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Abstract

Aberrant nucleocytoplasmic localization of proteins has been implicated in many neurode-

generative diseases. Evidence suggests that cytoplasmic mislocalization of nuclear proteins

such as transactive response DNA-binding protein 43 (TDP-43) and fused in sarcoma

(FUS) may be associated with neurotoxicity in amyotrophic lateral sclerosis (ALS) and fron-

totemporal lobar degeneration. This study investigated the changes in nucleocytoplasmic

distributions of the proteome and transcriptome in an in vitro model of ALS. After subcellular

fractionation of motor neuron-like cell lines expressing wild-type or G93A mutant hSOD1,

quantitative mass spectrometry and next-generation RNA sequencing (RNA-seq) were per-

formed for the nuclear and cytoplasmic compartments. A subset of the results was validated

via immunoblotting. A total of 1,925 proteins were identified in either the nuclear or cyto-

plasmic fractions, and 32% of these proteins were quantified in both fractions. The nucleocy-

toplasmic distribution of 37 proteins was significantly changed in mutant cells with nuclear

and cytoplasmic shifts in 13 and 24 proteins, respectively (p<0.05). The proteins shifted

towards the nucleus were enriched regarding pathways of RNA transport and processing

(Dhx9, Fmr1, Srsf3, Srsf6, Tra2b), whereas protein folding (Cct5, Cct7, Cct8), aminoacyl-

tRNA biosynthesis (Farsb, Nars, Txnrd1), synaptic vesicle cycle (Cltc, Nsf), Wnt signalling

(Cltc, Plcb3, Plec, Psmd3, Ruvbl1) and Hippo signalling (Camk2d, Plcb3, Ruvbl1) pathways

were over-represented in the proteins shifted to the cytoplasm. A weak correlation between

the changes in protein and mRNA levels was found only in the nucleus, where mRNA was

relatively abundant in mutant cells. This study provides a comprehensive dataset of the

nucleocytoplasmic distribution of the proteome and transcriptome in an in vitro model of

ALS. An integrated analysis of the nucleocytoplasmic distribution of the proteome and tran-

scriptome demonstrated multiple candidate pathways including RNA processing/transport

and protein synthesis and folding that may be relevant to the pathomechanism of ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive fatal neurodegenerative disease

that affects motor neurons [1]. While a complete understanding of ALS pathogenesis remains

incomplete, multiple mechanisms have been proposed including glutamate toxicity, oxidative

stress, protein misfolding, altered axonal transport, mitochondrial dysfunction, and defects in

RNA processing [1].

It has been increasingly recognized that protein mislocalization may play an important

role in ALS/FTLD pathology. Of note, TAR DNA-binding protein 43 (TDP-43) and fused in

sarcoma (FUS), which are both RNA-binding nuclear proteins, are mislocalized from their

normal nuclear compartment to the cytoplasm and form cytoplasmic aggregations [2–4].

Nucleocytoplasmic transport defects may link the nuclear depletion and cytoplasmic aggrega-

tion of these proteins [5]. In addition, recent studies have also suggested that the C9orf72 hexa-

nucleotide repeat expansion (HRE), the most common causative mutation in familial ALS,

exerts toxicity by disrupting nucleocytoplasmic transport [6–8]. Furthermore, several of the

latest studies using different HRE disease models have identified the disease-modifying genes

that encode elements of nuclear pore complex and nuclear RNA export/nuclear protein import

machinery [6–8]. Proteins associated with nucleocytoplasmic transport such as RanGAP1

were also found to be mislocalized in autopsied brain tissues and in induced pluripotent stem

cells derived from ALS patients with the C9orf72 mutation [7].

With the advent of quantitative proteomics, large-scale proteomic analyses are now possible

[9]. Recent developments in chemical peptide labelling with isobaric tags such as tandem

mass tag (TMT) and iTRAQ have allowed for the expression levels of thousands of proteins to

be compared across complex samples [10,11]. Subcellular fractionations followed by high-

throughput techniques also provide an opportunity to investigate the subcellular distribution

of the proteome and mislocalization in pathological conditions (“spatial proteomics”). Here,

we employed TMT tagging to investigate proteome-wide nucleocytoplasmic changes in an in

vitro model of ALS by employing NSC34 motor neuron-like cell lines expressing wild-type or

G93A mutant human SOD1 (hSOD1). The exact pathomechanisms of SOD1 mutations, the

second most common causative gene for familial ALS, are not fully understood [12], and little

is known regarding proteome-wide changes in the nucleocytoplasmic distribution. RNA

sequencing (RNA-seq) was also performed to compare the changes in the proteomes and tran-

scriptomes of the nucleus and cytoplasm of the in vitro ALS model.

Materials and methods

Cell culture and subcellular fractionation

The NSC34 motor neuron-like cell lines (kindly provided by H Ryu, Korea Institute of Science

and Technology, Seoul, Korea) was stably transfected with the pCI-neo expression vector con-

taining wild-type or G93A mutant hSOD1 as described previously [13,14]. Cells were main-

tained in Dulbecco’s modified Eagle’s medium (JBI, Korea), with 10% heat-inactivated fetal

bovine serum (Gibco, Grand Island, NY, USA), and 100 U/ml penicillin-100 mg/ml strepto-

mycin (Gibco, Grand Island, NY, USA). Cells were maintained in a humidified incubator at

37˚C under 5% CO2.

For subcellular fractionation, we used the commercially available NE-PER nuclear and

cytoplasmic extraction reagent (Thermo Scientific, USA). Briefly, the wild-type and mutant

NSC-34 cell pellets were washed with phosphate-buffered saline (PBS) and separated by centri-

fugation. The supernatant was discarded, and the pellet was resuspended in cytoplasmic
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extraction reagent (CER) I by vigorous vortexing. Next, CER II was added, and the tube was

vortexed for 10 seconds and then centrifuged for 4 minutes at 16,000 x g. The supernatant was

transferred as a cytoplasmic extraction. The insoluble fraction that contained the nuclear com-

ponent was suspended in ice-cold nuclear extraction reagent (NER) and vortexed for 15 sec-

onds every 10 minutes for a total of 40 minutes. After centrifugation, the supernatant was

prepared for the nuclear fraction. The extraction was stored at -80˚C until use.

Materials for TMT

The following materials were used for TMT labeling: formic acid, urea, tris(2-carboxyethyl)

phosphine (TCEP), iodoacetamide (IAA) (Sigma-Aldrich, St. Louis, MO, USA), a Labesix Plex

reagents kit (Thermo Scientific, No. 90064), and an HPLC-grade acetonitrile (Burdick and

Jackson, (Muskegon, MI, USA). A Milli Q system (Millipore, Molsheim, France) was used for

water purification.

Sample preparation for proteome analysis

One hundred micrograms of the protein extract achieved from each cell fraction was dissolved

in 45 μL of 200 mM triethylammonium bicarbonate (TEAB) buffer (pH 8) containing 8 M

urea. Next, 500 mM TCEP was added at room temperature and mixed for 60 min. Then, the

mixture was alkylated for 60 min with 500 mM IAA in a dark environment at room tempera-

ture. The samples were desalted using a membrane filter of 10 KMW and then were dissolved

in 200 mM TEAB (pH 8) buffer to a final protein concentration of 1 μg/μL. Each concentration

of protein was calculated using a bicinchoninic acid (BCA) assay (Thermo Scientific), as

described in the manufacturer’s protocol. Sequencing-grade trypsin (Promega, Madison, WI,

USA) and the proteins in the TEAB buffer were mixed in a 1:20 (wt/wt) ratio and incubated

overnight at 37˚C [15]. We used three experimental replicates for each wild-type and G93A

mutant hSOD1-transfected NSC34 cells. Three replicate sets of cells were grown and harvested

with each set from a separate passage of single stable cell line. After subcellular fractionation,

the samples from wild-type hSOD1-transfected cells were individually labelled using MT-126,

128, and 130, and those from G93A mutant hSOD1-transfected cells were labelled using TMT-

127, 129, and 131, according to the manufacturer’s protocol. An aqueous hydroxylamine solu-

tion (5% w/v) was blended to finish the reaction. Finally, proteins from six samples were

pooled, dried with a speed-vacuum, and melted in 0.1% formic acid with 50 μL water for liquid

chromatography-tandem mass spectrometry (LC-MS/MS).

2D-LC-MS/MS

The 2D-LC-MS/MS system, made up of a nanoACQUITY UltraPerformance LC System

(Waters, USA) and an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific, USA) with a

nano-electrospray source, were used to analyse the TMT-labelled samples [16]. A strong inten-

sity cation exchange (5 μm, 3 cm) column was located before the C18 trap column (180 μm i.d.,

20 mm length, 5 μm particle size; Waters). For each run, peptide solutions were used in 5 μL

aliquots. Then, peptides were deranged by a salt gradient, introduced over an autosampler

loop, from the strong intensity cation exchange phase into the C18 phase, and desalted at a

flow rate of 4μL/min for 10 min. Next, the trapped peptides were detached on a 200 mm home-

made microcapillary column made up of C18 (Aqua; particle size 3μm), filled into a 100μm sil-

ica tube with a 5μm orifice id.

A ten-step salt gradient was applied using 3 μL of 0, 25, 50, 100, 250, and 500 mM ammo-

nium acetate (0.1% formic acid in 5% acetonitrile) and then adding 4, 5, 9 and an additional

9 μL of 500 mM ammonium acetate (0.1% formic acid in 30% acetonitrile). The mobile phase
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A was composed of 0% acetonitrile and 0.1% formic acid, and phase B was composed of 100%

acetonitrile and 0.1% formic acid. The LC gradient was initiated with 5% B for 1 min, in-

creased to 20% B over 5 min, 50% B over 90 min, 95% B over 1 min, and then maintained at

95% B for 3 min and 5% B for an additional 5 min [17,18]. Before the next run, the column

was re-balanced with 5% B for 15 min, and a 2.0 kV voltage was applied to induce an electro-

spray. The LTQ Orbitrap Elite was regulated based on a data-dependent approach during the

chromatographic separation. The MS data were obtained by collecting five data-dependent

collision induced dissociation-high energy collision dissociation (CID-HCD) dual MS/MS

scans for each full scan with the following parameters: HCD scans and full scans obtained in

Orbitrap at resolutions of 60,000 and 15,000 by two-microscan averaging, CID scans obtained

in the LTQ by two-microscan averaging, 35% of normalized collision energy (NCE) in CID,

45% of NCE in HCD, and ±1 Da isolation window. Fragmented ions were expelled for 60 sec.

Each parent ion was initially fragmented using a CID and followed by an HCD in a CID-HCD

dual scan [15].

Protein identification and quantification

An International Protein Index (IPI) mouse database (IPI.MOUSE. 7.26.2012) was used for

the MS/MS spectra analysis, following the software analysis protocols. To calculate the false

discovery rate (FDR), conversed sequences of all proteins were attached to the database. Pro-

Lucid was employed to classify the peptides with the following parameters as a precursor: a

mass error of 25 ppm and a mass error distribution of fragment ions in 600 ppm [19]. Trypsin

was chosen as the enzyme with 2 potential missed cleavage sites. Lysine and N-terminus TMT

modification and cysteine carbamidomethylation were selected as static modifications. Methi-

onine oxidation was selected as a variable modification. To ensure better peptide identification

and quantification, the tandem CID and HCD MS spectra from the identical precursor ions

were co-analysed using software [20]. In-house software, in which reporter ions from the

HCD spectrum were inserted into the CID spectrum with identical precursor ions as the ear-

lier scan, was used. Reporter ions were pulled from small windows (±20 ppm) near their antic-

ipated m/z in the HCD spectrum. DTASelect (The Scripps Research Institute, USA) was used

to filter and sort the output data to build the protein list. Two or more peptides were entered

to identify the proteins, and ‘less than 0.01’ was set for the false positive rate [21]. Peptide

quantification was conducted using Census (Version 1.98, Integrated Proteomics, USA) (S1

and S2 Tables). The peptide intensities were log2 transformed, and quantile normalization was

performed. Peptides that were not identified in either the nuclear or cytoplasmic fraction were

excluded. Peptide abundances were then “rolled up” to the protein level using the R-rollup

method implemented in DanteR [22] (S3 Table). Peptides that were mapped to multiple pro-

teins were included in the normalization procedure but excluded from the protein quantifica-

tion step.

RNA-seq

Three sets of NSC34 cells (transfected with wild-type or G93A mutant hSOD1) were grown

and harvested with each set from a separate passage of single cell line. Following subcellular

fractionation, transcriptomes of 12 samples were analysed by RNA-seq (Macrogen Inc. Seoul,

Korea), as described previously. Briefly, 1 μg of the total RNA was analysed using the TruSeq

RNA library kit to construct the cDNA libraries. The protocol included polyA-selected RNA

extraction, RNA fragmentation, random hexamer primed reverse transcription and 100 nt

paired-end sequencing using an Illumina HiSeq2000 (Illumina, San Diego, CA, USA). The

libraries were quantified using quantitative real-time polymerase chain reaction (qPCR)
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according to the qPCR Quantification Protocol Guide. An Agilent Technologies 2100 Bioana-

lyzer was used for the qualification.

Aligning RNA-Seq reads and quantification

We processed reads from the sequencer and aligned them to the Mus musculus (mm9) using

Tophat v2.0.13 [23]. Tophat incorporates the Bowtie v2.2.3 algorithm to perform the align-

ment [24]. Tophat initially removes a portion of the reads based on the quality information

accompanying each read before it maps reads to the reference genome. The reference genome

sequence of Mus musculus(mm9) and annotation data were downloaded from the UCSC

table browser (http://genome.uscs.edu). Gene annotation information was also used for

running Tophat with the “-G” option. For the other Tophat parameters, the default options

were used. Tophat allows multiple alignments per read (up to 20 by default) and a maximum

of 2 mismatches when mapping the reads to the reference. After aligning the reads to the

genome, Cufflinks v2.2.1 were used to assemble aligned reads into transcripts and to estimate

their abundance [25]. To correct for sequence expression count bias, ‘—max-bundle-frags

50000000’ options were used. We also used the ‘-G’ option for making the best use of known

gene annotation information. The default options were used for other parameters. The tran-

script counts in isoform level were calculated, and the relative transcript abundances were

measured in fragments per kilobase of exon per million fragments mapped (FPKM) from

Cufflinks.

We used FPKM as the expression level to analyse differentially expressed transcripts. The

FPKM values were normalized by factors such as transcript length and total number of reads.

During preprocessing, we performed data filtering, data transformation and between-sample

normalization to filter DE transcripts. Transcripts with zero FPKMs more than one across all

samples were excluded. To facilitate the statistical analysis with a balanced distribution, we

added 1 to the FPKMs of the filtered data and transformed the data to log 2. The log-trans-

formed data were then ranked in quantiles containing identical numbers by quantile normali-

zation. We adjusted for batch effect using the ComBat algorithm (http://www.bu.edu/jlab/wp-

assets/ComBat/Abstract.html).

To investigate mRNA splicing defects, we quantified intronic and exonic reads by using

HTseq with an intersection-strict option [26]. Reads were counted as intron and exon reads,

when they were uniquely mapped within introns and exons, respectively.

Statistical analysis

The statistical analysis was conducted using R 3.0.0 (www.r-project.org, reference). For the

proteins quantified in both nuclear and cytoplasmic fractions, the effects of the hSOD1 geno-

type (mutant vs. wild-type) and the subcellular compartment (nucleus vs. cytoplasm) were

analysed using a two-way ANOVA model. The interaction term, i.e., hSOD1 genotype × sub-

cellular compartment, was used to assess differences in nuclear cytoplasmic distributions

between mutant and wild-type cells. The correlation between the changes in the proteome and

transcriptome was analysed in each subcellular compartment using Pearson correlation coeffi-

cient. Protein IPI identifiers were mapped to corresponding gene identifiers. When a single

gene was associated with multiple proteins, the protein with the largest abundance value was

selected for the gene. Statistical significance was set at p = 0.05.

Bioinformatics annotation

An integrated pathway clusters analysis of the identified proteins that exhibited significant

alterations in their total amount or nuclear cytoplasmic distribution in the mutant cells was
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performed using TargetMine (http://targetmine.mizuguchilab.org/). Furthermore, the identi-

fied proteins were also categorized by universal gene ontology (GO) terms using the DAVID

tool (version 6.8, http://david.abcc.ncifcrf.gov/). The adjusted p value, <0.05, was defined as

the threshold.

Validation of the proteome

The identified proteins with statistically significant changes were validated by Western blot-

ting. Cell lysates were prepared from the proposed experimental conditions, subjected to

sodium dodecyl sulphate polyacrylamide gel electrophoresis. Immunoblots were probed with

the following antibodies: Atp5b, Cct5, Cct8, Hist1h1a, Hist1h1b, LaminB, β-actin (Santa Cruz

Biotechnology, Santa Cruz, CA), Hist1h1e (Abcam, Cambridge, MA), and hSOD-1 (Cell Sig-

naling, Danvers, MA) followed by treatment with the appropriate secondary antibodies conju-

gated to horseradish peroxidase (Bethyl Laboratories, Montgomery, TX). SuperSignal West

Pico substrate (Pierce-Thermo, Northumberland, UK) and ImageQuant LAS 4000 (GE

Healthcare Bio-Sciences, Pittsburgh, PA) were employed to visualize immunoreactive bands.

β-actin was used as the loading control.

Results

Validation of subcellular fractionation

The NSC34 cell lines stably transfected with pCI-neo expression vector containing wild-type

or G93A mutant hSOD1 were fractionated into nuclear and cytoplasmic fractions by using the

NE-PER kit. Mock transfected NSC34 cells were served as control group. To validate subcellu-

lar fractionation preparation, the isolated nuclear and cytoplasmic fractions were immuno-

blotted for lamin B (a nuclear marker). Immunoblots showed a clear separation of the two

subcellular fractions (Fig 1). The western blot also demonstrated that wild-type hSOD1 was

present at similar level in both nuclear and cytoplasmic fractions, whereas mutant hSOD1 was

mainly cytoplasmic. This may be explained by the formation of insoluble high molecular

weight species of mutant hSOD1 that prevent the diffusion of the protein across the nuclear

membrane. Indeed, we observed the presence of larger amount of hSOD1 in the insoluble frac-

tion of NSC34 cells expressing G93A mutant hSOD1 (data not shown).

To further investigate the validity of subcellular fractionation procedure, we analyzed

distribution of organelle marker proteins by using pRoloc data which provides 1,305 marker

proteins across 55 different organelles [27]. Among these marker proteins, 65 proteins were

Fig 1. Western blots of marker proteins from the nuclear and cytoplasmic fractions of the NSC34 cells

expressing the wild-type (WT) or mutant human SOD1 (G93A). Lamin B, a nuclear protein marker, was

exclusively expressed in the nuclear fraction. Actin was used as a loading control to confirm equal protein

loading. Cont, Control; MT, mutant cells; WT, wild-type cells.

https://doi.org/10.1371/journal.pone.0176462.g001
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identified exclusively in the nuclear fraction, whereas 69 proteins were identified exclusively

in the cytoplasmic fraction. We next investigated the organelle membership of these proteins.

As illustrated in S1A Fig, the proteins that are exclusively identified in nuclear fraction were

mostly labeled as nuclear organelles such as nucleus, chromatin, and nucleolus. In contrast,

the most representative organelles of the proteins exclusively identified in cytoplasmic fraction

were proteasome, cytoplasm, and mitochondria. As for the proteins quantified in both frac-

tions, the principle component analysis revealed a distinct separation of protein abundance

profiles between the samples from nuclear versus cytoplasmic fraction along the first principal

component (S1B Fig). We further analyzed the abundance level of nucleus and cytoplasm

marker proteins across 12 samples (6 nuclear and 6 cytoplasmic fractions). It was clearly dem-

onstrated that the levels of nucleus marker proteins were significantly higher in nuclear frac-

tion, and that the levels of cytoplasm marker proteins were significantly higher in cytoplasmic

fraction (S1C Fig). Given together, these results support the validity of subcellular fraction-

ation procedure used in the present study.

Protein quantification and analysis of nucleocytoplasmic distribution

Proteins were extracted from the nuclear and cytoplasmic fractions of NSC34 cells stably trans-

fected with wild-type hSOD1 and G93A mutant hSOD1. After TMT-labeling, the samples

were mixed and analysed by mass spectrometry (LC-MS/MS). A total of 1,359 proteins were

identified from 7,543 peptides (unique in 93.8%) in the cytoplasm, and 1,200 proteins from

6,341 peptides (unique in 92.7%) in the nucleus. The nucleocytoplasmic memberships of the

identified peptides and proteins are presented in Fig 2. Quantitative analysis of nucleocytoplas-

mic distribution was performed on 634 proteins identified in both the nuclear and cytoplasmic

fractions. We used a two-way ANOVA model in which the effects of SOD1 genotype (wild-

type vs. mutant), subcellular compartment (nucleus vs. cytoplasm), and their interaction

(genotype × compartment) were assessed. A significant genotype effect was found among a

small fraction of the proteins with 42 up-regulated and 29 down-regulated in mutant cells (p-

value <0.05) (Fig 3A and 3C, Tables 1 and 2). In contrast, a considerable number of proteins

(79.3% of total) were predominant in either nucleus or cytoplasm, exhibiting a significant

Fig 2. Venn diagrams showing the peptides (A) and proteins (B) quantified in the cytoplasmic and nuclear fractions of NSC34 lines stably transfected with

wild-type or G93A mutant human SOD1.

https://doi.org/10.1371/journal.pone.0176462.g002
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Fig 3. Volcano plots showing the global changes of protein abundance in wild-type vs. mutant cells

(A) and in the nucleus vs. cytoplasm (B). The log2-fold changes in mutant vs. wild type and in the nucleus

vs. cytoplasm are represented on the x-axis. The y-axis shows the negative log10-transformed raw p-values

of two-way ANOVA tests. Bar plots (C) showing the number of proteins that are significantly down-regulated

(in red) or up-regulated (in blue) in mutant cells compared to wild-type cells (left) and in the nucleus compared

to the cytoplasm (right).

https://doi.org/10.1371/journal.pone.0176462.g003

Nucleocytoplasmic proteome and transcriptome alteration in ALS

PLOS ONE | https://doi.org/10.1371/journal.pone.0176462 April 28, 2017 8 / 23

https://doi.org/10.1371/journal.pone.0176462.g003
https://doi.org/10.1371/journal.pone.0176462


compartment effect (p-value <0.05) (Fig 3B and 3C). Changes of the nucleocytoplasmic distri-

bution in mutant cells were found for 37 proteins with a significant genotype × compartment

interaction in the two-way ANOVA model. Nuclear shift was found in 13 proteins, and

Table 1. Differentially up-regulated proteins in NSC34 cells expressing the mutant human SOD1 (G93A) compared to wild-type SOD1.

IPI Gene symbol Log[2](MT/WT) IPI Gene symbol Log[2](MT/WT)

IPI00758024.1 Prdx6 0.49 IPI00321734.7 Glo1 0.19

IPI00649135.3 Gstm1 0.49 IPI00134353.3 Nol3 0.19

IPI00115650.4 Cacybp 0.49 IPI00649406.1 Park7 0.19

IPI00331704.7 Eno2 0.43 IPI00227392.5 Ywhah 0.19

IPI00222759.3 Vat1l 0.39 IPI00230707.6 Ywhag 0.19

IPI00317309.5 Anxa5 0.35 IPI00626994.3 Ipo5 0.19

IPI00417165.3 Enah 0.34 IPI00230429.4 Kpna3 0.18

IPI00121427.1 S100a6 0.31 IPI00116498.1 Ywhaz 0.18

IPI00885558.1 Pdia3 0.29 IPI00132575.3 Cotl1 0.18

IPI00990246.1 Nme1 0.28 IPI00331556.5 Hspa4 0.17

IPI00411075.2 Pcbp3 0.27 IPI00760000.1 Ywhab 0.17

IPI00990529.1 Gstp1 0.27 IPI00660514.1 Dnajb6 0.17

IPI00461281.2 Nudcd2 0.25 IPI00131224.1 Tceb2 0.17

IPI00757109.3 Pcmt1 0.24 IPI00123342.4 Hyou1 0.16

IPI00762774.2 Eif3d 0.23 IPI00798527.1 Tnpo1 0.16

IPI00269662.1 Hnrnpa3 0.23 IPI00776252.1 Txnrd1 0.14

IPI00153728.1 Ddx19b 0.22 IPI00314153.4 Yars 0.14

IPI00339916.10 Eprs 0.21 IPI00111181.1 Vps35 0.14

IPI00116254.1 Prdx4 0.21 IPI00323357.3 Hspa8 0.11

IPI00759940.3 Fh1 0.2 IPI00116308.1 St13 0.1

IPI00122743.2 Dars 0.2 IPI00119057.1 Eif4e 0.06

Two-way ANOVA, genotype effect, p-value < 0.05.

https://doi.org/10.1371/journal.pone.0176462.t001

Table 2. Differentially down-regulated proteins in NSC34 cells expressing the mutant human SOD1 (G93A) compared to wild-type SOD1.

IPI Gene symbol Log[2](MT/WT) IPI Gene symbol Log[2](MT/WT)

IPI00130589.8 Sod1 -0.57 IPI00123624.8 2610301G19Rik -0.24

IPI00474974.1 Dnmt1 -0.54 IPI00230133.5 Hist1h1b -0.23

IPI00169870.6 Glt25d1 -0.4 IPI00223371.3 Rbm39 -0.23

IPI00228616.5 Hist1h1a -0.39 IPI00337844.5 Ranbp2 -0.22

IPI00132352.2 2610029G23Rik -0.39 IPI00515398.1 Myh10 -0.22

IPI00109813.1 Hnrnpa0 -0.39 IPI00318725.4 Rrs1 -0.22

IPI00223714.5 Hist1h1e -0.36 IPI00330289.4 Epb4.1l2 -0.21

IPI00113141.1 Cs -0.36 IPI00754963.2 Mest -0.19

IPI00229535.2 Gtf2i -0.35 IPI00312128.3 Trim28 -0.17

IPI00331361.2 Mybbp1a -0.34 IPI00828543.3 Hcfc1 -0.17

IPI00331597.6 Hist1h1d -0.33 IPI00133985.1 Ruvbl1 -0.15

IPI00673465.2 Cnot1 -0.31 IPI00281011.7 Marcksl1 -0.15

IPI00154054.1 Acat1 -0.28 IPI00622811.2 Ap2m1 -0.15

IPI00515654.2 Eef1d -0.27 IPI00881287.1 Fkbp8 -0.12

IPI00226882.7 Sec61a1 -0.25

Two-way ANOVA, genotype effect, p-value < 0.05.

https://doi.org/10.1371/journal.pone.0176462.t002
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cytoplasmic shift in 24 proteins. These differentially localized proteins and their nucleocyto-

plasmic abundance ratios are summarized in Table 3. The changes of nucleocytoplasmic distri-

butions were also represented by a heatmap with hierarchical clustering and a volcano plot

(Fig 4). Among the exclusively nuclear or cytoplasmic proteins, no protein was found to be sig-

nificantly up- or down-regulated in mutant cells (Wilcoxon rank sum test, p>0.05 in all). In

addition, no protein was found be exclusively nuclear (or cytoplasmic) in wild-type cells but

cytoplasmic (or nuclear) in mutant cells.

Pathway analysis

We first checked if there were any pathways enriched for the proteins quantified in both frac-

tions by using TargetMine [28]. As illustrated in S2 Fig, over-represented were the pathways

such as RNA transport, metabolism of proteins, Wnt signalling, protein processing in the

endoplasmic reticulum, and cell cycle.

Next, to investigate functional biological processes enriched for the differentially expressed

proteins, we performed gene enrichment and functional annotation analysis by using DAVID

online software (version 6.8). Biological processes enriched for up-regulated and down-regu-

lated proteins were summarized in Table 4 with corresponding genes and p-values.

To investigate over-represented pathways across differentially localized proteins, we per-

formed pathway enrichment analysis by using TargetMine [28]. Significantly enriched path-

ways were protein folding, aminoacyl-tRNA biosynthesis, RNA transport, Wnt signalling,

Huntington’s disease/Alzheimer’s disease, synaptic vesicle cycle and Hippo signalling

(Table 5). Of note, nuclear shift was found for those proteins involved in RNA transport/pro-

cessing and Huntington’s disease/Alzheimer’s disease, while cytoplasmic shift for those

Table 3. Differentially localized proteins with nuclear or cytoplasmic shifts in NSC34 cells expressing the mutant human SOD1 (G93A) compared

to wild-type SOD1.

IPI Gene symbol Log2(N/C)WT Log2(N/C)MT IPI Gene symbol Log2(N/C)WT Log2(N/C)MT

IPI00407130.4 Pkm2 2.17 -0.63 IPI00469268.5 Cct8 -0.32 -0.69

IPI00133985.1 Ruvbl1 2.14 -0.28 IPI00114375.2 Dpysl2 -0.35 -0.49

IPI00988949.1 Erh 1.86 0.49 IPI00896727.1 Cand1 -0.4 -0.56

IPI00311203.2 Plcb3 1.44 -0.57 IPI00918997.1 Nars -0.42 -0.5

IPI00330289.4 Epb4.1l2 1.41 0.7 IPI00322828.2 Farsb -0.45 -0.95

IPI00280967.3 Tardbp 1.39 -0.27 IPI00116254.1 Prdx4 -0.65 0.25

IPI00970572.1 Tra2b 1.25 0.56 IPI00310880.4 Srsf6 -0.68 0.75

IPI00116279.3 Cct5 0.9 -0.43 IPI00227392.5 Ywhah -0.73 0.13

IPI00318841.4 Eef1g 0.89 -0.49 IPI00230707.6 Ywhag -0.73 0.13

IPI00406790.9 Camk2d 0.62 -0.75 IPI00828543.3 Hcfc1 -0.84 -0.27

IPI00130589.8 Sod1 0.46 1.81 IPI00116498.1 Ywhaz -0.87 0.17

IPI00387337.1 Bzw2 0.31 -0.47 IPI00227013.2 Fmr1 -0.87 -0.23

IPI00468481.2 Atp5b 0.26 1.24 IPI00648173.1 Cltc -0.89 -0.57

IPI00322869.3 Abce1 0.14 -0.55 IPI00314439.4 Psmd3 -0.93 -0.32

IPI00331174.5 Cct7 0.1 -0.6 IPI00462453.5 Gm5619 -1.07 -0.56

IPI00776252.1 Txnrd1 0.05 -0.48 IPI00453777.2 Atp5d -1.36 1.47

IPI00230061.3 Plec -0.08 -0.33 IPI00339468.4 Dhx9 -1.72 0.72

IPI00454008.1 Shmt2 -0.17 -0.41 IPI00221826.1 Srsf3 -1.85 1.68

IPI00169463.1 Tubb2c -0.29 -0.51

N/C, nucleocytoplasmic ratio of protein abundance; WT, wild-type cells; MT, mutant cells. Two-way ANOVA, genotype × compartment interaction effect, p-

value < 0.05.

https://doi.org/10.1371/journal.pone.0176462.t003
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Fig 4. Alteration of proteome nucleocytoplasmic distribution. Heat map (A) representing color-coded

abundance and a hierarchical cluster of 37 differentially localized proteins for biological triplicate samples of

wild-type cytoplasmic, mutant cytoplasmic, wild-type nuclear, and mutant nuclear fractions (two-way ANOVA,

raw p-values for the genotype × compartment interaction effect <0.05). The red represents low abundance,

and blue represents high abundance. In the volcano plot (B), the estimated log2-fold change of the

nucleocytoplasmic (NC) ratio in mutant versus wild-type cells is represented on the x-axis, and the negative

log10-transformed raw p-values are shown on the y-axis.

https://doi.org/10.1371/journal.pone.0176462.g004
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proteins related to protein folding, aminoacyl-tRNA biosynthesis, Wnt signalling, synaptic

vesicle cycle and Hippo signalling pathways (Fig 5).

Table 4. Gene ontology (GO) functional annotation terms (biological process) enriched for the differ-

entially expressed proteins (down-/up-regulated) in mutant cells.

Biological process Gene P.value

Upregulation in mutant cells

Protein folding St13, Nudcd2, Pdia3, Dnajb6, Hspa8 1.8E-04

Cell redox homeostasis Pdia3, Prdx6, Prdx4, Txnrd1 3.9E-04

NLS-bearing protein import into nucleus Ipo5, Kpna3, Tnpo1 6.3E-04

Negative regulation of apoptotic process Hyou1, Ywhah, Nol3, Hspa4, Glo1, Park7,

Gstp1

0.0014

Negative regulation of cardiac muscle cell

apoptotic process

Nol3, Pcmt1, Hspa8 0.0014

tRNA aminoacylation for protein translation Yars, Dars, Eprs 0.0028

Protein targeting Ywhag, Ywhaz, Ywhab 0.0031

Negative regulation of extrinsic apoptotic

signaling pathway

Nol3, Park7, Gstp1 0.0042

Glutathione metabolic process Gstm1, Glo1, Gstp1 0.0052

Translation Eif3d, Yars, Eif4e, Dars, eprs 0.011

Negative regulation of cell death Cacybp, Hspa4, Park7 0.013

Intracellular protein transport Ywhah, Ipo5, Vps35, Tnpo1 1.45E-

02

Downregulation in mutant cells

Nucleosome assembly Hist1h1a, Hist1h1b, Hist1h1d, Hist1h1e 3.4E-04

Negative regulation of transcription from RNA

polymerase II promoter

Hist1h1e, Hist1h1d, Trim28, Hcfc1, Dnmt1,

Cnot1

0.0023

Covalent chromatin modification Trim28, Hcfc1, Dnmt1, Ruvbl1 0.0051

Regulation of transcription, DNA-templated Gtf2i, Trim28, Hcfc1, Dnmt1, Cnot1, Rbm39,

Ruvbl1, Eef1d, Mybbp1a

0.0071

Transcription, DNA-templated Gtf2i, Trim28, Dnmt1, Cnot1, Rbm39, Ruvbl1,

Eef1d, Mybbp1a

0.0092

GO, gene ontology; DNA, deoxyribonucleic acid; NLS, nuclear localization signal; RNA, ribonucleic acid;

tRNA, transfer ribonucleic acid.

https://doi.org/10.1371/journal.pone.0176462.t004

Table 5. Integrated pathway clusters enriched for the differentially localized proteins.

Integrated pathway clusters Genes P-value

Protein folding Cct5, Cct7, Cct8 0.00055

Aminoacyl-tRNA biosynthesis Farsb, Nars, Txnrd1 0.0018

RNA transport/

Processing of capped

intron-containing

pre-mRNA

Dhx9, Fmr1, Srsf3,

Srsf6, Tra2b

0.0068

Signalling by Wnt Cltc, Plcb3, Plec,

Psmd3, Ruvbl1

0.011

Huntington’s disease/

Alzheimer’s disease

Atp5b, Atp5d, Cltc,

Plcb3, Sod1

0.018

Synaptic vesicle cycle Cltc, Nsf 0.018

Hippo

signalling pathway

Camk2d, Plcb3, Ruvbl1 0.049

https://doi.org/10.1371/journal.pone.0176462.t005
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Validation of proteome data

For validation of the proteome data, we prepared fractionated lysates from two mock transfected

control, five wild-type and G93A mutant hSOD1-transfected NSC34 cells, and conducted

western blot for a subset of proteins as followings: chaperonin containing TCP1 subunit 5

(CCT5), chaperonin containing TCP1 subunit 7 (CCT7), chaperonin containing TCP1 subunit

8 (CCT8), asparaginyl-tRNA synthetase (NARS), phenylalanyl-tRNA synthetase beta subunit

(FARSB), RuvB Like AAA ATPase 1 (RUVBL1), calcium/calmodulin-dependent protein kinase

type II subunit beta (CAMK2D), host cell factor 1 (HCF1), cullin-associated NEDD8-dissociated

protein 1 (CAND1), TAR DNA-binding protein 43 (TDP-43), ATP synthase subunit beta, mito-

chondrial (ATP5B), ATP synthase subunit delta, mitochondrial (ATP5D), superoxide dismutase

1 (SOD1), histone H1.1 (HIST1H1A), histone H1.5 (HIST1H1B), histone H1.4 (HIST1H1E). A

nuclear shift was confirmed for ATP5B, and a cytoplasmic shift for TDP-43, and CCT8 (Fig 6).

Furthermore, the proteins related to nucleosome assembly such as HIST1H1A, HIST1H1B,

HIST1H1E were confirmed to be down-regulated in mutant cells (data not shown).

Transcriptome analysis

To evaluate the change of nucleocytoplasmic distribution in RNA level, RNA-seq was per-

formed. Total RNA samples from wild-type and G93A mutant hSOD1-expressing NSC34 cells

Fig 5. Scatter plot of the changes in protein abundance in the cytoplasmic (x-axis) and nuclear (y-axis) fractions. The changes

are expressed as the log ratio of protein abundance in mutant vs. wild-type cells. Color-coded dots represent differentially localized

proteins. Different colors for different enriched pathways. The cytoplasmic shift in mutant cells is represented in the right lower quadrant,

and nuclear shift is represented in the left upper quadrant. Gene symbols are annotated in the plot.

https://doi.org/10.1371/journal.pone.0176462.g005
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were analysed in triplicates. A distribution of the average expression levels (measured as frag-

ments per kilobase of transcript per million mapped fragments, FPKM) is shown in Fig 7A.

Most genes exhibited a normal distribution, and a few genes formed a ‘shoulder’ to left of the

distribution. We excluded the very low abundance transcripts with an average FPKM <1

(n = 7231), presumably non-functional, from our subsequent analysis. The absolute transcript

levels from wild-type and mutant cells were well correlated in both subcellular compartments

(Pearson correlation coefficient r = 0.97 and r = 0.99) (Fig 7B and 7C). These results suggest

that mutant (G93A) hSOD1-expressing NSC34 cells primarily retain the characteristics of

Fig 6. Validation of the proteome data. A subset of differentially localized proteins was validated by

western blot. The nuclear shift of ATP5B (ATP biosynthetic process) and the cytoplasmic shifts of TDP-43

(associated with regulation of transcription) and CCT8 (associated with protein folding) were confirmed (A, B).

The protein expression level was normalized to β-actin. The data were reported as the mean ± SE. NC ratio,

nucleocytoplasmic ratio. *p<0.05, **p<0.01, ***p<0.001, n = 3 per group. Mann-Whitney U test was used to

compare the NC ratio, and two-way ANOVA with Tukey’s test was used to compare protein expression levels

in the nuclear and cytoplasmic fractions of wild-type and mutant cells. Cont, control; NC, nucleocytoplasmic;

MT, mutant cells; WT, wild-type cells.

https://doi.org/10.1371/journal.pone.0176462.g006
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wild-type cells with regard to gene expression. Only 7 transcripts were significantly up-regu-

lated in the whole extracts of mutant cells compared to wild-type cells, and no transcripts were

significantly down-regulated in mutant cells. The nucleocytoplasmic distribution of 9 tran-

scripts was significantly altered in mutant cells: cytoplasmic shift in 5 transcripts and nuclear

shift in 4 (Table 6).

Proteome and transcriptome correlation. The correlations between the changes in pro-

tein abundance and RNA levels were analysed for each subcellular compartment. A weak cor-

relation was found in the nucleus (Pearson correlation coefficient r = 0.1, p = 0.02) but not in

the cytoplasm (Fig 8). Of note, RNA in mutant cells was remarkably retained in the nucleus,

suggesting either defects in RNA processing or transport to the cytoplasm.

To investigate whether this results from mRNA splicing defects, we quantified intronic and

exonic reads in RNA-seq data by using HTseq [26]. As expected, we observed much larger

number of intron reads in the nucleus compared to the cytoplasm. The count ratio of intron

versus exon reads (referred to as I/E ratio) was 5–6 times larger in the nucleus than in the cyto-

plasm (S3A Fig). We hypothesized that splicing defects would increase the IE ratio in the

Fig 7. Density plot showing the distribution of average levels of RNA expression (A) and correlations of RNA expression

between wild-type and mutant cells in the nucleus (B) and the cytosol (C).

https://doi.org/10.1371/journal.pone.0176462.g007
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presence of G93A mutant hSOD1. Compared to wild-type hSOD1 expressing cells, however,

we could not find any statistically significant bias towards increased IE ratio in mutant cells

(S3B Fig). Although two-way ANOVA revealed a significant compartment effect (nucleus vs.

cytoplasm) effect, there was neither significant genotype effect (wild-type vs. mutant)

(p = 0.56) nor genotype × compartment interaction (p = 0.51). Thus, splicing defects, which

would lead to increased intron reads, might not account for the nuclear retention of mRNA in

mutant cells. Defects in transport or altered metabolism in cytoplasm can be considered as an

alternative explanation.

Discussion

Based on quantitative mass spectrometry and RNA-seq, this study provides a comprehensive

unbiased dataset of the nucleocytoplasmic distribution of the proteome and transcriptome in

an in vitro model of ALS. Among 634 proteins quantified in both nuclear and cytoplasmic sub-

cellular fractions, we found significant alterations in the nucleocytoplasmic distributions of 37

proteins. The pathway analysis revealed that the proteins shifted towards the nucleus were asso-

ciated with RNA transport and processing (Dhx9, Fmr1, Srsf3, Srsf6, Tra2b) and that the pro-

teins shifted towards the cytoplasm were associated with protein folding (Cct5, Cct7, Cct8),

aminoacyl-tRNA biosynthesis (Farsb, Nars, Txnrd1), synaptic vesicle cycle (Cltc, Nsf), Wnt sig-

nalling (Cltc, Plcb3, Plec, Psmd3, Ruvbl1) and Hippo signalling (Camk2d, Plcb3, Ruvbl1) path-

ways. The transcriptome analysis showed that a high proportion of transcripts were retained

within the nucleus in mutant cells, suggesting defects in transport or deficient degradation in

Table 6. Summary of transcriptome analysis.

Gene symbol Fold-change

Up-regulated in mutant cells

Syt4 2.24

Pnpla7 2.01

Dbh 2.2

Chrna3 2.02

Fmr1nb 2.13

Armcx2 2.72

Magea8 3.04

Down-regulated in mutant cells

None

Cytoplasmic shift in mutant cells

A930011O12Rik 1.27

Paxbp1 1.58

D4Wsu53e 1.26

1600012H06Rik 1.31

Prpf38b 1.22

Nuclear shift in mutant cells

5730480H06Rik 1.22

Igsf8 1.23

Git2 1.33

Chrna3 1.83

Fold-change represents the change in the nucleocytoplasmic (NC) expression ratio for cytoplasmic and

nuclear shifts.

https://doi.org/10.1371/journal.pone.0176462.t006
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cytoplasm. These results suggest that the cytotoxicity of mutant SOD1 may be related to the

altered nucleocytoplasmic distributions of proteins and transcripts and possibly to disrupted

nucleocytoplasmic transport.

Interestingly, we found that the proteins related to RNA transport and processing were

shifted towards the nucleus in the presence of G93A mutant hSOD1. This result was found in

parallel with our transcriptome data that showed markedly more abundant nuclear RNAs in

mutant cells. In a recent study in expanded GGGGCC fly cells and iPSC-derived neurons of

C9orf72-related patients, the ratio of nuclear to cytoplasmic RNA was increased, demonstrat-

ing an abnormal increase in nuclear RNAs [6]. The disproportional RNA distribution was con-

sidered as evidence of RNA processing/export defects in C9orf72-related disease [6]. Our

findings suggest that RNA transport dysfunction might also play a role in causing motor neu-

ron degeneration in SOD1-mediated ALS. Because nuclear retained RNAs were revealed to be

spliced by comparing intron reads to exon read in each fraction, RNA processing defect seems

less likely to be the cause of nuclear RNA retention in our study.

In this study, we discovered pathological candidates that have not been previously consid-

ered. Among these proteins, TDP-43, CCT8 and ATP5B were validated for their altered

nucleocytoplasmic distributions in mutant cells. TDP-43 is a predominantly nuclear protein

and its redistribution to cytoplasm is known as a key pathological hallmark of ALS. Majority

of sporadic and familial ALS have cytoplasmic TDP-43 aggregation [2–4]. However, it still

remains controversial whether the TDP43 pathology occurs in SOD1-ALS [29–32]. Our sub-

cellular proteome analysis clearly demonstrated TDP-43 redistribution in the presence of

G93A mutant hSOD1, which was validated by western blot and immunofluorescence staining

(data not shown). This in line with previous studies that showed TDP-43 redistribution and

aggregation in G93A mutant SOD1 mice and familial ALS cases with SOD1 mutation [30, 32].

The role of TDP-43 pathology in SOD1 mutation needs to be further evaluated. Cct8 are mem-

bers of the chaperonins containing the TCP-1 complex, which are related to protein synthesis,

Fig 8. Correlations between the changes in protein and RNA levels in the cytosol (right) and the nucleus (right). The changes in RNA (x axis)

and protein (y axis) levels were expressed as log (base 2) ratios of abundance in mutant vs. wild-type cells. WT, wild-type cells; MT, mutant cells.

N = 539.

https://doi.org/10.1371/journal.pone.0176462.g008
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transport and proper folding. Incorrect protein folding leads to protein aggregation, and cha-

peronins containing the TCP-1 complex were reported to suppress aggregation in a Hunting-

ton’s disease model [33]. Chaperonins containing the TCP-1 complex (specifically the subunit

of Cct1) bind directly to the huntingtin protein in mutant huntingtin transgenic mice. Sup-

pression of Cct1 resulted in increased huntingtin protein aggregation [34,35]. ALS shares

common pathology with Huntington’s disease in that both have cytoplasmic aggregations.

Cytoplasmic shifts of Cct8 might indicate a compensatory response to remove the cytoplasmic

aggregate. Atp5b, a subunit of the mitochondrial ATP synthase, is normally placed in the inner

membrane of the mitochondria. In our experimental protocol of subcellular fractionation, the

mitochondria fraction is expected to be mixed in with the cytoplasmic extracts. Relative incre-

ments of Atp5b in the nucleus therefore might reflect relative depletion of Atp5b in the mito-

chondria in mutant cells. A lower expression of ATP synthase and its dysfunction have been

described in many neurodegenerative disorders, including Alzheimer’s disease [36]. Dysfunc-

tional mitochondria seemed to change amyloid precursor protein metabolism and enhance

the amyloid β-peptide aggregation in the cytoplasm in Alzheimer’s disease [37]. Our study is

the first to raise the possible association of chaperonins containing the TCP-1 complex (Cct8)

and ATP synthase (Atp5b) with ALS pathology, which warrants investigation in future studies.

In this study, validation with the total cell lysates of mutant cells revealed down-regulation

of the proteins associated with nucleosome assembly and phosphate metabolic processes. Nucle-

osome assembly participates in storing genomic information and regulating DNA-related

process such as transcription, repair and replications [38]. While the effects of diminished

nucleosome assembly remain unclear, one group recently succeeded in generating nucleosome-

depleted paternal pronuclei by deleting maternal histone or associated chaperone HIRA in

mouse zygotes [39]. The nucleosome assembly depletion resulted in a loss of nuclear pore com-

plex in the nuclear envelop. This seemed to be related to mislocalization of the nuclear pore

complex protein ELYS [39]. Along with these results, our findings might provide additional

indirect evidence of nuclear pore complex dysfunction in the presence of G93A mutant hSOD1.

A correlation between the changes in proteome and transcriptome levels in mutant cells

was found to be modest only in the nucleus but not in the cytoplasm. This was consistent with

previous reports that showed weak or no correlation in diverse species from eukaryotes to

yeast [40–43]. Although transcript and protein levels were linked, there are many regulatory

processes that weaken their correlation such as translational and post-translational regulation,

structural and physiological properties of proteins and degradation rates of proteins and

mRNAs.

Large-scale proteomics studies on ALS models are relatively scarce, and direct comparison

with other studies would not be straightforward due to differences in disease model (cell line,

rodent tissue), experimental design and method for proteome analysis. It is possible, however,

to find several changes that are similar with other studies. The most remarkable examples are

the proteins involved in defense to oxidative stress [44, 45]—glutathione S-transferase Mu 1

(GSTM1), glutathione S-transferase Pi B (GSTP1), peroxiredoxin 6—and protein folding [46]

—protein disulfide isomerase A3 (PDIA3), heat shock 70 kDa protein 8 (HSPA8). Other com-

mon pathways include cell death signal transduction [47], intracellular protein trafficking [45],

and protein-nucleic acid interactions [48].

There are several limitations to acknowledge in this study. Although we used a high-resolu-

tion quantitative proteomic technique, the issues of proteome coverage range, and the risk of

false positive identification remain. Indeed, our proteome coverage was low compared to that

of transcriptome data. Technical limitations related to the physicochemical properties of pro-

teins (molecular weight, hydrophobicity, coding sequence length, isoelectric points, etc.), and

biological process such as posttranscriptional regulation may have influenced the coverage
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rate. In this regard, we found higher proteome coverage for more abundant transcripts (S4

Fig), and therefore, the proteins quantified in this study were biased as the most abundant pro-

teins. Nevertheless, this study provides the first comprehensive genome-wide dataset of the

nucleocytoplasmic distribution of proteins and RNAs in an in vitro model of ALS. The inte-

grated analysis of the nucleocytoplasmic distribution of the proteome and transcriptome

revealed multiple candidate pathways including RNA processing/transport and protein syn-

thesis and folding that may be relevant to the pathomechanism of ALS.

Supporting information

S1 Fig. In silico quality check of nuclear-cytoplasmic fractionation. (A) Distribution and

organelle membership of marker proteins found in our proteome data. The proteins that are

exclusively identified in nuclear fraction were mostly labeled as nuclear organelles such as

nucleus, chromatin, and nucleolus. In contrast, the most representative organelles of the pro-

teins exclusively identified in cytoplasmic fraction were proteasome, cytoplasm, and mito-

chondria. (B) Principal component analysis of the quantified proteins from the wild-type (wt)

and mutant (mt) cells are shown. Samples from different subcellular fractions are colour

coded (red for cytoplasm, and cyan for nucleus). The x-axis and y-axis are labelled with the

first and second principal components accounting for 70% and 12.9% of the total variation,

respectively. (B) The distribution of cytoplasmic (left) and nuclear (right) marker proteins

across 12 samples (x-axis, triplicates for each group) are presented as their relative abundance

and expressed as the z-score (y-axis). Light blue represents the marker proteins corresponding

to the subcellular fraction; light grey denotes other proteins. cy, cytoplasmic fraction; nu,

nuclear fraction. The marker proteins were obtained from pRoloc’s organelle markers [27].

(TIF)

S2 Fig. Bar plot showing the number of genes in the pathways that were significantly

enriched for the quantified proteins. The integrated pathway cluster analysis was performed

using TargetMine to evaluate their biological function. Significance was set at an adjusted p-

value = 0.05.

(TIF)

S3 Fig. Comparison of intronic and exonic reads in RNA-seq data. Quantification of reads

was performed by using HTseq with an intersection-strict option [26]. (A) There was consid-

erably larger number of intron reads relative to exon reads in nucleus compared to cytoplasm.

Even with significant compartment effect (nucleus vs. cytoplasm) on the count ratio of intron

versus exon reads (referred to as IE ratio), there was no significant effect of genotype (p = 0.56)

or genotype × compartment interaction (p = 0.51). (B) There was no bias towards increased IE

ratio in mutant cells. IE ratio, Intron/Exon reads ratio; MT, mutant hSOD1 (G93A)-expressing

cells; WT, wild-type hSOD1 expressing cells.

(TIF)

S4 Fig. The proteome coverage rate is dependent on the level of transcript abundance.

With increasing levels of transcript abundance, the rate of proteome coverage, i.e., the propor-

tion of quantified proteins in mass spectrometry relative to the transcripts identified in RNA-

seq, tended to increase.

(TIF)

S1 Table. Peptide intensity in cytoplasm fractions of wild-type and mutant cell lines (trip-

licates).

(CSV)
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S2 Table. Peptide intensity in nucleus fractions of wild-type and mutant cell lines (tripli-

cates).

(CSV)

S3 Table. Protein abundance after R-rollup.

(CSV)
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