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Pain is often characterized as a fundamentally subjective phenomenon; however, all

pain assessment reduces the experience to observables, with strengths and limitations.

Most evidence about pain derives from observations of pain-related behavior. There has

been considerable progress in articulating the properties of behavioral indices of pain;

especially, but not exclusively those based on facial expression. An abundant literature

shows that a limited subset of facial actions, with homologs in several non-human

species, encode pain intensity across the lifespan. Unfortunately, acquiring such

measures remains prohibitively impractical in many settings because it requires trained

human observers and is laborious. The advent of the field of affective computing, which

applies computer vision and machine learning (CVML) techniques to the recognition

of behavior, raised the prospect that advanced technology might overcome some of

the constraints limiting behavioral pain assessment in clinical and research settings.

Studies have shown that it is indeed possible, through CVML, to develop systems that

track facial expressions of pain. There has since been an explosion of research testing

models for automated pain assessment. More recently, researchers have explored the

feasibility of multimodal measurement of pain-related behaviors. Commercial products

that purport to enable automatic, real-time measurement of pain expression have also

appeared. Though progress has been made, this field remains in its infancy and there is

risk of overpromising on what can be delivered. Insufficient adherence to conventional

principles for developing valid measures and drawing appropriate generalizations to

identifiable populations could lead to scientifically dubious and clinically risky claims.

There is a particular need for the development of databases containing samples from

various settings in which pain may or may not occur, meticulously annotated according

to standards that would permit sharing, subject to international privacy standards.

Researchers and users need to be sensitive to the limitations of the technology (for e.g.,

the potential reification of biases that are irrelevant to the assessment of pain) and its

potentially problematic social implications.
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INTRODUCTION

The International Association for the Study of Pain’s recent
revision to the definition of pain [“an unpleasant sensory
and emotional experience associated with, or resembling that
associated with, actual or potential tissue damage;” (1)] added
several contextualizing notes. First, pain is “always a personal
experience, influenced. . . by personal, psychological, and social
factors.” Second, “a person’s report of an experience as pain
should be respected.” Lastly, verbal description is only one of
several behaviors to express pain.” The first and second recognize
that the experience of pain is subjective and falls into the
category of phenomena we call “feelings.” The second addresses
the common temptation, when a phenomenon is subjective, to
be skeptical about its reality or its potential to be interrogated
scientifically. The third recognizes that evidence about pain exists
in various types of behavior. While we can acknowledge that
there is much in the experience of pain that is unique and
individual, if we are interested in advancing understanding of
pain, either from a purely scientific point of view or for utilitarian
purposes of management and control, then we must achieve
some consensus on the evidence we use to infer its presence
and properties.

The experience of pain cannot be directly measured. Instead,
there are two general categories of pain indicators. One
consists of changes in the body, especially but not limited
to the central nervous system, that are believed to mark
and quantify pain and that can be measured more-or-less
directly by some form of instrumentation. The other consists
of behavior. The vast majority of pain indicators, including
verbal descriptions, fall into this category. Other behavioral
pain indicators include instrumental acts, such as withdrawal or
avoidance and expressive acts, such as vocalizations or grimacing.

In recent years advances in technology, accompanied by
expanding analytic tools in the area of computer vision and
machine learning (CVML), have been applied to some behavioral
pain indicators in efforts to improve on them for both
scientific and practical reasons. Until recently, most progress
has been made toward automatic assessment of facial expression
of pain (2, 3). Although in everyday pain experience we
encounter associations between body movement and pain, the
communicative functions of body movements in relation to
pain have been fairly unexplored in automatic pain assessment.
Notable exceptions are to be found in the work of Aung et al. [(4),
see also Egede et al. (5)] who found association between pain and
certain bodily protective behaviors, such as guarding/stiffness
and bracing/support.

In this article, we describe the advent of such approaches,
as they relate to facial expressions of pain, beginning with
the behavioral roots that gave rise to them. We articulate
the prospects foreseen for such approaches, then describe
early progress in the form of “demonstrations of concept.”
We then go on to summarize key developments and address
emergent applications of the work, including the development of
commercial products. In the course of this narrative, we highlight
emergent problems that, we believe, should qualify enthusiasm
about the field.

VERBAL ASSESSMENT OF PAIN

While it is possible to gain insight about a subjective process,
that insight often comes indirectly—by operationalizing it in the
form of a measure. In the field of pain, operationalized verbal
reports have become a standard—indeed it is common to see
verbal report referred to as the “gold standard.” Verbal reports
of pain can be obtained about different dimensions but pain
intensity is overwhelmingly the most frequently assessed. The
widely used visual analog scale (VAS), in which the respondent
marks a spot on a line of finite length to characterize their pain,
is a variation on verbal report. In clinical and population-based
studies, verbal descriptor or VAS scales are commonly used to
characterize certain pain states or as outcomemeasures in studies
of interventions. The 0–10 numeric rating scale was advocated
for and implemented widely in health-care settings as a fifth
vital sign.

Limitations of Verbal Assessment of Pain
The fact that verbal report techniques are used ubiquitously is a
testament to their utility. However, concerns about their potential
shortcomings are common. One concern is epistemological,
reflecting an underlying belief that scientific inquiry should be
based in measurements of things that are objectively observable.
But there are others. For one, verbal reports bear an uncertain
relation to the underlying experience. They can be shown
to behave in a way that should coarsely correspond to an
underlying pain state, such as when people use lower numbers
or words reflecting lesser pain to describe their pain after being
administered a known analgesic. However, when a patient with
low back pain who initially gave a rating of 8 to their pain
now gives a rating of 4 after a rehabilitation program does
that mean they are in half as much pain? In the historical
debates about pain measurement, this issue was at the center
of several attempts to develop psychophysical techniques with
ratio-scale properties (6–8).

Even if it can be shown that verbal ratings vary according
to expectations in experimental and clinical studies, it is not
possible to be certain that all individuals use the scales in the
same way. Some people are more sensitive to variations in the
experience andmore precise reporters than others.Williams et al.
(9), for example, reported a lack of concordance between patients
and consistency within patients in their use of visual analog and
numeric rating scales as they actively interpreted the meaning of
their experiences.

Often, variations in the operationalization reveal
inconsistencies in the characterization. When different
techniques are used to assess the painfulness of the same
level of nociceptive stimulation in experimental studies, or the
same patient at the same time in clinical studies, the evaluations
are often incommensurate. For example, in one of our recent
studies, participants were asked first to rate cold pressor pain
using a VAS. Then, at the end of the study, they were asked to rate
the maximum pain using the pain intensity rating (PIR) of the
McGill Pain Questionnaire. Participants who gave the maximum
pain rating according to the VAS—a rating corresponding to
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“worst pain imaginable” frequently gave a PIR rating implying
pain of considerably lower intensity.

One of the most well-known features of verbal reports is
their extraordinary malleability. This property has been known
for a long time, featuring in Beecher’s (10) classic Measurement
of Subjective Responses in the form, among other things, of
the placebo effect. Craig’s early studies of the social modeling
effect [e.g., (11)], showed that exposure to tolerant or intolerant
social models could make participants rate electric shocks less
or more painful, respectively. Such malleability may, of course,
simply exemplify that pain is an extremely plastic phenomenon.
On the other hand, recognizing that verbal report is under
exquisite control of the perceiver raises concern whether what
is being measured is instead the response to personal or social
expectations embedded in the conditions of observation such
as expectancy effects or demand characteristics, independent of
any true effect on the pain experience itself. One example of
the concern arose in studies of hypnosis that made use of the
“hidden observer” technique (12). Participants under hypnosis
were given suggestions that they would experience an analgesic
state. They then rated the painfulness of cold in the cold-pressor
test. Participants were also told that under hypnosis they would
have access to the experience of their hidden observer—a part of
them that would experience the pain as it was—and that they
were to give the ratings of the hidden observer after they rated
their own pain under hypnotic analgesia. The studies showed
a dissociation between the ratings of the hypnotized subject
and the same subject’s hidden observer Spanos and Hewitt (13),
however found that the hidden observer’s ratings could be easily
diverted by manipulations of what the participant expected that
the researcher expected.

Similarly, self-presentation biases are likely to come into play
and distort controlled verbal reports in a species as socially
responsive as humans. A common self-presentation bias in the
pain context is stoicism. When self-report is the criterion, studies
(both clinical and experimental) routinely find, for example, that
men report lower pain than women (14). It is, of course, possible
that this reflects a true difference in pain sensitivity between the
sexes, but there is an obvious socialization difference in which
masculinity is equated with enduring pain that can also account
for the difference.

A final shortcoming of verbal report in studies of pain is that
there are important instances in which verbal reports cannot be
obtained because the respondent is incapable of using words to
describe their pain (for example, preverbal infants, people with
profound verbal communication impairments and non-human
animals), or people who, though capable of communicating
verbally, are impaired in the ability to communicate reliably
about pain (such as in types of dementia).

PHYSIOLOGICAL ASSESSMENT OF PAIN

There is a substantial history of search for alternatives to self-
report. A diversity of physiological measures has been promoted
over the years, including measures of autonomic responses
such as electrodermal activity (15), oxygen saturation (16),

heart-rate variability (17), and evoked potentials (18). With the
advent of neuroimaging proceduresmeasures of regional cerebral
bloodflow have become ubiquitous in pain studies. Some have
been promoted as true “central registers” of the pain experience,
but none are widely recognized as such (19).

Limitations of Physiological Assessment of
Pain
A physiological measure of pain has been a kind of “holy
grail” among some researchers and clinicians. Physiological
variables such as those noted are routinely deployed in both
basic and clinical studies but have not achieved consensual status
as measures of pain outcomes. Some, such as electrodermal
activity or heart-rate variability, serve as indices of processes
that are affected by pain, such as autonomic arousal. As
measures of pain, they are sometimes overly responsive and
therefore poorly discriminating of variations in pain states,
sometimes insufficiently responsive and therefore also poorly
discriminating, and sometimes covary with other affect states
with which pain is correlated, such as fear. Neuroimaging
procedures have identified various brain regions in which
activation varies in accordance with other evidence of pain;
however, they are distributed across networks in a manner that
does not lend itself to simple interpretation as pain indicators.
Most physiological assessment techniques are at least modestly
invasive, involving special instrumentation and sometimes highly
specialized laboratory environments and therefore do not lend
themselves to study in ecologically normative conditions.

PAIN ASSESSMENT BASED ON
FINE-GRAINED FACIAL OBSERVATION

The insight that behavior is fundamental to the understanding
of pain gained currency with the development of behavioral
approaches to pain management. As Fordyce (20) observed,
a person has to do something for it to be known that they
are in pain. The early behavioral approach was based in
the learning theory of the day but did not make nuanced
distinctions about the properties of pain-related behaviors that
varied by topography.

The model brought an emphasis on observation and precise
definition and assessment of behaviors that, curiously, dovetailed
with the concerns of students of emotion.

The study of emotion had venerable roots in the work of
Charles Darwin. In The expression of the emotions in man and
animals, Darwin (21) argued that emotions are phylogenetically
shared with other species. He described how various affective
states, including pain, are represented in specific behavioral
topographies, especially but not exclusively facial expression.

Interest in the role of the face in communication of affect
revived in the late 1960’s, reflecting in part the influence of studies
supporting the idea that facial expressions of certain emotions are
universal across human cultures (22). Subsequent refinements in
methods for studying facial expressions laid the foundation for
examining their role in communicating information about pain.
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In 1978, Ekman and Friesen published the Facial Action
Coding System (FACS). This is a system for deconstructing
any facial movement into its constituent actions based on the
changes that appear when an individual muscle or combination
of muscles are activated. Observers trained to FACS proficiency
then view facial expressions and describe their constituent
actions in terms of 44 action units (AUs) or action descriptors
(ADs). Most AUs can be described in terms of their intensity.
Intensity coding for most AUs is on a 6-point A—E scale,
where a code of A is assigned to a trace of an action, B to
an action that meets minimum requirements for the action,
E to an action that is as strong as it could be, and codes
in between refer to gradations between meeting the minimum
requirements and maximum intensity (note that, in quantitative
analyses the alpha codes are transformed to numbers between
1 and 5; if the action has not occurred a code of 0 is assigned
as default).

The system is thus anatomically based, atheoretical, and
relatively objective (“relatively” because inferences are still
involved; for example, when rating intensity). It is manualized
such that, with intensive study, an observer can learn the system
within about 100 h. Data quality when performed by observers
who have established proficiency in the system by passing a
proficiency test, is generally sufficient to meet conventional
reliability standards and the system is generally considered to be
the “gold standard” for assessing facial action.

The FACS has been applied extensively in studies to
characterize the appearance of the face when a person is in pain.
A systematic review of 37 studies (23) reported that, for both
experimental and clinical pain, a subset of facial actions reliably
discriminates between pain and no-pain conditions. These are:
brow lowering (FACSAU 4), orbit tightening (AUs 6 or 7), levator
tightening (AUs 9 or 10), and mouth opening (AUs 25, 26, or 27).
Eyelid closing (AU 43) also consistently discriminates between
pain and no pain in studies of clinical pain. The same actions
discriminated pain from no pain independent of the participants’
cognitive status (impaired vs. unimpaired).

Systems resembling FACS have been developed for studies
of pain in children. The two systems that have been applied
most widely are the Neonatal Facial Coding System [NFCS;
(24)] and the Child Facial Coding System [CFCS; (25)]. Rather
than being defined by the underlying facial musculature of
the constituent actions, NFCS and CFCS codes are based on
appearance changes. In both neonates and young children, the
codes that have been found most consistently to discriminate
pain from no pain conditions are homologous to the codes that
distinguish pain from no pain conditions in adults, including
seniors; namely, brow bulge (NFCS)/brow lower (CFCS), eye
squeeze (both systems), nasolabial furrow /nose wrinkle (NFCS),
nasolabial furrow, upper lip raiser (CFCS) (26). Various other
facial actions have been associated with pain in neonates and
children. Nevertheless, the smaller “core” subset appears with
remarkable consistency across types of pain and the human life-
span, including among the aged. There is also a noteworthy
similarity with the facial actions reported to be associated
with pain in non-human animals that have been studied
to date [e.g., (27)].

Limitations of Fine-Grained Facial
Observation of Pain
Somewhat remarkably, despite the substantial scientific literature
documenting the properties of facial expressions of pain, the
work has had little application in basic science or clinical studies
of pain. The simple reason for this is that objective description
of facial action by FACS or similar systems is burdensome.
FACS is implemented by human observers who require training
to render assessments that are sufficiently reliable for scientific
purposes. Implementing FACS in scientific or clinical studies
cannot be done practically in real-time because coding requires
multiple observations of behavioral samples to identify the
separate actions of separate muscle groups. Ordinarily it requires
slow-motion and stop-action to settle on a final set of codes.
This makes the coding process lengthy–a final code from a
sample of behavior is typically estimated to require a coding
time: real time ratio of around 100:1. Conducting studies
with requisite numbers of participants and observations quickly
becomes arduous and, for human observers, oppressive. Realistic
application in clinical settings is impractical. Although some
work has aimed at reducing training and coding time by focusing
on only facial actions that have been empirically associated
with pain (28), even modified procedures are problematically
time-consuming. Further, the measurement rendered by human
observers is insufficiently granular and continuous to render
certain kinds of information that could provide the insights into
pain processing that the face may be capable of; for example,
temporal information about the onset and decay of certain facial
actions that may be informative about such issues as the relative
reflexivity or conscious modulation of the sufferer.

For these reasons, since the inception of fine-grained systems
for measuring facial action, there has been an underlying
question whether advances in information technology could
render a technique as reliable and valid as facial coding by
trained observers that would reduce the burden of observation,
that would not be subject to human observers’ susceptibility to
fatigue and error, that might be more sensitive and better able to
represent dynamic changes. Development of the field of affective
computing appeared to address this prospect.

TOWARD AUTOMATED ASSESSMENT OF
PAIN FROM NON-VERBAL BEHAVIOR

Affective computing has been defined as “computing that relates
to, arises from, and deliberately influences emotion” (29, 30). It
subsumes a wide range of topics and applications, one of which is
the measurement and modeling of affective processes. Affective
processes like pain have behavioral markers, including but not
limited to facial expressions, that can be captured and stored
by technology. Decoding their messages is a kind of pattern
recognition. Advances in computer and data science enabled by
the development of neural nets and machine learning, which had
proved to be successful modeling pattern recognition, appeared
to offer a technological solution to the burden associated with
decoding facial expressions. Further potential benefits, such
as rapid processing and the ability to render more precise
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information about movement dynamics than can be effectively
obtained from human observers, appeared possible.

Some of the earliest demonstrations of the feasibility of
such automated analysis of facial expression appeared in work
by Bartlett et al. (31) and Cohn et al. (32). Bartlett et al.
obtained images of FACS upper-face AUs varying in intensity
from 20 people. Processed by a two-layer neural network, a
hybrid classification system combining holistic spatial analysis,
facial feature measurement, and analysis of motion flow fields
was able to correctly classify 92% of the six facial actions [of
which three (AUs 4, 6, 7) had been implicated in studies of
pain], outperformed naïve human judges, and approximated the
performance of human experts. Cohn et al. used video frames
of 15 FACS AUs or AU combinations as training stimuli. After
alignment, facial landmarks were marked and then automatically
tracked using an algorithm to estimate optical flow across images.
minant function analysis produced 92% or higher agreement
with the classifications of a human coder in a training set and
between 81 and 91% (depending on facial region) in a cross-
validation set. These studies strongly suggested that advances
in computer vision methods combined with advanced statistical
analysis could, in principle, make automated analysis of facial
expression possible.

The advent of techniques to automatically measure facial
expressions naturally stimulated interest in extending the
technology to the measurement of facial expressions of pain.
Effective automated assessment held promise to overcome
barriers to more widespread scientific and practical applications
of facial expression measurement. In principle, it could reduce
or eliminate the need for human coders thereby managing
the problem of observer burden. Once tested sufficiently and
validated, an automated system could potentially bemore reliable
than measurement by human observation because it could
reduce variability and human error. Early work on automating
measurement of human emotional expressions began to reveal
properties of facial action that had been impractical to study. For
example, using an automated facial analysis technique, Ambadar
et al. (33) showed that different categories of smiling (polite,
amused, embarrassed) differed in terms of velocity, duration, and
association with head movements. From a scientific perspective,
the prospect of an automated system opened the tantalizing
possibility of measuring momentary dynamic changes in pain-
related facial expressions to draw similar inferences about
its meaning and underlying determinants. From a practical
perspective, an automatic, objective, reliable, and efficient assay
of the occurrence and intensity of pain could improve clinical
pain assessment, allowing health-care personnel to provide better
treatment to patients, with little to no increase in cost (2). It could
also support pharmaceutical therapies by providing an objective
quantitative tool for evaluating the efficacy of current and new
analgesics and serve as an objective complement to self-reported
pain measures in clinical trials of drug or device interventions to
reduce pain.

Methodological Foundations
To learn the association between pain occurrence or intensity
and facial behavior, recordings of participants responding to

painful conditions are needed in order to train and test classifiers.
Samples of sufficient size to estimate training parameters and
perform validation analyses are necessary. The number of
participants should be motivated by two factors. One is the
number needed to achieve saturation in the performance of
the predictive models (i.e., automatic classifiers). The other is
the number needed to enable sufficient power in the statistical
models for quantifying the contribution of the used variables in
the predictive models. For instance, in prior work on a related
problem (training automated classifiers for facial action units),
it was found that automatic classifier performance saturates at
about 60 participants in the training set (34).With 25 participants
in the UNBC-McMaster Shoulder Pain Expression Archive
Database, the number of available participants is far lower
than that minimum number needed. Additionally, independent
criteria for establishing the absence, presence, or intensity of
pain (i.e., “ground truth”) must be present. Although they
have not been as widely tested in pain studies, ground truth
in automated pain assessment has mostly been derived from
annotations by expert observers (using FACS or a variant of
FACS) of video recordings of facial expression of pain. However,
there must be sampling in conditions in which it is reasonable to
assume that pain has occurred (such as during a clinical test, or
during exposure to artificially induced painful conditions, such
as noxious heat), and in conditions when pain is unlikely. As an
alternative or supplement, judgment studies can be performed in
which observers (who might vary in expertise) rate recordings
on an appropriate scale of pain intensity. Another alternative
that has only recently come to be explored is the subjective
judgments of participants undergoing the potentially painful
procedure. Finally, known conditions can serve as ground truth,
such as when, in one experimental condition, a participant is
exposed to a stimulus known to cause pain and in another,
they are not. If ground truth is based on annotations or
ratings by human observers, they must also meet criteria for
acceptable reliability. Meeting the aforementioned criteria is a
challenging task but has been achieved by several groups [(35–
39)].

Because of the power requirements of machine learning
and classification procedures, there is an issue related to the
density and precision of annotations. Analyses are based on the
recordings made in the aforementioned clinical or experimental
conditions. A behavioral sample can be annotated at the level of
the overall sequence using a single observation or a summary,
which yields one measure per sequence. Alternatively, depending
on the annotation method, it can be annotated at the level of
the individual frame. Whereas, annotation at the level of the
frame provides considerable amounts of data for training and
validation purposes, annotation at the level of the sequence
provides but one per participant and condition, with obvious
implications for sampling in the pain recording phase of any
study. In either case, but more particularly for studies in which
annotation is frame-by-frame, at least in data collected to
date, the distribution of pain intensities is problematic, with
there usually being a much higher number of frames in which
annotations suggest no pain than pain, with implications for
training models.
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In part because of the resources required to meet the forgoing
criteria, but also because experimentation with different CVML
methods benefits from comparison and calibration against
extant work, databases that can be shared for model testing
are desirable. The UNBC-McMaster Shoulder Pain Expression
Archive Database [(40, 41)] was the first to address this need.
The archive contains video recordings of people with shoulder
pain taken during active abduction, flexion, internal and external
rotation of their affected and unaffected shoulders (41). It
comprises 200 video sequences from 25 different participants
(66% female). For each sequence, the distribution includes 66
Active Appearance Model (AAM) tracked landmarks (fiducial
points around the eyes, eyebrows, and mouth) at the frame
level and per-frame and per-video pain score annotations. Expert
labeled FACS codes were scored using a 0–5 ranking of the
intensity of the facial actions in most cases. Intercoder agreement
as calculated by the Ekman–Friesen formula (42) was 0.95. the
participants’ self-reported pain intensity and an independent
observer’s ratings of pain intensity (OPI) were annotated at the
sequence level. Offline observer ratings were performed on a 6-
point Likert-type scale that ranged from 0 (no pain) to 5 (strong
pain). To assess inter-observer reliability of the OPI pain ratings,
a second rater independently rated 210 randomly selected videos.
The Pearson correlation between the observers’ OPIs was 0.80,
which represents high inter-observer reliability.

Since being made available to qualified researchers, the Pain
Archive has been the most widely used dataset for exploring
automatic pain assessment from facial expression, accounting
for approximately 41% of the literature published in this field
according to a 2019 systematic review (3).

A smaller number of studies (43–49) have made use of BioVid
(50), a heat pain database. BioVid contains recordings of 87
people exposed to four intensities of experimental heat pain
and a no pain baseline. Each intensity (including no pain) was
presented 20 times in a random sequence. Each video excerpt has
a duration of 5.5 s. Unlike the UNBC-McMaster Shoulder Pain
Expression Archive Database, ground truth is based on stimulus
intensity, rather than a measure of pain expression.

A third database, EmoPain (4) contains recordings from
22 adults with low back pain. The recordings were taken
while the patients engaged in movements resembling common
therapeutic tasks for back pain patients. Data streams include
audio recordings, 3D motion capture, and electromyographic
recordings from the paraspinal muscles in addition to facial
expression. Measures available for ground truth include patient
pain and anxiety ratings, and offline observer ratings using a
joystick method. EmoPain has not yet been publicly released as
had been planned.

Proof-of-Concept Studies
One of the earliest efforts to develop an automated system
for measuring pain expression appeared in Ashraf et al. (51).
The authors employed recordings from the UNBC-McMaster
Shoulder Pain Expression Archive Database of shoulder-pain
patients described above. They had been quantified at the level of
the individual video frame by a FACS-based index of expressive
intensity, dubbed the Prkachin Solomon Pain Index [PSPI;

(41, 52)], and consisting of the summed scores of AUs that
have consistently been associated with pain in observational
studies. After transformations to optimize registration of the
face, support vector machines (SVMs) were trained to classify
full sequences or individual frames as showing pain or no
pain. The best combination of representations resulted in
hit rates of 77 and 82% for sequence level and frame-level
classification, respectively, and false acceptance rates of 44
and 30%, showing that it was possible to obtain reasonable
differentiation of pain from no pain states when evaluated with
respect to the ground truth of direct facial measurement by
trained observers. Unsurprisingly, the more granular frame-
level approach provided better performance. Figure 1 displays
performance of both approaches for a representative participant.

In another early study of automatic pain detection, Littlewort
et al. (36) employed a system for automatic detection of FACS
AUs to examine facial changes during exposure to experimental
pain produced by immersion of the arm in ice-water and
to compare those changes with actions performed when
participants pretended to be in pain. Genuine pain was associated
with increases in six automatically detected representations of
AUs previously associated with cold-pressor pain in studies
using human observers. “Faked” pain was associated with 11
automatically coded actions. In a subsequent machine learning
phase, automated facial action parameters were processed via a
Gaussian SVM in an attempt to discriminate genuine from faked
pain. The resultant 2-alternative forced-choice percent correct
value of 88% substantially exceeded the performance of naïve
human observers at 49%.

Lucey et al. (53), also using the UNBC-McMaster Shoulder
Pain Expression Archive Database, applied a system combining
Active Appearance Models (AAMs) for tracking face shape and
appearance, input to SVM’s for pain and AU classification at the
level of the individual video frame. Ground truth consisted of
expert-coded FACS AUs, including, but not limited to the PSPI.
In a test of the system for directly classifying pain (i.e., predicting
a PSPI score of>0) the Receiver-Operating-Characteristic (ROC)
based A’ metric yielded a score of 0.75, indicating performance
substantially greater than chance. An indirect classification
system, predicting pain from an alternative set of individual FACS
AUs that excluded two components of the PSPI and included
AU12, performed slightly better, achieving an A’ score of 0.77,
relative to 0.78 for the PSPI. Building upon those results, Lucey et
al. (54) again used a combination of AAM/SVM representations
to derive parameters of similarity normalized points (SPTS) and
canonical normalized appearance (CAPP). These were trained
to detect individual AUs and the PSPI metric. SPTS and CAPP
solutions were then used individually and in combination to
evaluate performance. With some exceptions, the individual
representations performed reasonably at both AU detection and
overall PSPI prediction. Combining both parameters yielded an
A’ value of 0.84 at predicting the PSPI index.

Hammal and Kunz (55) proposed a hybrid machine learning
approach to classifying spontaneous expressions of experimental
pain, based on the Transferable Belief Model. The model was
based on the dynamic fusion of appearance features around the
wrinkle areas (the deepening of transient facial features). Video
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FIGURE 1 | SVM scores for sequence- and frame-level ground truth. The upper pictorial representations (A) are the video frames corresponding with the crosses on

the respective SVM score plots (B) below. Reprinted with permission from Ashraf et al. (51).

sequences of participants responding to painful or non-painful
heat stimulation were classified in a 2-alternative forced-choice
paradigm, achieving a correct classification rate of 81.2%. A test
of the ability of the system to correctly discriminate among pain,
posed expressions of six basic emotions, and neutral expressions
(an 8-alternative forced choice) achieved a correct classification
rate of 84.5%. Automatic classification outperformed untrained
human observers. Importantly, these findings demonstrated
the feasibility of automatically differentiating pain from other
emotional expressions. Unlike approaches that rely exclusively
on static information from video recordings, the model
incorporated temporal changes in features, thus more closely
approximating the perceptual processes of human observers.

Most approaches to pain detection seek to determine only
whether pain is present or absent. Hammal and Cohn (56),
extended previous efforts by attempting to classify pain intensity
(as opposed to presence). Using the UNBC-McMaster Shoulder
Pain Expression Archive Database, they defined four pain
intensity scores from the PSPI metric: none (PSPI = 0), trace
(PSPI = 1), weak (PSPI = 2), and strong (PSPI > = 3). For
each video frame, AAMs were first used to track and register
rigid and non-rigid face motion. Based on this information,
the canonical appearance of the face (CAPP) was extracted
for each frame. CAPP features were then rescaled to 96 ×

96 pixels and passed through a set of Log-Normal filters of
7 frequencies and 15 orientations. The extracted spatial face
representation was then aligned as a vector of 9,216 features and
used by four SVMs trained separately to measure the four pain
intensity levels. Results showed fair-to-good classification of the

intensity levels, depending on the classification accuracy metric
and method of validation between training and testing data, with
moderate-to-high consistency between automated measurement
and the original PSPI metric. Several other researchers have
described effective CVML methods for assessing pain intensity
from facial expression [(45, 47, 57–62)]. In short, the data
suggest that automated assessment of expressed pain intensity
is feasible.

These early efforts provided an initial proof-of-concept that
the occurrence of pain can be automatically measured from the
face. There have since been scores of studies supporting the
concept [see Werner et al. (3) for a survey of work to 2019].

Applications in Specific Populations
Interest in evaluating pain by assessment of non-verbal
expression has been driven to a significant extent by
clinical concerns; in particular, the fact that large cohorts
of people cannot report on their pain because of verbal
communication deficits. These include infants and young
children and people with neurological impairments, especially
dementias. There are extensive literatures describing validated
techniques for assessing pain via facial expression and
other types of non-verbal behavior in neonates and young
children (63) and in dementia (64). Many suffer from the
same problem of burden associated with observational
techniques described above; consequently, there has been a
similar interest in development of automated measures for
these populations.
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Automated Assessment of Pain in Infants and

Children
There have been several efforts to develop automated systems
for assessing pain in infants and children (65). Most have made
use of a publicly available resource, the Classification of Pain
Expressions (COPE) database (66). The database consists of 200
still photographs taken of neonates during five conditions, one
of which was undergoing blood sampling by lancing of the heel.
In an initial study, 88% correct classification in distinguishing the
response to heel lancing from pain from rest, crying, air-puff, and
friction conditions was achieved with a SVM approach. In a later
study, using techniques based on processing of image textures
and SVM’s, an Area-Under-the-Curve ROC value of 0.93 was
obtained discriminating pain from non-pain conditions.

With recordings obtained from neonates undergoing heel-
lancing, Zamzmi et al. (67) extracted optical flow strain measures
to train a K-nearest neighbor classifier, achieving 96% correct
classification distinguishing pain from no pain, as evaluated
against the ground-truth of nurses’ ratings on an infant pain
scale incorporating assessments of facial expression, among
other behaviors.

Sikka et al. (37) studied children, aged 5 to 15, during different
phases of treatment for appendicitis. An automated procedure—
the computer expression recognition toolbox (68)—was used to
detect FACS AUs, which were then used in logistic regression
to classify pain, achieving Area-Under-the-Curve values of 0.84–
0.94 predicting pain.

Automated Assessment of Pain in Aging and

Dementia
Kunz et al. (69), using FACS, showed that facial pain expressions
were able to document pain among patients with dementia who
could not articulate valid verbal pain ratings and that patients
with dementia showed a greater pain reaction than controls.
As with other applications of behavioral measurement, this
knowledge has been slow to affect clinical practice because of
the measurement burden problem highlighted above. This has
motivated the pursuit of automated systems for evaluating pain
expression in dementia.

Progress in this pursuit has recently been documented by
Rezaei et al. (70). Using video recordings taken from the
UNBC-McMaster Shoulder Pain Expression Archive Database
and a new dataset of elderly people with and without dementia
undergoing potentially painful physiotherapy maneuvers a
computer vision model of fully automated detection of pain
expression was developed and evaluated. The model attempted
to approximate the perceptual processes of human observers,
who take into account temporal changes in expression by
pairing target frames and reference frames. The best performing
models, when evaluated against a pain/no pain decision based
on the PSPI metric, yielded Area Under the Curve values
of 0.86, and 0.85 for per-frame detection of people with
dementia and those without, respectively. This supports the
feasibility of automatically detecting pain-related facial actions in
this verbal-communication-impaired population and is all-the-
more remarkable when considering the subtlety of the actions

evaluated and the presence of perturbing conditions, such as
body motion out of plane and variations in lighting.

Automatic Detection of Self-Reported Pain
The bulk of this work has focused on modeling pain as
represented in facial expression. More recently, however, some
researchers have attempted to model other pain parameters,
including sufferers’ self-reports. To date, four studies have
investigated automatic assessment of self-reports of pain, using
video from the UNBC-McMaster Shoulder Pain Expression
Archive Database. Lopez-Martinez et al. (45) proposed a two-step
learning approach to estimate pain intensity as self-reported on
a VAS. The approach began with a Recurrent Neural Network to
automatically estimate PSPI scores at the level of individual video
frames. The estimated scores were then fed into personalized
Hidden Conditional Random Fields, used to estimate the self-
reported VAS pain scores at the sequence level. To account for
individual differences in facial expressiveness, an individual facial
expressiveness score (the ratio of an independent observer’s pain
intensity rating) to the VAS was introduced.

A limitation of the foregoing technique is that it required
retraining on previously acquired VAS ratings and thus could
not generalize to previously unseen participants. To overcome
this limitation, Liu et al. (59) employed another set of
predefined personalized features (i.e., age, gender, complexion)
to automatically estimate self-reported VAS ratings. The authors
combined facial shape with these features to train an end-to-end
combination of Neural Network and Gaussian Regression model
(named DeepFaceLIFT), for VAS pain intensity measurement
from video.

Szczapa et al. (61), proposed a video-based measurement of
pain intensity scores using the dynamics of facial movement.
Gram matrices formulation was used for facial point trajectory
representations on the Riemannian manifold of symmetric
positive semi-definite matrices of fixed rank. Curve fitting and
temporal alignment were then used to smooth the extracted
trajectories. A Support Vector Regressionmodel was then trained
to encode the extracted trajectories into ten pain intensity levels
consistent with the VAS pain intensity measurement.

Erekat et al. (57) proposed a spatio-temporal Convolutional
Neural Network–Recurrent Neural Network (CNN-RNN)model
for automatic measurement of self-reported pain and observed
pain intensity, respectively. The authors proposed a new loss
function that explored the added value of combining different
self-reported pain scales in order to improve the reliability of
pain intensity assessment. Using an automatic spatio-temporal
architecture, their results showed that enhancing the consistency
between different self-reported pain intensity scores enhances
self-reported pain estimation.

LIMITATIONS, CONSTRAINTS, AND
PERILS OF AUTOMATED ASSESSMENT
OF PAIN

Progress toward automated analysis of pain in the past decade has
been steady; nevertheless, the field is still in early development.
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It is a prudent time to consider some of the limitations of the
approaches developed so far and problems that further studies
will have to acknowledge or confront.

Alternatives for Ground Truth
Most efforts for automatic assessment of facial expression of pain
have focused on frame-level pain intensity measurement such
as the FACS-based PSPI metric. The emphasis on frame level
scores, from static images or a subset of images, is consistent with
approaches to objective AU detection more generally.

An alternative, simpler, approach to assessing facial expression
in pain is the judgment study. Using this technique, raters, who
may be naïve or could have varying levels of sophistication
(e.g., being trained to recognize FACS AUs or having clinical
experience with pain), view recordings of subjects who may be in
pain and evaluate how much pain they appear to be in by using
some kind of rating scale. The number of raters can be adjusted
to meet a target reliability criterion for averaged ratings (e.g.,
intraclass correlation≥ 0.80) (71). The obtained aggregate scores
can then be used as the ground truth of pain intensity score.
The judgment study approach is more suitable to evaluating pain
intensity at the sequence level because frame-level evaluation
is beyond human resolving capacity. It is possible, however,
that paradigms that combine slow-motion replay with use of a
dial/joystick manipulandum could capture temporal changes in
pain action with sufficient reliability and sensitivity to render
meaningful measurement. Considering their greater simplicity
and reduced burden, it is somewhat surprising that judgment
study approaches have not been employed to a greater extent in
studies of automated pain assessment. Indeed, because they are
based on a holistic analysis that does not assume independence
of an expression’s component actions and probably represent
human perceptual processing more realistically, they likely have
advantages over measurement of specific facial actions.

Generalizability
With few exceptions [e.g., (37)], previous efforts in automatic
assessment of pain have focused on a single type of pain [shoulder
pain, controlled heat; (3, 72)]. Pain comes in a variety of
types, differing by modality (heat, electric, chemical), site, nature
(clinical vs. artificial), and history (acute vs. chronic) that may
produce different behavioral responses both within and across
modalities. Given the variety of pain experiences, a variety of
procedures, both experimental and observational, participants,
and sensors are needed (72). The models and solutions that have
shown promise for automatic detection are based on limited
sampling. There is considerable evidence from direct facial
measurement studies that facial expressions of pain involve a
common core of actions (23, 52), but recent findings indicate that
those actions come in different clusters (73, 74). This points to a
need to collect further databases that sample a broader range of
pain types as a way to assess the generality and generalizability of
extant and novel models and solutions.

An important related need is to test approaches individually
and in head-to-head comparisons across multiple databases. No
studies have explicitly trained and tested classifiers on different
databases in order to evaluate generalizability of automatic pain

assessment across databases. Unless generalizability between
separate databases is examined, it remains unknown whether
methods developed in one database would be valid in others.

Care needs to be taken to address other issues of
generalizability as well. Three crucial dimensions that need
to be taken into account are “race,” gender, and ethnicity (75).
There is an ample literature showing that, apart from facial
actions, skin color coding for race has a significant effect on
how pain in others is judged (76, 77), and equally abundant
literatures showing that race and sex affect pain treatment and
outcomes (78, 79). With the exception of the non-publicly
available database collected by Sikka et al. (37) demographic
information is incomplete or lacking in many instances. In
future research, it will be important to systematically collect
participants’ demographic information to investigate the
variance/invariance of pain experience and measurement in
order to provide a more comprehensive assessment of pain
occurrence and intensity.

Bias
There is recent evidence that algorithms arising from
deep-learning approaches to processing the face perform
differently as a function of race and sex (for example at
facial recognition), sometimes to a considerable degree
(80). Likely a consequence of the fact that the datasets used
for training largely sample unrepresentatively; i.e., from
young, light-skinned, male populations, increasing awareness
of the existence and implications of algorithms that are
biased raises serious concerns about issues of fairness. The
issue has become of sufficient general concern to lead to
calls to ban certain applications of artificial intelligence,
including work on mental health diagnosis and detection of
deception (81).

That the issue of biased behavior of algorithms likely applies
to detection of pain was demonstrated by Taati et al. (82),
who compared the performance of currently available facial
landmark and facial action unit detection algorithms on a dataset
consisting of facial expressions showing various degrees of pain
in a population of older people with dementia and older people
living independently. Ground truth was landmark identification
and facial action unit coding by human experts. Performance
of the pre-trained algorithms at landmark detection was
significantly better for independent-living seniors than for those
with dementia. Retraining the algorithms with representative
examples of faces of independent-living and seniors with
dementia was able to improve performance significantly. With
respect to detecting facial action units by available pre-trained
algorithms, there was no difference between independent-
living seniors and those with dementia, possibly because the
algorithms performed poorly in general. The results emphasize
the importance of sampling broadly and representatively with
respect to subject group and type of pain and highlight
the need for extreme caution against overgeneralizing about
what the results of automated analysis show, particularly
as the field moves inexorably toward implementation in
clinical settings.
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Fully Automatic Multimodal Pain
Assessment
By far, most efforts at automatic analysis of pain have focused
on the face. However, pain produces multiple behavioral
responses (e.g., facial expressions, head and body movements,
vocalizations) both within and across modalities. Various
observational systems have been developed for quantifying
other behaviors indicative of pain. Some are generic and
can be applied or adapted to different types of pain [e.g.,
(83, 84)]; others have been developed for specific purposes
or populations [e.g., the Pain Assessment Checklist for
Seniors with Limited Ability to Communicate; (85); the Pain
Assessment in Advanced Dementia scale; (86)]. In physical
medicine and rehabilitation, body language is an important
behavioral index of pain in patients with moderate to
severe cognitive impairments, and those who have difficulty
communicating verbally (87). Non-verbal (e.g., screaming,
sounds of distress) and verbal (e.g., “ouch,” “owie”) pain
vocalizations have proven clinically useful for pain detection
in young children and others with limited linguistic abilities
(88). There is strong likelihood that automatic analysis of
acoustic characteristics of vocal expression can contribute to pain
detection and understanding.

There is a nascent literature that has begun to apply
the methods of machine learning to these other behavioral
indicators of pain [e.g., (4)]. Efforts are needed to extend
CVML technologies sensing beyond facial expression to include
body and head movement, physiological measures, speech, and
paralinguistic communication related to pain experience.

Automatic multimodal measurement affords potentially rich
sets of behavioral features to include in automatic measurement
of the occurrence and intensity of pain. Newer databases that
includemultimodalmeasures, such as EmoPain and BioVidmake
this development possible. Efforts in this direction will enable
the objective measurement and monitoring of pain intensity in
clinical, family, and work environments (2).

Links to Concepts of Expression in Pain
For all its technological sophistication, there is a kind of dustbowl
empiricism about the corpus of work on automated analysis
of pain. Although it builds on prior knowledge and findings–
in particular the literature applying fine-grained behavioral
analysis to the characterization of expression in pain–for the
most part it has not addressed conceptual issues related to its
meaning. Behavioral studies suggest that there is considerable
complexity in the facial behavior that accompanies pain. Kunz
and Lautenbacher (73), for example, provide evidence that the
actions that most consistently relate to pain in the literature occur
in separable clusters. This is an issue that has not been addressed
in the _automated_ assessment literature. Moreover, there is
good reason to believe that not all the expression that happens
in pain is about pain. For example, the action of zygomaticus
major (AU 12 in FACS), which is also the principal movement
in a smile, is sometimes found to accompany pain, both in the
behavioral literature (89) and the automatic analysis literature.
Structural and functional analyses of this action suggest that,

although it often does accompany pain, it is likely marking a
different process (41, 90). CVML models to date do not seem to
have recognized this distinction yet may have analytic potential
to advance its understanding. Similarly, there is evidence that
different components of the behaviors that correlate with pain are
encoding different dimensions of the experience. Kunz et al. (91)
found that actions involving movement around the eyes related
most closely to sensory features of pain, while movements of the
brows and upper lip related most closely to affective features.
CVML studies have not addressed such issues to date but could
be important in advancing our understanding of them.

Commercial and Other Applications
Commercial tools for pain assessment informed by the existing
literature on automated assessment have already been developed
and marketed and there is every reason to believe that this trend
will continue. For example, Painchek (www.painchek.com) is a
smartphone app-based device that combines a facial expression
assessment component with input from five other domains
(voice, movement, behavior, activity, body) to yield a pain
score for application in geriatric and pediatric settings (92).
It goes without saying that the development and marketing
of tools for clinical assessment should be based on knowledge
about automated assessment that is grounded in the empirical
literature, consistent with the best-established technological
solutions, has been subjected to rigorous validation procedures,
and informed by understanding of issues of bias raised above.
Importantly, commercial applications must be cognizant of the
risks attendant on oversimplified interpretation of the meaning
of a pain score derived from automated analysis of the face. An
oft-stated rationale for focusing on facial and other behavioral
indicators of pain is to improve pain management by improving
pain detection. There is a substantial literature, however, showing
that observers underestimate behavioral evidence of pain (93).
This underestimation bias is paradoxical given that significant
proportions of subjects in empirical studies show no behavioral
evidence of pain (94). Facial expressions of pain have been
characterized as a “late signaling system” (95), which implies that,
if facial evidence of pain is present, it is likely very significant
and needs to be taken seriously. Conversely, if it is not present,
the possibility of its significance should not be discounted, a risk
that is present with oversimplified interpretation of pain scores,
however rendered.

A related concern arises from what appears to be widespread
interest in the idea of pain simulation and empirical work
implying that genuine pain can be distinguished from
dissimulated pain. The idea lends itself to considerations
that there may be forensic applications of automated assessment
technology. It is true that perceptual (52), behavioral (96), and
now automated assessment studies (36) have shown evidence
that facial expressions during genuine and simulated pain have
certain identifiable differences; however, the differences that
have been documented have occurred under highly artificial
conditions and appear, for the most part, to be small. Foreseeable
application of forensic products based on automatic analysis
appear open to abuse and unlikely to be probative.

Frontiers in Pain Research | www.frontiersin.org 10 December 2021 | Volume 2 | Article 788606

http://www.painchek.com
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


Prkachin and Hammal Computer Mediated Automatic Detection

WHITHER AUTOMATED ASSESSMENT OF
PAIN?

That automated analysis of pain may be feasible has been
demonstrated in the proof-of-concept studies reviewed above.
The numerous studies that make up the corpus of the field since
then have mainly added to the field by exploring alternative
artificial intelligence systems. Ultimately, the value of this work
is most likely to be realized in basic science and clinical research.
In particular, the prospect of a form of assessment that can
automatically yield reliable, valid and continuous information
about how and when people (and animals) are expressing pain
holds promise to enable detailed studies of pain modulation
that are prohibitively difficult to perform with human observers
who are subject to inherent limitations in their ability to resolve
changes in behavior that sometimes occur in milliseconds,
fatigue, and error. This could include evaluations of the time-
course of pain reducing or augmenting influences but it could
also extend to studies of how intrapersonal variables and the
interpersonal, social, and environmental context influence pain
over momentary differences in time. There is evidence from
extant studies that automated detection techniques can give
insight into momentary changes at or near the level of a frame of
video [(51); see Figure 1]. In principle, valid measurement at that
level of sensitivity could yield important information about dose-
response relationships in evaluations of analgesic medications.
A system that combined automated detection of pain with
detection of other affective states (e.g., anger) and also permitted
time-series analysis could facilitate greater understanding of the
interplay of the states. To date, no attention has been applied
to how automatic pain detection may vary between men and
women, people of different racial and ethnic backgrounds, or
context, to name just a few factors. Of particular interest in
would be studies of pain expression in interactions in health-care
settings or in families.

The work performed to date for automated pain measurement
has been interesting, progress has been rapid and has generated
the kind of buzz commonly associated with new technologies. But
numerous current controversies over unforeseen consequences
about how these new algorithms have been developed (for
example, errors that have been “baked in” to the data on
which facial recognition systems were trained, leading to
wrongful arrest), or how they work highlight the need to

proceed cautiously, mindful that “move fast and break things”
is not a slogan that augurs well for the careful and safe
development of a tool to advance understanding of pain in
particular and other health related applications in general.
The existing approaches are built on a very limited sample
of participants, pain types, annotation procedures, conditions
of observation, ages, “racial”/ethnic categories, and regions of
the world. Careful expansion of audiovisual pain databases
that sample more broadly and representatively across these
dimensions will be necessary to establish confidence in the
quality andmeaning of themeasurement obtained and tomanage
foreseeable and unforeseeable perils of using this technology to
improve patients’ outcomes. Particular concern arises around
the prospect of developing and commercializing technologies
geared to clinical, medico-legal, and forensic applications,
especially around the idea of proprietary knowledge. Practical
applications of automatic pain assessment need to be based
on rigorous science that meets standards of professional peer
review and public accountability, including verification that
the CVML processes on which they are based validly produce
assessments that are consistent with the claims being made
of them.
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