference approach to studying sagebrush recovery using 
three decades of sagebrush cover estimates from remote sensing (1985–2018). We 
modelled recovery on former oil and gas well pads (n = 1200) across southwestern 
Wyoming, USA, relative to paired references identified by the Disturbance Automated 
Reference Toolset. We also used quantile regression to account for unmodelled het-
erogeneity in recovery, and projected recovery from similar disturbance across the 
landscape. Responses to weather and site-level factors often differed among quan-
tiles, and sagebrush recovery on former well pads increased more when paired refer-
ence sites had greater sagebrush cover. Little (<5%) of the landscape was projected 
to recover within 100 years for low to mid quantiles, and recovery often occurred at 
higher elevations with cool and moist annual conditions. Conversely, 48%–78% of the 
landscape recovered quickly (within 25 years) for high quantiles of sagebrush cover. 
Our study demonstrates advantages of using dynamic reference sites when studying 
vegetation recovery, as well as how additional inferences obtained from quantile re-
gression can inform management.
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1  |  INTRODUC TION

The global extent and magnitude of anthropogenic disturbance are 
unprecedented, and widespread preservation and restoration ef-
forts are needed to avert or reverse losses in biodiversity and eco-
system function (Wolff et al., 2018). Restoring ecosystems through 
different methods and across scales provides many promising ben-
efits to mitigate environmental degradation (Perring et al., 2015). 
However, challenges remain in identifying appropriate restoration 
targets in dynamic landscapes and when working at large extents. 
To calibrate restoration strategies and evaluate outcomes, reference 
sites are needed to represent the expected or potential state of an 
ecosystem at recovery (Aronson et al., 1995; Brinson & Rheinhardt, 
1996; Herrick et al., 2019; Society for Ecological Restoration 
International Science & Policy Working Group, 2004). A reference 
condition is identified spatially, such as via ecological site potentials 
(Herrick et al., 2019; Nauman & Duniway, 2016), but defining its rel-
evant timeframe is not trivial (White & Walker, 1997). Indeed, en-
vironmental contexts and disturbance vary over space and time in 
frequency, magnitude, and scale, and conditions that produced a his-
torical reference may no longer exist for contemporary restoration 
(Jackson & Hobbs, 2009; Kirkman et al., 2013; Seastedt et al., 2008). 
Relevance of a temporally static reference to recovering systems can 
therefore be ambiguous (Hiers et al., 2012; Hobbs, 2007; Thorpe & 
Stanley, 2011; White & Walker, 1997).

The temporal conundrum of identifying reference conditions 
may be resolved by defining a reference that can change over time 
(hereafter, dynamic reference), whereby restoration objectives are 
more likely to resemble current and future states of the reference 
(Choi, 2004; Hobbs & Norton, 1996; Pickett & Parker, 1994). Previous 
applications of the dynamic reference concept used time-varying 
measurements of community composition and distance-based ordi-
nation to evaluate the state and trajectory of restoration (Hiers et al., 
2012; Kirkman et al., 2013). While these studies determined targets 
for restoration in a changing environment, identifying mechanisms 
behind variation in recovery is necessary when making predictions 
over space and time (Brudvig, 2017). Examining recovery relative to 
dynamic reference sites, for example, may indicate factors that ac-
celerate recovery, or reveal when and why deviations from a desired 
trajectory occur, thereby signaling the need for additional interven-
tions. Furthermore, a dynamic reference approach can reduce un-
certainty when assessing restoration treatments by accounting for 
factors such as climatic variation and sensor noise in remote sensing 
studies (Fick et al., 2021). Such an approach also could reveal res-
toration constraints including abiotic conditions, legacy factors, and 
landscape context (Aronson & Le Floc'h, 1996; Suding, 2011).

Across western North America, semi-arid ecosystems are often 
dominated by sagebrush (Artemisia spp.), a keystone species import-
ant for a variety of wildlife species including greater sage-grouse 
(Centrocercus urophasianus; Fedy et al., 2014). In these environ-
ments, sagebrush communities may require over a century to re-
cover from disturbance (Avirmed et al., 2015; Baker, 2006; Lesica 
et al., 2007), and in the intervening recovery time, temperature and 

moisture availability naturally fluctuate but also are projected to 
change across the sagebrush range (Kleinhesselink & Adler, 2018; 
Renwick et al., 2017; Schlaepfer et al., 2012a). Interannual variabil-
ity and long-term trends in climate indicate that conditions during 
restoration and recovery will likely differ from historic references. 
Therefore, we argue the importance of using dynamic references 
and accounting for mechanisms that underly variation in order to 
monitor and evaluate post-disturbance outcomes effectively.

Restoration efforts generally require monitoring and interven-
tion to increase success, such as additional treatment or maintenance 
(Tischew et al., 2010), and multiple decades of monitoring sagebrush 
ecosystems may be required to produce conclusive results. To fur-
ther complicate matters, sagebrush ecosystems, and restoration ef-
forts within, extend across a vast and variable landscape. Together, 
these temporal and spatial considerations highlight the need for 
alternatives to long-term, ground-based monitoring for broad-scale 
inferences, such as using remote sensing and archived data to track 
change over time (Kennedy et al., 2014; Shi et al., 2018; Xian et al., 
2015). For example, recovery rates on former oil and gas well pads 
were estimated across a study landscape while considering factors 
such as weather and soils (Monroe et al., 2020); however, this study 
did not consider dynamic reference conditions and instead evaluated 
recovery relative to a static, pre-disturbance condition. By restricting 
analyses to well pads with pre-disturbance data within the timeframe 
of historical remote sensing imagery (<30  years), inferences were 
substantially constrained for a system that may require >70 years to 
recover (Avirmed et al., 2015). Concomitantly, Nauman and Duniway 
(2016) developed the Disturbance Automated Reference Toolset 
(DART) to identify areas with equivalent ecological potential near 
disturbed sites based on a suite of environmental attributes. This lat-
ter approach was then used to compare reference and disturbed sites 
(Nauman et al., 2017). While DART indicated relative differences in 
recovery at a fixed point in time, the assumption of equivalence be-
tween space and time is often uncertain and may obscure mecha-
nisms behind trends in recovery (Pickett, 1989). Further work with 
DART looked at time series analysis of differences in a soil adjusted 
total vegetation index (SATVI) at oil and gas well pads and selected 
reference areas to understand timing of recovery better, but the gen-
eralized nature of SATVI was often confounded by annual invasive 
species when interpreting recovery trends (Waller et al., 2018).

Here, we demonstrated a dynamic reference approach to study-
ing sagebrush recovery following energy development in southwest-
ern Wyoming, USA, by applying DART to back-in-time remote sensing 
products specifically representing sagebrush cover. First, we used 
DART to identify ecologically relevant reference areas near former oil 
and gas well pad areas (hereafter, well pads), and second, we estimated 
annual sagebrush cover in both disturbed and reference areas over 
three decades. We then modelled annual sagebrush cover on disturbed 
sites relative to paired, dynamic references while considering multiple 
environmental factors, thereby circumventing assumptions of space-
for-time. Finally, we used these models to project time to recovery 
across the study landscape. Sagebrush recovery depends on various 
local, landscape, and historical factors (Pyke, 2011), only a fraction of 
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which can be reliably quantified and included as covariates in models. 
Disturbance also may push sites into alternative states that cannot 
recover without additional interventions (Hobbs, 2007; Pyke, 2011), 
and therefore may show different responses to environmental factors 
than sites in other ecological states. A novel aspect of the approach de-
scribed here is our use of quantile regression (Koenker & Bassett, 1978) 
to model recovery with dynamic references. In addition to dispensing 
with typical assumptions of linear regression that may be untenable in 
complex ecological systems, such as specific error distributions and 
homogeneity of variance, quantile regression is useful for modelling 
trends that are likely to be influenced by limiting factors and unmod-
elled variation (Cade & Noon, 2003; Shinneman & McIlroy, 2016).

2  |  STUDY ARE A

The study area encompassed the overlap of two datasets 
(Figure 1): an updated DART dataset for the Upper Colorado River 
Basin (building on Nauman et al., 2017) and well pad data compiled 
for the Wyoming Landscape Conservation Initiative area (Garman & 
McBeth, 2014, 2015). This area encompassed 44,339 km2 of mostly 
intermountain basins characterized by cold, semi-desert conditions 
where snow and early spring rain produce most annual precipitation 
(Bowen et al., 2008). Elevation ranged from 1842 m to 4194 m (U.S. 
Geological Survey, 2017), and ecosystems within the study area 
consisted of sagebrush, grassland, salt desert, and cushion plant 
communities. Southwesterm Wyoming also contains substantial re-
serves of fossil fuels (Biewick & Wilson, 2014), and development of 
these resources could further impact sagebrush-dependent wildlife 
(Copeland et al., 2009; Garman, 2018; Heinrichs et al., 2019).

3  |  METHODS

3.1  |  Well pad data

We created timestamped well pad data by joining production start 
and end years reported by the Wyoming Oil and Gas Conservation 
Commission (https://wogcc.wyo.gov/, accessed June 9, 2017) with 

hand-digitized well pads within the study area (Garman & McBeth, 
2014, 2015; Monroe et al., 2020). Well pad spatial data extended up 
to 2012 so we excluded any wells initiated after 2012. For each pad, 
we determined the likely apparent reclamation year and drilling year 
(Monroe et al., 2020), with the difference indicating production du-
ration. We retained well pads with ≥1 years of production and with 
>1 years of remote sensing data following apparent reclamation to 
model trends in sagebrush cover (see Statistical analyses).

3.2  |  Remote sensing data

We used a remote sensing product characterizing sagebrush cover 
over time and across the study area (Homer et al., 2020; Rigge et al., 
2019). This product was developed from a 2016 baseline map for 
percent cover of sagebrush based on high-resolution satellite im-
agery (2-m Digital Globe/World View II; n = 331  sites trained on 
ocular estimation, 2013–2017), 2013–2018 Landsat 8 imagery, and 
an additional pool of field measurements collected at a 30-m scale 
using two 30-m transects (from 5382 locations, 2013–2017) distrib-
uted across the Western United States (Rigge et al., 2020). From this 
baseline map, a record of annual sagebrush cover (1985−2018, ex-
cluding 2012) was estimated at 30-m resolution with summer and 
fall imagery from Landsat 5 to 8 using a change vector and change 
fraction approach and regression tree models (Rigge, Shi, et al., 
2019). Training data for the 1985–2018 predictions were derived 
from areas and times where no spectral change occurred relative 
to the 2016 base year, while 2016 cover values were applied to un-
changed areas. A series of post-processing methods was applied to 
ensure accurate post-burn trajectories and reduce noise (detailed in 
Rigge, Shi, et al., 2019). Sagebrush cover estimates consisted mostly 
of big sagebrush (Artemisia tridentata Nutt), including primarily 
Mountain (A.  t.  ssp. vaseyana) and Wyoming (A.  t.  ssp. wyomingen-
sis) subspecies, with less abundance of low sagebrush (A. arbuscula), 
black sagebrush (A.  nova), three tip sagebrush (A.  tripartita), silver 
sagebrush (A.  cana), and basin big sagebrush (A.  t.  ssp. tridentata). 
Areas with non-rangeland cover were masked including urban, agri-
culture, forest, open water, and elevations >approximately 2700 m 
(Rigge et al., 2020). For each well pad (i) and year (t), we calculated 

F I G U R E  1 Locations of former 
oil and gas well pads (n = 1200; a) in 
southwestern Wyoming, USA (b). The 
study area overlaps the Wyoming 
Landscape Conservation Initiative 
area and the extent of the Disturbance 
Automated Reference Toolset developed 
for the Upper Colorado River Basin. 
We also present percent cover (a) of 
sagebrush (Artemisia spp.; c) summarized 
by 95th percentile across the data time 
series (1985–2018, excluding 2012). Photo 
by M. Holloran

(a) (b)

(c)

https://wogcc.wyo.gov/
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mean sagebrush cover in the pad area (padit) and respective refer-
ence pixels (refit; see DART process).

3.3  |  DART process

We used an updated version of DART that relied on new soil map-
ping data available for the Upper Colorado River Basin (Appendix S1, 
Table S1; Nauman & Duniway, 2020), where an average of 0–60 cm 
soil electrical conductivity (EC) replaced the Landsat minerology 
layers in previous DART applications (Nauman & Duniway, 2016). 
Soil EC measures salinity and is a key determinant of composition 
and behavior of vegetation communities regionally (Duniway et al., 
2016). Additionally, the underlying raster covariates from Nauman 
and Duniway (2020) were used in DART to create an expanded soil 
particle size class map (summarizing soil texture, depth, and rock 
content) consistent with Nauman and Duniway (2016). Reference 
pixels (30-m resolution) were chosen from pixels outside of the well 
pad within a 2-km radius to balance our objectives of identifying 
ecologically similar references and tracking climate histories similar 
to the well pad while also selecting a sufficient sample of reference 
pixels. We selected reference pixels using the following four steps 
(Appendix S1, Figure S1): (1) eliminate masked areas (see below), (2) 
subset to pixels with a particle size class seen in the well pad area, (3) 
subset to pixels within 5% of the minimum and maximum soil EC in 
the well pad area, and (4) of the remaining pixels, pick the 100 most 
similar pixels based on topographic multivariate similarity of remain-
ing candidates to all pixels of a given well pad. Topographic similarity 
was calculated using Gower's distance (Gower, 1971; van der Loo, 
2017) from a broad set of digital elevation model (DEM) terrain met-
rics as described in Nauman and Duniway (2016). The result was a 
selection of 100 reference pixels within 2 km that were most similar 
in soil and topographic properties to pixels in the well pad area.

We applied several masks to exclude areas that were unlikely 
to support reference conditions for sagebrush ecosystems (summa-
rized in Appendix S1, Table S1). These masked areas included burned 
areas, irrigated land and reservoirs, wind turbines, coal mines, other 
well pads, roads, building footprints, and local disturbance data. We 
also excluded areas subjected to vegetation treatments reported in 
the Land Treatment Digital Library (Pilliod & Welty, 2013), includ-
ing exclosures (n = 3), chemical treatments (n = 24), prescribed fire 
(n = 57), seedings (n = 33), and other vegetation/soil manipulations 
(n = 45). Additionally, we excluded pixels where 2011 National Land 
Cover Dataset (NLCD) classes indicated open water, development, 
pasture/hay, and cultivated crops (Jin et al., 2013). Finally, we ex-
amined whether a more general approach to identifying reference 
pixels could replace the more detailed masks available only within 
our study area using only masks based on national datasets ex-
tending beyond our study area. This more general mask included 
NLCD classes, burned areas, roads, building footprint, vegetation 
treatments, and other well pad locations but not datasets for ir-
rigated land and reservoirs, wind turbines, coal mines, and local 
disturbance.

To increase the likelihood that well pads and reference pixels 
were located in sagebrush ecosystems, we excluded pads from 
our sample based on several criteria. First, we excluded well pads 
with <100% overlap with sagebrush remote sensing data. Second, 
we excluded well pads if mean sagebrush cover among reference 
pixels was ≤5.9% in any year following apparent reclamation, corre-
sponding with the root mean square error for sagebrush estimates 
when compared with independent high resolution data (Rigge et al., 
2019) and therefore potentially lacking sagebrush. Third, we used a 
LANDFIRE dataset for Existing Vegetation Type (LF 2.0.0; Rollins, 
2009) with a crosswalk to Society of American Foresters-Society for 
Range Management cover types to retain pads if at least one refer-
ence pixel was classified as “Mountain Big Sagebrush,” “Wyoming 
Big Sagebrush,” “Sagebrush-Grass,” or “Big Sagebrush-Bluebunch 
Wheatgrass.”

3.4  |  Covariates affecting recovery

We acquired several datasets characterizing biotic and abiotic fac-
tors that may account for variation in sagebrush recovery (Monroe 
et al., 2020). We used daily precipitation and temperature esti-
mated at each well pad from 1 km Daymet climate data (1986−2018; 
Thornton et al., 1997, 2016). Minimum temperatures and precipita-
tion during winter and spring can impact sagebrush establishment 
and survival (Apodaca et al., 2017; Brabec et al., 2017; Germino & 
Reinhardt, 2014; Maier et al., 2001; Monroe et al., 2020), so for each 
year we calculated precipitation totals and mean minimum tempera-
tures during winter (December–February) and spring (March−May). 
Sagebrush growth also may be related to maximum temperatures 
and annual precipitation (Apodaca et al., 2017), so we calculated 
total precipitation and mean maximum temperature by water year 
(October–September). Other seasons and indices of moisture avail-
ability could be considered; however, here we aimed to identify sev-
eral plausible factors and evaluate their relative effects on projected 
sagebrush recovery. To account for missing estimates of sagebrush 
cover in 2012, we averaged weather covariates from 2011 to 2013.

Additionally, we quantified static site conditions of soils and 
elevation. We determined mean elevation of each well pad using 
a 1/3 arc-second DEM (U.S. Geological Survey, 2017) with hydro-
logical corrections from Optimized Pit Removal software (Soille, 
2004). Soil characteristics may influence growth and survival of 
sagebrush, including soil texture, soil depth, and salinity, among 
other factors (Barnard et al., 2019; Germino & Reinhardt, 2014; 
Renne et al., 2019). We therefore used a recent soil properties 
dataset (Nauman & Duniway, 2020) to represent several important 
soil variables. For each pad, we extracted mean values for percent 
sand (indicator of texture) and EC (indicator of salinity) from the 
surface down to 60 cm. We also used results from Nauman and 
Duniway (2020) to estimate depth to restrictive layer (primarily 
bedrock) as an indication of the physical soil profile for water ca-
pacity and rooting zone. We excluded seven well pads that lacked 
soil property estimates. Like climate factors, many physical and 
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biochemical soil properties may affect plant growth, and here we 
sought to identify a set of variables to indicate soil–recovery re-
lationships rather than evaluate all possible soil characteristics. 
Finally, we recorded each well pad's size (ha), years since apparent 
reclamation, and production duration. We acquired and formatted 
all data with the packages daymetr v. 1.4 (Hufkens, 2019), raster v. 
3.4–5 (Hijmans, 2020), and rgdal v. 1.5–23 (Bivand, 2021) in R v. 
3.6.3 (R Development Core Team, 2020).

3.5  |  Statistical analyses

At each well pad i and year t (1986−2018, excluding 2012), we 
modelled variation in the natural log of mean sagebrush cover 
(log[padit]) in response to covariates using generalized additive 
models (GAM), which permit modelling both linear and nonlinear 
variation over space and time (Monroe et al., 2020; Wood, 2017). 

We excluded pad-by-year samples with 0% mean sagebrush cover 
for the pad area in the current or previous year to facilitate mod-
eling cover on the log scale (Tredennick et al., 2016). We fit linear 
effects of well pad size (areai); soils (sandi, eci, resdti); temperature 
(tempit), precipitation (precipit), elevation (elevi), and their inter-
actions; and smooth terms for years since apparent reclamation 
(timeit) and production duration (durationi) based on penalized 
regression splines. Prior to analysis, we standardized continuous 
covariates by subtracting the sample mean and dividing by the 
sample standard deviation. In addition to direct effects on veg-
etation, soil texture and depth also can affect water infiltration 
and soil water storage capacity, and therefore we specified in-
teractions between precipit and sandi and between precipit and 
resdti to account for potential soil–climate relationships. We also 
specified a spatio-temporal dependence term from the natural log 
of the previous year's well pad sagebrush cover (log[padit-1]), ap-
proximating a Gompertz population model (Ives et al., 2003). To 
account for rates of change in sagebrush cover relative to each 
dynamic reference, we included a covariate for the natural log of 
mean sagebrush cover in refit. Because we lacked annual estimates 
of sagebrush cover for 2012, we used an offset for differences 
in time intervals between years (intervalt). Finally, we specified a 
tensor product of thin plate regression splines (fte[xi, yi]) for the 
centroid location of each well pad (with geographic coordinates 
xi and  yi; Hefley et al., 2017; Wood, 2017) to accommodate ad-
ditional, unmodelled spatial variation across the study area. We 
determined collinearity among linear effects was acceptable 
based on variance inflation factors (VIF < 3.0; Zuur et al., 2010). 

Concurvity can indicate that smooth terms are approximated by 
one or more other smooth terms in a model (Wood, 2008), but 
observed concurvity was low to moderate among smooth terms 
and quantiles (0.09–0.53).

Instead of fitting models to the mean of the response variable, 
we estimated parameters independently at different quantiles of the 
response with the package qgam v. 1.3.2 (Fasiolo, 2020) in R. As an 
extension of GAM methodology developed previously (Wood, 
2017), this package efficiently estimates smoothing functions at 
each quantile via an empirical Bayesian approach by minimizing the 
Extended Log-F (ELF) loss with a belief-updating framework (Fasiolo 
et al., 2020). We obtained standard errors for regression coefficients 
from the model variance/covariance estimated with Bayesian cali-
bration (Fasiolo et al., 2020). We considered quantiles from τ = 0.1 to 
τ = 0.9 at intervals of 0.1, and we modelled sagebrush cover on well 
pads Qlog(padit) at the τth quantile given data X with the following 

model:

We fit three models with either winter, spring, or annual weather 
covariates and compared their support at each quantile using 
Akaike's Information Criterion (AIC; Akaike, 1973). To facilitate in-
terpretation of covariate relationships, we selected five quantiles to 
represent a range in recovery trends (τ = 0.1, 0.2, 0.5, 0.8, and 0.9). 
We evaluated covariate relationships by predicting well pad sage-
brush cover at each quantile with increasing values of each covariate 
while maintaining other covariates at their sample mean, including 
padit-1 = 7.0% and refit = 12.8%. The above analyses were based on 
DART reference pixels identified after applying local and general dis-
turbance masks, but we also compared results from reference pixels 
after only applying general masks to evaluate the utility of our ap-
proach beyond the study area.

To evaluate predictive performance of our models, we used split 
conformalized quantile regression (Romano et al., 2019). For this ap-
proach, we created two within-sample training datasets by exclud-
ing approximately 10% of the well pads in the local dataset (n = 120 
well pads) or three randomly selected years (1987, 2000, and 2011) 
to evaluate spatial or temporal prediction errors, respectively. We 
then predicted log(padit) for the withheld (test) data and computed 
conformity scores (E(τ)) as:

We determined the proportion (p) of E(τ) > 0.0 for τ < 0.5, and 
1 – p for τ ≥ 0.5, where differences in p relative to their respective 

Qlog(padit) (τ|X) =β0 (τ) +β1 (τ) areai+β2 (τ) sandi+β3 (τ) eci+β4 (τ) resdti+β5 (τ) tempit

+β6 (τ) precipit+β7 (τ) sandi×precipit+β8 (τ) resdti×precipit+β9 (τ) elevi

+β10 (τ) tempit×precipit+β11 (τ) tempit×elevi+β12 (τ) precipit×elevi

+β13 (τ) tempit×precipit×elevi+β14 (τ) log
(
padit−1

)
+β15 (τ) log

(
refit

)

+ fte (τ)
(
xi , yi

)
+ fs (τ)

(
timeit

)
+ fs (τ)

(
durationi

)
+offset

(
log

(
intervalt

))
.

E(τ) = �Qlog(padit) (τ|X) − log
(
padit

)
for τ < 0.5, and

E(τ) = log
(
padit

)
− Q̂log(padit) (τ|X) for τ ≥ 0.5.
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quantile indicate predictive lack-of-fit. We also calculated confor-
malized quantile predictions by determining the τth empirical quan-
tile, QEpred(τ), of E(τ) for τ ≥ 0.5 and 1 − τth empirical quantile for 
τ < 0.5. QEpred(τ) is then added to Q̂log(padit) (τ|X) for τ ≥ 0.5 or sub-

tracted for τ  <  0.5. Comparing conformalized predictions to 
Q̂log(padit) (τ|X) thereby indicated the marginal degree of bias in our 

spatial or temporal predictions.
We used models fit at each quantile to project the number of 

years until recovery (padit ≥ refi) for pixels across the study area 
that recovered within 100  years, and relative recovery after 
100 years (padi100

refi
× 100%) for pixels that did not recover (recovered 

pixels had recovery fixed at 100%). At finer scales (such as for in-
dividual disturbance areas), DART can be used to identify relevant 
references and inform recovery projections. In this case, however, 
it was not practical to use DART to identify reference pixels for 
each individual pixel across the study area. Instead, we created a 
reference for each pixel (refi) by first identifying the temporal 95th 
percentile of each pixel across the 33-year time series of sage-
brush cover, which should indicate the pixel's potential for sage-
brush cover while avoiding annual anomalies in estimates from 
remote sensing products (temporal error). We then calculated a 
135-m radius average of sagebrush cover centered at each pixel 
(equivalent to a 9-pixel diameter circle) to reduce influence from 
spatial errors and consider local contexts. Thus, these projections 
were based on models fit with references identified by DART but 
applied to a landscape where references were identified by the 
approach described above. We removed pixels with refi ≤5.9% to 
avoid projections in non-sagebrush ecosystems. We assumed 30-
year averages (1989−2018) of temperature and precipitation for 
each pixel and iteratively predicted padit given padit-1, refi, eleva-
tion, and soil properties across the study area (Appendix S1, Figure 
S2). For the first year (t = 1), we assumed sagebrush cover at the 
pad in the previous year was 1% of the paired reference 
(padi0 = 0.01 × refi). We further assumed sample mean values for 
pad size and production duration, whereas years since apparent 
reclamation increased over time. As a measure of model selection 
uncertainty, for each quantile we calculated root mean squared 
error (RMSE) between projections of percent recovery and years 
to recovery from the best-supported model and projections from 
models fit with the other two weather covariates.

For a practical application, we used our models to project re-
covery of sagebrush in greater sage-grouse habitat. We first delin-
eated landscape areas that were previously identified as nesting and 
summer (i.e., late brood-rearing) habitat for sage-grouse (Fedy et al., 
2014). For pixels in each habitat type, we determined the 95th per-
centiles in sagebrush cover (as described above) and used the me-
dian across pixels as a recovery threshold: 16% and 18% sagebrush 
cover for nesting and summer habitat, respectively. Although rep-
resenting a different scale (30-m pixels vs. transect-level measure-
ments), these values are consistent with thresholds recommended 
in the Sage-grouse Habitat Assessment Framework (15–25% cover 
for nesting and 10–25% cover for summer; Stiver et al., 2015). We 

repeated the projection exercise described above to determine the 
number of years to reach each sage-grouse habitat threshold and 
percent recovery after 100 years (relative to each threshold, rather 
than the reference).

4  |  RESULTS

We analyzed records data from 1200 well pads and sagebrush cover 
1986–2018 (19,558 pad by year samples). Time since apparent rec-
lamation ranged 1–98 years (median = 13 years) and production du-
ration ranged 1–90 years (median = 10 years). The annual weather 
model was almost always better supported (based on AIC) than 
models with other weather covariates (Table 1). Including a term for 
spatio-temporal dependence of sagebrush cover on well pads in the 
prior year (t–1) substantially increased model support compared to 
the same model but without a spatio-temporal dependence term. We 
also noted greater support for models with the paired reference co-
variate. Based on these results, we interpreted covariate relationships 
from the full annual weather model and compared projections from 
winter and spring weather models. Conformal score distributions and 
conformalized quantile predictions indicated predictive lack-of-fit 
and slight overestimates in spatial test data for τ ≥ 0.5, whereas tem-
poral test data indicated slight underestimates in temporal test data, 
particularly for τ ≤ 0.5 (Appendix S1, Table S2, Figure S3).

Several patterns emerged across quantiles from the annual 
weather model, assuming all else equal. Generally, change in 
sagebrush cover responded more to annual variation in weather 
(Figure 2) than static, site-level covariates (well pad size and soils) 
and smoothed temporal terms for years since apparent reclamation 
and production duration (Figures 3 and 4). We also estimated im-
portant spatial patterns across the study area that, depending on 
the quantile, tended to reduce changes in sagebrush cover in the 
north and southeast of the study area, and increase in south and 
southcentral areas (Figure 5).

The interaction between elevation, precipitation, and tempera-
ture was supported (p < 0.05) for most τ < 0.5 and τ > 0.7 (Table 2, 
Figure 2). Sagebrush cover was consistently lowest during warm and 
dry weather conditions across elevation and quantiles, although de-
clines were greatest among the lower quantiles (τ < 0.5; Figure 2). 
Sagebrush cover increased among higher quantiles (τ  >  0.5) irre-
spective of weather or elevation combinations. Among lower quan-
tiles, sagebrush cover increased under warm and moist conditions 
at both high and low elevations, but sagebrush cover declined more 
under cool and moist annual conditions at high elevations than low 
elevations. Low quantiles also suggested greater increases in sage-
brush cover than high quantiles for warm and moist conditions, par-
ticularly at high elevations, which may indicate lack-of-fit for such 
weather combinations.

Sagebrush cover at well pads increased with greater reference 
sagebrush cover, particularly among high quantiles (Figure 3). Effects 
of other site-level covariates were modest but often differed by quan-
tile. Sagebrush cover declined slightly with pad size (mean = 1.2 ha, 
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range  =  0.2–6.3  ha) for high quantiles but not low quantiles, and 
sagebrush cover declined with increasing EC (mean = 0.85 dS m–1, 
range = 0.01–4.50 dS m–1) for low quantiles but increased slightly 
among high quantiles. Sagebrush cover increased slightly with years 
since apparent reclamation and production duration among low 
quantiles, but we also estimated an increase in sagebrush cover for 
high quantiles with recent apparent reclamation or relatively short 
production duration (<15 years). For several quantiles, interactions 
were supported between annual precipitation and depth to restric-
tive layer (mean = 131 cm, range = 58–200+ cm) and percent sand 
(mean = 52%, range = 31–75%; Table 2). Our model suggested a pos-
itive effect of precipitation among low to mid quantiles, particularly 
for more sandy but shallower soils (Table 2, Figure 4). This relation-
ship was not apparent among high quantiles, where sagebrush cover 
increased regardless of precipitation or soils.

Among low quantiles, close to none of the landscape was pro-
jected to recover within 100 years (<0.01% recovered for τ0.1, 0.07% 
recovered for τ0.2; Figures 6 and 7). For the median, 4.7% of the 
landscape recovered in 52–100  years since apparent reclamation 
(median τ0.5  =  87  years; Figure 6). High elevation areas with cool 
and moist conditions in the southwest and north of the study area 
reached >70% of their reference condition after 100 years (Figure 7). 
A greater proportion of the landscape recovered for high quantiles 
(τ0.8  =  48.0% recovered, τ0.9  =  78.3% recovered), and relatively 
quickly (median τ0.8 = 16 years, range 9−25, median τ0.9 = 9 years, 
range 5−15). Areas that did not recover still reached >32% (median 
τ0.8  =  89.9%, median τ0.9  =  89.8%) of their reference condition. 
Projections across quantiles were generally consistent (low RMSE) 
among much of the study area (Figure 8). However, we identified 
areas with higher RMSE, particularly for percent recovery projec-
tions from low to mid quantiles.

Using a more general dataset to mask potential reference pixels, 
we retained a larger sample (1274 well pads and 20,232 pad by year 
samples) than after applying the more restrictive masks with local 
datasets. The annual weather model was again most often best sup-
ported (Appendix S1, Table S3). Covariate relationships (Appendix 
S1, Figures S4–S7) were generally similar to estimates from more 
restrictive masks (Figures 2−5). Again, we projected little recov-
ery within 100  years for low quantiles (Appendix S1, Figures S8 
and S9), with <0.01% and 0.10% of the landscape recovering in as 
quickly as 47 and 46  years for τ0.1 and τ0.2, respectively (τ0.1  me-
dian = 93 years, τ0.2 median = 95 years). Slightly more of the land-
scape recovered for the median than with the more restrictive masks 
(8.4% vs. 4.7%, respectively), with median recovery time of 87 years 
(range τ0.5  =  46–100  years). Most of the landscape recovered for 
high quantiles (τ0.8  =  78.4%, τ0.9  =  90.0%) and relatively quickly 
(τ0.8 median = 16 years, range = 9–100 years; τ0.9 median = 9 years, 
range = 5–100 years). Correlations between projections from gen-
eral and more restrictive, local masks were high among mid quan-
tiles (r = 0.93 and 0.99 for years to recovery and percent recovery, 
respectively). Projections differed somewhat for high quantiles, 
but generally followed the same patterns (τ0.8 r = 0.50 and 0.82 for 
years to recovery and percent recovery, respectively; τ0.9 r = 0.45 
and 0.84 for years to recovery and percent recovery, respectively). 
Errors in percent recovery and recovery time projections (Appendix 
S1, Figure S10) also generally corresponded with broad-scale pat-
terns indicated by more restrictive masks (Figure 8).

Examining recovery to a threshold for achieving potential sage-
grouse nesting habitat (16% sagebrush cover), few to no pixels re-
covered among low quantiles (τ0.1 < 0.01%, τ0.2 = 0.37%; Appendix 
S1, Figure S11). We projected more pixels would recover at the me-
dian using thresholds than based on a reference (τ0.5  =  16.9% vs. 

TA B L E  1 Generalized additive models fit to different quantiles of sagebrush (Artemisia spp.) cover on former oil and gas well pads in 
southwestern Wyoming, USA, ranked by Akaike's Information Criterion (AIC)

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Full

Annual weather 44486.4 19065.0 8273.0 8077.8 5947.3 2773.8 3094.1 6717.0 17164.1

Winter weather 48812.9 18951.4 9549.5 10946.2 7557.7 3662.1 3375.3 6803.3 17844.7

Spring weather 47290.3 18660.9 8877.5 10038.1 6876.1 3649.1 3258.9 6624.1 17942.9

No Dependence

Annual weather 74249.3 55331.1 44811.4 40401.2 37632.7 35723.2 35225.3 36037.2 39874.7

Winter weather 71972.3 55488.4 44685.8 40516.7 38086.2 35817.3 35430.2 36005.7 39304.9

Spring weather 71671.6 54580.8 44409.5 40197.4 37917.8 35554.0 35043.7 35991.0 39837.6

No Dependence, No Reference

Annual weather 74604.0 56980.9 48678.7 44197.2 41898.9 40093.1 39895.2 40631.2 48158.8

Winter weather 74781.9 57974.9 49005.0 44241.1 42122.2 40102.8 39802.3 40777.5 48278.7

Spring weather 74694.9 57183.8 48966.7 44314.9 42034.9 39903.4 39735.0 40684.1 48543.2

Note: Models varied by weather covariates summarized annually (by water year, or October–September), by winter (December–February), or by 
spring (March–May) each year. Values in bold indicate the lowest AIC for each quantile. We report AIC for the full model and two reduced models, 
one without spatio-temporal dependence terms for sagebrush cover on well pads in t–1 (No Dependence), and the other without both spatio-
temporal dependence terms for sagebrush cover on well pads and paired references (No Dependence, No Reference).
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F I G U R E  2 Predicted sagebrush 
(Artemisia spp.) cover with increasing 
annual precipitation and maximum 
temperature at low (left) and high 
(right) elevation and across quantiles 
(τ) for former oil and gas well pads in 
southwestern Wyoming, USA. Areas 
shaded gray denote an annual increase 
in sagebrush relative to sagebrush cover 
on well pads in the previous year (7.0%). 
We also assumed sagebrush cover on 
reference pixels in the current year 
(12.8%) based on a sample mean
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F I G U R E  3 Predicted sagebrush (Artemisia spp.) cover (x ± 2 SE) with increasing well pad area (ha), electrical conductivity (dS m−1), years 
since apparent reclamation, production duration (years), and sagebrush cover (%) in reference pixels, and across quantiles (τ) for former oil 
and gas well pads in southwestern Wyoming, USA. For predictions, we assumed 7.0% sagebrush cover on well pads in the previous year 
(indicated by the horizontal dashed line)
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F I G U R E  4 Predicted sagebrush 
(Artemisia spp.) cover from interactions 
between annual precipitation and percent 
sand (left) and depth to restrictive layer 
(cm; right) across quantiles (τ) for former 
oil and gas well pads in southwestern 
Wyoming, USA. Areas shaded gray denote 
an annual increase in sagebrush relative 
to sagebrush cover on well pads in the 
previous year (7.0%). We also assumed 
sagebrush cover on reference pixels in the 
current year (12.8%) based on a sample 
mean
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τ0.5 = 10.3%, respectively), whereas fewer pixels recovered at high 
quantiles (τ0.8 = 31.3%, τ0.9 = 41.1% recovered relative to thresh-
olds vs. τ0.8 = 51.6%, τ0.9 = 79.6% recovered relative to reference). 
We similarly observed little recovery to a threshold that should 
support summer habitat (18% sagebrush cover) at low quantiles 
(τ0.1 < 0.01%, τ0.2 = 0.40%; Appendix S1, Figure S12), higher recov-
ery at the median (τ0.5  =  16.2%), and lower recovery among high 
quantiles (τ0.8 = 23.1%, τ0.9 = 31.9%). Patterns in percent recovery 
and time to recovery with thresholds were comparable to projec-
tions from across the study area based on references, albeit with less 
recovery (Appendix S1, Figure S13–S14).

5  |  DISCUSSION

Using ecologically relevant reference sites and a long-term remote 
sensing dataset, we applied a dynamic reference approach to study 
and project sagebrush recovery on former oil and gas well pads. Such 
an application could help land managers anticipate site recovery for 
large geographic extents, thereby guiding restoration efforts and fu-
ture disturbance. A benefit of our approach was that we could model 
post-disturbance trends relative to the ecological potential of a site 
and annual variability of its reference. We also used quantile regres-
sion to consider heterogeneity in unmodelled factors, and quantiles 

could be interpreted as reflecting different levels of recovery po-
tential at a given site and year. Some sites, for example, may expe-
rience effects of legacy land-use, landscape context, restoration 
failure, ongoing disturbance, and other environmental conditions 
that make recovery unlikely, which were reflected in low quantiles 
in sagebrush cover (conditional on the predictors). Conversely, high 
quantiles likely represented optimistic scenarios where multiple 
conditions and factors converged for more favorable recovery tra-
jectories. Indeed, we found little of the landscape was projected to 
recover from a potential disturbance after 100 years among quan-
tiles less than or equal to the median response, whereas much of the 
landscape recovered quickly (in <25  years) among high quantiles. 
These results suggest recovery in some areas could be expedited if 
restoration conditions are favorable (e.g., Germino et al., 2018; Pyke 
et al., 2020; Schlaepfer et al., 2014; Shinneman & Mcilroy, 2016; 
Shriver et al., 2018). Additionally, we increased our spatio-temporal 
sample from previous analyses (1200 vs. 375 well pads in Monroe 
et al., 2020) with near-annual remote sensing products and by in-
cluding well pads disturbed long before the earliest remote-sensing 
imagery. Finally, we demonstrated how this approach can be applied 
to pressing conservation questions, such as recovery of sagebrush in 
sage-grouse habitat.

Quantifying sagebrush cover on paired reference pixels over 
time not only offered a dynamic reference from which to evaluate 

F I G U R E  5 Heat maps for smoothed tensor product of location (Northing and Easting) on sagebrush (Artemisia spp.) cover (linear 
predictor scale) across quantiles (τ) for former oil and gas well pads in southwestern Wyoming, USA. Pixels values increase from red to white
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F I G U R E  6 Projected time to recovery (years) of sagebrush (Artemisia spp.) cover across the study area (left) by quantile (τ) for former 
oil and gas well pads in southwestern Wyoming, USA. We also present histograms for each projection indicating the percentage of the 
sagebrush landscape grouped by years to recovery (right)
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F I G U R E  7 Projected percent recovery of sagebrush (Artemisia spp.) cover after 100 years (relative to reference areas) across the study 
area (left) by quantile (τ) for former oil and gas well pads in southwestern Wyoming, USA. We also present histograms for each projection 
indicating the percentage of the sagebrush landscape grouped by percent recovery (right)
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F I G U R E  8 Root mean squared error for each quantile (τ) in projected percent recovery of sagebrush (Artemisia spp.) cover after 100 years 
(left) and years to recovery (right) between a model with annual weather and models with winter or spring weather. Areas in gray did not 
recover within 100 years based on projections from one or more models
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recovery trajectories but also explained additional variation in sage-
brush cover on former well pads, such as greater recovery among 
pads with high sagebrush cover at paired references. For the me-
dian, and all else being equal, reference sagebrush cover may help 
predict whether well pad sagebrush will decline or increase in sub-
sequent years. Areas with high sagebrush cover in reference pixels 
likely corresponded with more suitable conditions for growth and 
resiliency, such as relatively cooler and moister soil conditions within 
a semi-arid landscape (Schlaepfer et al., 2012a) which are expected 
to exhibit greater potential for restoration success (Chambers et al., 
2014). This relationship also may reflect ability of the DART ap-
proach to identify ecologically relevant references based on a suite 
of soil and topographic covariates (i.e., matching of pad ecological 
potential; Herrick et al., 2019). However, declines in sagebrush cover 
among low quantiles even when reference sagebrush cover was high 
suggest relying on reference sagebrush cover alone is insufficient for 
anticipating a site's recovery rate.

Although negative effects of warm and dry conditions were ap-
parent across quantiles, lower quantiles tended to respond more 
strongly to weather than higher quantiles of sagebrush cover. This 
result suggests among low quantiles, when site conditions, reclama-
tion history, or both are less suitable for recovery, the outsized influ-
ence of weather warrants consideration when planning restoration. 
For example, warmer temperatures during periods of low moisture 
can stress sagebrush, reducing sagebrush establishment, growth, 
and survival (Schlaepfer et al., 2012b, 2014). We also estimated a 
positive response to warm and moist conditions among low to mid 
quantiles, consistent with a previous study in the region (Monroe 
et al., 2020) and for sagebrush in other cool climates (Kleinhesselink 
& Adler, 2018; Perfors et al., 2003; Renwick et al., 2017; Rigge, Shi, 
et al., 2019). Despite stronger responses to annual weather, how-
ever, study area projections from low quantiles seldom recovered 
within 100 years, which may partly reflect slight underestimates in 
temporal predictions we observed with conformalized predictions. 
These results also may indicate the importance of other, unmod-
elled factors determining rates of recovery. Indeed, temperature 
and moisture conditions near the time of planting, even at a very 
fine temporal resolution (e.g., daily; O’Connor et al., 2020), may be 
significant for subsequent recovery (Maier et al., 2001; Shinneman 
& McIlroy, 2016; Shriver et al., 2018; Ziegenhagen & Miller, 2009). 
We also lacked data on the type, timing, and occurrence of recla-
mation practices applied to former well pads (Monroe et al., 2020). 
For example, seed depth is critical to persistence and germination of 
sagebrush (Jensen et al., 2001; Schlaepfer et al., 2014), and success 
from reseeding is often low (Davies et al., 2013; Shaw et al., 2005). 
Lack of recovery also may indicate transitions to alternative or de-
graded states. Planting crested wheatgrass at disturbed sites, includ-
ing well pads, for example, was once common for stabilizing soils, 
but this may inhibit recolonization by sagebrush (Davies et al., 2013). 
We caution, however, that these projections should be interpreted 
in the context of their underlying assumptions. We assumed 30-year 
averages for weather when making projections, corresponding with 
climatic conditions from which we fit sagebrush trend models, but 

these may differ from future growing conditions (Homer et al., 2015; 
Palmquist et al., 2016; Renwick et al., 2017; Tredennick et al., 2016). 
Overall trajectories of ecological systems are unlikely to be static 
with a changing climate (e.g., Bradford et al., 2019), and our research 
highlights a need to better understand how broad-scale variation 
due to a changing climate may alter plausible restoration goals (e.g., 
Lavorel et al., 2015; Wintle et al., 2011).

Responses from median sagebrush cover indicated a small per-
centage of the landscape would recover within 100  years, while 
much of the rest reached some level of partial recovery, often among 
higher elevations where conditions tend to be cooler and moister 
(Appendix S1, Figure S2). Mountain big sagebrush located at higher 
elevations may recover in 19–100 years (Baker, 2006; Lesica et al., 
2007; Moffet et al., 2015; Nelson et al., 2014), whereas for Wyoming 
big sagebrush, occurring at lower elevations with warmer and drier 
conditions, recovery is estimated to take longer (Baker, 2006; Bates 
et al., 2020). We note, however, direct comparisons are limited be-
cause many previous estimates of sagebrush recovery are based 
on disturbance from fire, and recovery conditions likely differ for 
former well pads. For example, under current well pad reclamation 
practices, topsoil is removed, stockpiled, and replaced, and seed bed 
preparation can include recontouring, soil amendments to address 
salinity or low organic matter, and other intensive practices not used 
following wildfire (U.S. Department of the Interior-Bureau of Land 
Management, 2012; U.S. Department of the Interior-Bureau of Land 
Management & U.S. Department of Agriculture, 2007). Previous 
studies in Wyoming estimated Wyoming big sagebrush recovery 
in 87 or more years on individual well pads (Avirmed et al., 2015). 
At broader scales, 21% of the landscape was projected to recover 
within 60  years, whereas remaining sites may require >100  years 
(Monroe et al., 2020). Our current study suggests that these pre-
vious analyses (Avirmed et al., 2015; Monroe et al., 2020) may not 
have fully considered spatio-temporal heterogeneity among well 
pads within this landscape.

Interestingly, we projected relatively fast recovery among high 
quantiles at lower elevation sites (warm and dry ecotype) even after 
accounting for lower sagebrush cover among references (lower res-
toration target, but also slower growth than for sites with high sage-
brush cover references). While there are reports of Wyoming big 
sagebrush communities recovering relatively quickly (9–35  years; 
Wambolt et al., 2001; Shinneman & McIlroy, 2016), our projections 
may reflect possible factors that facilitate recovery, such as favor-
able establishment conditions and successful restoration practices 
(Pyke et al., 2020). Indeed, we estimated faster recovery with re-
cent apparent reclamation among high quantiles, but this effect 
dissipated with longer time periods, possibly because fitting spatio-
temporal dependence accounted for variation in the years since 
apparent reclamation smooth term. Our projections also indicated 
areas unlikely to recover even among high quantiles, and again mul-
tiple factors not explicitly incorporated in the model (e.g., invasive 
annual grasses) may nevertheless drive spatial variation in recovery 
across the landscape. From a practical standpoint, areas not recov-
ering among high quantiles could temper expectations for potential 
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restoration efforts or guide disturbance away from these areas 
when feasible. Additionally, we identified areas where projections 
were sensitive to choice of weather covariate in our models, as indi-
cated by larger RMSE, particularly among northern and southcentral 
areas where we lacked well pad data (Figure 1). Numerous weather 
and soil moisture covariates have been proposed for explaining vari-
ation in sagebrush recovery, quantified at varying spatial and tempo-
ral resolutions (e.g., from 30-year averages [Davidson et al., 2019] to 
daily weather [O’Connor et al., 2020]), and further exploring these 
covariates with additional data may reduce projection error.

Several site-level covariates minimally influenced sagebrush 
trends in this system, although the strength and direction of these 
effects often varied by quantile. Among low to mid quantiles, sage-
brush cover increased with greater precipitation, and slightly more 
so with sandier and shallower soils. This result could reflect sage-
brush response to permeable soils and their ability to retain acces-
sible moisture for sagebrush growth and survival (but see Germino 
& Reinhardt, 2014; Renne et al., 2019; Sturges, 1989). Quantiles also 
responded differently to the size of former well pads and EC of soils. 
Among high quantiles, recovery declined with increasing well pad 
size, consistent with Monroe et al. (2020) and possibly reflecting 
short dispersal distances of sagebrush seeds (Schlaepfer et al., 2014) 
into former well pads from intact sagebrush. Declines among low 
quantiles with increasing EC may reflect salinity-related limitations 
to sagebrush recovery (Cook, 1961), but this would contradict the 
slight increases observed with EC among high quantiles. The latter 
result may be a correlation with more sparse sagebrush in reference 
communities and thus a lower threshold for recovery (Thatcher, 
1959). Differences in covariate relationships among quantiles illus-
trate a benefit of using quantile regression as these patterns could 
be useful when considering local management opportunities but 
may be overlooked when fitting models to the mean response.

Identifying appropriate reference sites requires matching eco-
logical site potential, but additional information of on-site manage-
ment and disturbance history may further refine these comparisons 
to areas representative of well-managed and less disturbed refer-
ence ecosystems, thereby providing a more appropriate manage-
ment target (Herrick et al., 2019). For this reason, we used several 
relevant spatial products to mask reference pixels based on local 
and national datasets. Comparing inferences from a more general 
mask that lacked data on local conditions, we found slight differ-
ences in covariate relationships and sample size, but overall infer-
ences were largely consistent between projections. These results 
suggest our approach could be applied to landscapes that lack data 
on local conditions, but outcomes may vary with spatial extent and 
sample size.

Finally, we applied our approach to project potential recovery 
of sagebrush in greater sage-grouse nesting and summer habitat 
after similar oil and gas disturbances. We emphasize that sage-
brush is only one component of sage-grouse habitat (Fedy et al., 
2014), albeit an important one for this sagebrush-obligate species 
(Connelly et al., 2000). We also acknowledge that using thresholds 

may be counterproductive, particularly when extrapolated beyond 
study areas where they were first determined (Smith et al., 2020). 
Nevertheless, land managers often use minimum thresholds to es-
tablish objectives (Connelly et al., 2000; Stiver et al., 2015), and we 
determined a threshold based on a distribution of sagebrush cover 
estimated from habitat within the study area. Using a fixed thresh-
old for sagebrush recovery greater than a site's reference sage-
brush cover led to identifying more areas that failed to recover after 
100 years for high quantiles, whereas more of the landscape was 
projected to recover at the median when the threshold was below 
a site's reference. Overall, this exercise illustrates how conserva-
tion targets for sage-grouse could directly inform where limited 
resources are applied to help meet management goals; restoration 
success to create usable habitats. However, evaluating recovery rel-
ative to references also may indicate where restoration thresholds 
are less appropriate for an ecosystem.

6  |  CONCLUSIONS

Using reference sites in recovery analyses is invaluable for guiding 
restoration and evaluating outcomes (Bestelmeyer et al., 2009; Fick 
et al., 2021; Herrick et al., 2019; Nauman et al., 2015). In this study, 
we used the DART process to identify reference areas, and we ap-
plied these to time-varying remote sensing maps of sagebrush cover, 
allowing for a dynamic characterization of reference conditions 
through time and ensuring continued relevance of reference sites 
for this slow-growing shrub. Time-varying sagebrush cover from 
paired reference pixels explained additional variation in sagebrush 
trends, and modelling trends for low, mid, and high quantiles offered 
insights into trends (and controls of trends) likely under poor, typical 
(median), and optimal restoration conditions. Projections indicated 
little of the landscape might recover after 100 years for sites with 
sagebrush quantiles equal to or less than the median, whereas much 
of the landscape recovered for high quantiles of sagebrush cover. 
This approach could be useful for informing management and resto-
ration efforts in this system, such as by identifying areas unlikely to 
recover even under optimal conditions. Projections from this work 
also could be incorporated into restoration prioritization tools cur-
rently in development (Duchardt et al., 2021).
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