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Abstract: In this paper, a novel method to modify color images for the protanopia and deuteranopia
color vision deficiencies is proposed. The method admits certain criteria, such as preserving image
naturalness and color contrast enhancement. Four modules are employed in the process. First, fuzzy
clustering-based color segmentation extracts key colors (which are the cluster centers) of the input
image. Second, the key colors are mapped onto the CIE 1931 chromaticity diagram. Then, using the
concept of confusion line (i.e., loci of colors confused by the color-blind), a sophisticated mechanism
translates (i.e., removes) key colors lying on the same confusion line to different confusion lines so
that they can be discriminated by the color-blind. In the third module, the key colors are further
adapted by optimizing a regularized objective function that combines the aforementioned criteria.
Fourth, the recolored image is obtained by color transfer that involves the adapted key colors and the
associated fuzzy clusters. Three related methods are compared with the proposed one, using two
performance indices, and evaluated by several experiments over 195 natural images and six digitized
art paintings. The main outcomes of the comparative analysis are as follows. (a) Quantitative
evaluation based on nonparametric statistical analysis is conducted by comparing the proposed
method to each one of the other three methods for protanopia and deuteranopia, and for each index.
In most of the comparisons, the Bonferroni adjusted p-values are <0.015, favoring the superiority of
the proposed method. (b) Qualitative evaluation verifies the aesthetic appearance of the recolored
images. (c) Subjective evaluation supports the above results.

Keywords: color vision deficiency; image recoloring; confusion line; chromaticity diagram; fuzzy
clustering; differential evolution; color transfer; natural images; art paintings

1. Introduction

The human trichromatic color vision originates from the comparison of the rates at
which photons are absorbed by three types of photoreceptor cone-cells namely, the L-, M-,
and S-cones [1,2]. In practice, the above types of cones define the three channels of the LMS
color space, and only as an approximation of their stimulation they correspond to the red,
green, and blue colors, respectively. Color vision deficiency (CVD) (or color-blindness) is
defined as the human eye’s inability to correctly match and perceive colors affecting at least
8% of males and 0.8% of females [2,3]. It is caused by genetic mutations that lead either to
the absence or dysfunctionality of one or two types of cones [2,4,5]. The impact of CVD
on human vision is reflected on various physiological levels such as color discrimination,
object recognition, color appearance, color naming, etc. [1,6].

There are three categories of CVDs [1–3,5]. The most severe and the rarest one is the
achromatopsia caused by the absence of two types of cones. The second is the dichromacy,
where one type of cones is missing. Dichromacy includes three subcategories: protanopia,
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deuteranopia, and tritanopia, depending on whether the L-, the M-, or the S-cones are
missing, respectively. Protanopia and deuteranopia have similar effects and belong to the
so-called red–green color vision deficiency. The third is the anomalous trichromacy, where
no cone types are missing but at least one of them is malfunctioning. It also comprises
three subcategories namely the protanomaly, deuteranomaly and tritanomaly depending
on whether the L-, the M-, and the S-cones are affected, respectively.

This paper considers the defects of protanopia and deuteranopia. Since protanopes
and deuteranopes lack one primary type of cone, they match the full-color spectrum using
the other two primary types of cones. Thus, they confuse only the colors that can be
perceived and discriminated by the missing primary type of cone [3].

An effective tool to describe the above color confusion process is the confusion lines
defined on the CIE 1931 chromaticity diagram [4,5]. A confusion line is defined as the
locus of the set of colors confused by the protanope or deuteranope. All confusion lines
intersect at a point outside the chromaticity diagram, which is called copunctal point
and it is imaginary stimulus realized as the locus of the missing primary [3,6]. The color-
blind confuses all colors belonging to the same line and therefore the entire line appears
achromatic to him [4]. In essence, those colors are perceived by the color-blind with the
same colorfulness, which consists of hue and saturation, but they can be identical only
under the appropriate intensity [6–8]. Figure 1 shows some confusion lines for protanopia
and deuteranopia taken from Judd’s revised chromaticity diagram [3,9].
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To solve the problem of color-blindness, image recoloring algorithms have been im-
plemented following different approaches. In any case however, the design of image re-
coloring algorithms must fulfill certain requirements. The most important are the preser-
vation of color naturalness and the preservation or enhancement of color contrast [10]. 
Naturalness refers to the reduction of the perceptual color difference between the original 
and the recolored image, and therefore it quantifies their color distribution and aesthetic 
similarity. Contrast is important for object recognition and color discrimination, especially 
in the case where two different objects are perceived by the color-blind as one object. 

So far, a wide range of recoloring methods have been developed based on optimiza-
tion of specially designed objective functions [11–16] or regularized objective functions 
[17–19] that uniformly combine the naturalness and contrast criteria, pixel-based classifi-
cation [20], spectral filtering [21], cluster analysis [22], gradient domain recoloring [23,24], 

Figure 1. Confusion lines for protanopia (left diagram) with copunctal point (xcp, ycp) = (0.763, 0.236) and deuteranopia
(right diagram) with copunctal point (xcp, ycp) = (1.4, −0.4).

To solve the problem of color-blindness, image recoloring algorithms have been im-
plemented following different approaches. In any case however, the design of image
recoloring algorithms must fulfill certain requirements. The most important are the preser-
vation of color naturalness and the preservation or enhancement of color contrast [10].
Naturalness refers to the reduction of the perceptual color difference between the original
and the recolored image, and therefore it quantifies their color distribution and aesthetic
similarity. Contrast is important for object recognition and color discrimination, especially
in the case where two different objects are perceived by the color-blind as one object.

So far, a wide range of recoloring methods have been developed based on optimization
of specially designed objective functions [11–16] or regularized objective functions [17–19]
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that uniformly combine the naturalness and contrast criteria, pixel-based classification [20],
spectral filtering [21], cluster analysis [22], gradient domain recoloring [23,24], confusion-
line based [7,8,25], color transformation and rotation/translation [26–29], neural net-
works [30], image retrieval [31], and deep learning [32].

In this study, a novel approach to image recoloring for protanopes and deuteranopes
is developed. The proposed method encompasses four modules: (a) key color extraction,
(b) key color translation, (c) key color optimization, and (d) cluster-to-cluster color transfer.
The first module performs color segmentation of the input image using fuzzy clustering to
extract a number of cluster centers, called key colors. In the second module, the key colors
are mapped in the CIE 1931 chromaticity diagram. Colors confused by the color blind
(called here confusing key colors) are ranked in terms of the cardinalities of the associated
clusters. Then, an iterative process is set up, where in each iteration the confusing key color
with the highest rank is translated (removed) to its closest non-occupied (by other key
colors) confusion line. In the third module, only the luminance channel of the translated
confusing key colors is further optimized in terms of a regularized objective function that
uniformly quantifies the contrast and the naturalness criteria. Finally, the fourth module
uses a color transfer mechanism to finalize the recoloring process of the image’s pixels.

The paper is organized as follows. Section 2 presents the state of the art and the current
contribution. Section 3 describes the proposed methodology in detail. The experimental
evaluation and the respective findings are reported and analyzed in Section 4. Finally, the
paper concludes in Section 5.

2. State of the Art and the Current Contribution
2.1. Image Recoloring for the Color-Blind: State of the Art

One of the most challenging problems in color science is the identification of the
dichromatic color appearance so that normal trichromats can realize the way color-blinds
experience colors. In their seminal papers, Vienot et al. [33,34] developed an algorith-
mic framework to simulate the dichromatic color vision. Their findings suggested that
protanopia and deuteranopia are reduced forms of normal trichromatic vision. In par-
ticular, they showed that the dichromat color gamut is a plane in the three-dimensional
RGB space. Having generated the dichromat simulation of an image using the above
method, recoloring processes can be applied to carry out color adaptation of the image
in order to enhance color appearance, color discrimination, and object recognition for the
color-blind [10,13,17].

So far, several approaches have been developed to perform image recoloring. Kuhn et al. [13]
transformed the red–green–blue (RGB) dichromatic simulated gamut in the CIELab color
space and generated a set of key colors. They minimized an objective function that included
distances between key colors and their projections on the Lb plane. Finally, the Lb plane
was rotated to match the desired colors. While the method manages to increase the contrast,
it finally changes the colors significantly due to the rotation process and the naturalness de-
teriorates. In [17] the CIELab color space was used to perform image recoloring. Confusing
colors were rotated in the ab plane. The rotation angles were calculated by the minimization
of a regularized objective function that involved color contrast and naturalness criteria.
However, the above minimization might compromise either the contrast or the naturalness
requirement. Han et al. [7] also employed the CIELab space, where the original image was
segmented into regions and extracted representative colors. Confusing colors belonging
to the same confusion line were relocated so that all regions can be discriminated by the
color-blind. However, the selected number of confusion lines was very large, exceeding the
number of wavelengths seen by the color-blind. Therefore, it is possible colors belonging
to two or more confusion lines may still be confused and the contrast of the recolored
image is compromised. Huang et al. [25] applied mixture modeling in the CIELab space
to partition the colors into clusters. The distance between pairs of cluster centers was
generalized to quantify the dissimilarity between pairs of distributions. Based on these
dissimilarities an objective function was minimized to obtain an efficient recoloring of the
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original image. The above method increases the contrast but there is no control over hue
changes for the confusing colors and thus, the color naturalness might be compromised.
Meng and Tanaka [16] modified the lightness in the CIELab space without changing the
hue of the original image. That modification was carried out in terms of an optimization
problem where the objective function included color differences. Although this strategy
seems to effectively maintain the naturalness, the unchanged hue in combination with the
changed lightness may negatively affect the contrast of the recolored image. Kang et al. [15]
calculated a set of key colors in the CIELab. The authors estimated the differences between
pairs of them and projected the resulting difference vectors on the color subspace seen by
the dichromats, which is a plane. Then, they minimized an objective function that included
the above projections and attempted to improve the local contrast between color regions of
the image, and the image’s global contrast. While the optimization method improves the
contrast, there is no mechanism to control the naturalness, which might be compromised.

Apart from the CIELab, a commonly used color space is the Hue-Saturation-Value
(HSV). For example, Wong and Bishop [27] showed that effective results can be obtained if
the saturation and brightness remain the same as in the original image, while the hue value
is shifted by applying a nonlinear mapping that involves a power of the hue value. This
process makes confused hue ranges distinguishable from each other. The hues’ remapping
process finally improves the contrast, while the power hue shift retains the aesthetics of
the original image and thus the naturalness. Similarly, Chin and Sabudin [28] transformed
the original image into the HSV color space, where the hue value was appropriately
rotated, while the saturation and brightness remained unchanged. Specifically, the ranges
of reds and greens are translated towards the ranges of blues and yellows, which are
distinguishable by the protanopes and deuteranopes. Using the above strategy, the contrast
seems to be enhanced while the naturalness is compromised.

The RGB color space has been considered, also. Ma et al. [30] applied a self-organizing
map (SOM) to transform the RGB space into the dichromatic space by preserving the
distance ratios between homologous colors. The resulting code-vectors are mapped into
a rectangular color palette that has black and white in two opposing corners, blue and
yellow in the other two corners, obtaining the final image recoloring. Although the method
enhances the color contrast, the naturalness may be compromised because the color palette
utilizes only blue and yellow and their variants. In [32], a recoloring for art paintings
was proposed. First, a deep learning network was used to perform transfer learning
from natural images to art paintings and then a semantic segmentation approach was
set up to generate annotated object recognition of art paintings. The recoloring process
was carried out by optimizing an objective function that involved only the colors that
were significantly different from the respective simulated ones. Since there are recolored
only colors associated with the annotated objects the naturalness is improved, but the
contrast might be compromised. In [23], the RGB image was represented as a vector-
valued function. Then, using the gradient domain, a global transformation followed by a
multi-scale reintegration took place to obtain the recolored image. However, it tended to
produce visual halo artifacts near strong chromatic edges, which might negatively affect
both naturalness and contrast.

Finally, in [26] the original and the simulated images were transformed in the XYZ
space, with normalized luminance values. Regarding the other two channels, errors
between homologous colors of the original and the simulated images were derived and
rotated. As the rotation angle increases, the selected colors are far away from the dichromat
plane and vice-versa. In any case, the colors do not change that much for distant colors and
the naturalness is preserved. However, the above rotation strategy will not favor contrast
enhancement.

2.2. The Current Contribution

The method proposed in this paper uses four algorithmic modules (as mentioned
in Section 1) and builds on a novel perspective to the image recoloring for the color-
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blind. To enhance color discrimination and color appearance, the method provides certain
contributions, which are delineated as follows:

• The first contribution concerns the number of colors to be modified. In contrast to
other approaches that adapt all colors of the input image [26–28,30], our approach
modifies only the colors confused by the color blind. Since not all image colors are
modified it is expected that the recolored image will maintain the naturalness.

• The second contribution assumes that the adaptation of confusing colors should be
driven by a confusion-line based approach. Confusion lines are the product of exten-
sive experimentations [3,6,9]. As such, they accurately reflect the way a dichromat
perceives colors. In contrast to other approaches that perform the recoloring only in
terms of optimization [15,16,23,25,32], this paper introduces a mechanism to remove
specific confusing colors to specific confusion lines, thus enhancing the contrast. Since
each color is transferred to its closest non-occupied confusion line, it is expected that
the naturalness will be preserved, also.

• The third contribution concerns the need to further optimize both naturalness and con-
trast. Unlike other approaches that use color or plane rotation mechanisms [13,17,27,28],
herein we manipulate the luminance channel to minimize a regularized objective that
uniformly combines the naturalness and contrast criteria.

In summary, the main idea of the current contribution is to build a four-module
approach, where the naturalness and contrast are gradually improved from one module to
the next, taking into account specific requirements.

3. The Proposed Method
3.1. Preliminaries

The processing of the proposed method is depicted in Figure 2. There are four
operational modules involved. (a) Fuzzy clustering [35] is applied to the input image
to extract a set of key colors, which are the resulting cluster centers, in the RGB color
space. A subset of key colors corresponds to confusing image colors, called here confusing
key colors, while the rest of them to non-confusing colors, called here non-confusing
key colors. (b) The confusing key colors are ranked in decreasing order according to the
cardinalities of the associated clusters. Then, all key colors are mapped on the CIE 1931
chromaticity diagram defined on the xyY color space. An iterative process is carried out,
where in each iteration the highest ranked confusing key color, if necessary, is translated
(moved) to a different confusion line and becomes discriminated by the color-blind. (c) The
modified key colors are transformed back to the RGB space. To avoid suboptimal results,
an objective function that combines the naturalness and contrast criteria is minimized
by the differential evolution algorithm [36]. This module obtains the final recolored key
colors. (d) All pixels of the input image that are not discriminated by the color blind along
with the above recolored key colors are mapped in the lαβ space [37]. Then, each pixel
is recolored by a cluster-to-cluster color transfer approach, which involves the key colors
and the associated clusters. Finally, the recolored pixels are mapped into the RGB space,
obtaining the recolored image. The color space pipeline used is depicted on the top of
Figure 2.
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Figure 2. The basic structure of the proposed recoloring method.

The mapping from RGB to xyY is denoted as ϕ : RGB→ xyY , and from RGB to lαβ
as ψ : RGB→ lαβ . In the above transformations, all colors were gamma-corrected, and
the procedure was carried out in terms of the CIE Standard Illuminant D65 [1,38]. The
analytical description for the former can be found in [1,38], while for the latter in [39,40].

The lαβ space is a transformation of the LMS model and was introduced by Ruderman
et al. in [37]. The reason for using this space in this paper is that it reduces the correla-
tion between the three channels, enabling the elimination of undesirable cross-channel
effects [39,40]. Moreover, its logarithmic-based nature enables the uniform changes in chan-
nel intensity to be equally detectable, which is expected to derive an effective pixel-based
recoloring.

To obtain the dichromat simulation of a color we use the algorithm developed by
Vienot et al. [33,34]. This algorithm shows that the dichromat color space perceived by peo-
ple suffering from dichromacy is a plane in the RGB space, denoted as RGBD, where D refers
to protanopia or deuteranopia, interchangeably. Therefore, RGBD is a proper subspace of
the RGB space, RGBD ⊂ RGB, which means that x ∈ RGBD ⇒ x ∈ RGB . The mapping,
from RGB to RGBD is fD : RGB→ RGBD . Thus,RGBD = {x : x = fD(c), c ∈ RGB}.
Since c ∈ RGB its follows that it has three coordinates, one for each channel of the RGB
model: c = [cR cG cB]

T . Relationally, x belongs to the RGBD and, as showed above, it also
belongs to the RGB space. Therefore, x has also three channel values: x = [xR xG xB]

T . A
detailed description for the calculations of the transformation fD(·) is given in [33,34].

3.2. Module 1: Key Color Extraction

The N ×M sized input image is P =
[
pt1t2

]
with 1 ≤ t1 ≤ N, 1 ≤ t2 ≤ M and pt1t2

is
the (t1, t2) pixel of the image. To reduce the computational complexity, the image pixels
are grouped into m color bins Bk (1 ≤ k ≤ m), with radius ρ. The radius is selected to be
neither very small (because the computational time would be increased) nor large (because
the resulting color matching would be inefficient). Through experimentation we found that
a credible interval is ρ ∈ [5, 10]. For each bin, the representative color is the mean of all
pixels belonging to that bin. The set of the representative colors is C = {c1, c2, . . . , cm},
with m < N ·M. The dichromat simulation of C is: fD(C) = { fD(c) : c ∈ C}.

If the color ck and its dichromat simulation fD(ck) lie in a sphere with radius δ, which
is appropriately selected, then the two colors appear to be the same to a protanope or
deuteranope, meaning that the color ck is not confused, otherwise it is confused by the
color-blind. Thus, the set C is divided into two subsets, CA containing confusing colors
and CB containing non-confusing colors,

CA = {c ∈ C : ‖c− fD(c)‖ ≥ δ} (1)

CB = C− CA (2)
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The physical meaning of the parameter δ is to decide whether the distance between
ck and its dichromat simulation fD(ck) is small enough. If this is the case, the two colors
belong to the same color region in the RGB color space and therefore, the color-blind
perceives the color ck correctly. Otherwise, they belong to different color regions, meaning
that the color blind confuses the color ck with other colors. The parameter takes values
between 0 and 255. However, its value should not be very large or very small. Through
extensive experimentation on the Flowers and Fruits data sets, which were taken from the
McGill’s calibrated color image database [41] and contain 195 calibrated color images, we
found that a credible interval for the parameter δ in Equation (1) is δ ∈ [20, 30].

Next, the well-known fuzzy c-means [35] is applied separately to the sets CA and
CB. The target is to partition the elements of the above sets into nA and nB fuzzy clusters,
respectively. There are several reasons for choosing the fuzzy c-means algorithm. First,
it is not sensitive to random initialization. Second, it involves soft competition between
cluster centers, which implies that all clusters have the potential to move and to win data
avoiding the creation of underutilized small clusters. Finally, it can generate compact and
well separated clusters, thus effectively revealing the underlying data structure.

The sets of the resulting cluster centers are,

SA = {a1, a2, . . . , anA} and SB = {b1, b2, . . . , bnB} (3)

Only for CA, the clusters are denoted as: A1, A2, . . . , AnA .

Definition 1. A color ck (1 ≤ k ≤ m) of the set C belongs to the cluster Ai (1 ≤ i ≤ nA) if it
also belongs to the set CA and appears to have its maximum membership degree to that cluster. Then,
each pixel of the input image belonging to the corresponding bin Bk (1 ≤ k ≤ m) also belongs to
the cluster Ai. The cardinality of the cluster Ai is defined as the number of pixels of the input image
that belong to Ai, and it is denoted as |Ai|.

The elements of SA are the key colors of the confusing image colors, called confusing
key colors, and the elements of SB the key colors of the non-confusing image colors, called
non-confusing key colors. The problem is how to appropriately recolor the key colors of
SA to obtain the set SA,rec

SA,rec = {a1,rec, a2,rec, . . . , anA ,rec} (4)

where rec stands for the recoloring. The next two modules (presented in Sections 3.3 and 3.4)
describe in detail the above task.

3.3. Module 2: Key Color Translation

The sets SA and SB are mapped onto the xyY space as,

ϕ(SA) = {ϕ(a1), ϕ(a2), . . . , ϕ(anA)} (5)

ϕ(SB) = {ϕ(b1), ϕ(b2), . . . , ϕ(bnB)} (6)

with
ϕ(ai) =

[
ϕ(ai)x, ϕ(ai)y, ϕ(ai)Y

]T
, i = 1, 2, . . . , nA (7)

ϕ
(
bj
)
=
[

ϕ
(
bj
)

x, ϕ
(
bj
)

y, ϕ
(
bj
)

Y

]T
, j = 1, 2, . . . , nB (8)

where ϕ(ai)x is the hue, ϕ(ai)y the colorfulness, and ϕ(ai)Y the relative luminance coordi-
nate. The latter takes values in [0, 100]. Note that, in view of Equations (4), (5), and (7), the
problem is to recolor the elements of ϕ(SA) and map them back to the RGB space.



Sensors 2021, 21, 2740 8 of 30

The CIE 1931 chromaticity diagram is the projection of the xyY color space on the
xy-plane [1,9,38]. Thus, the key colors in Equations (7), (8) are projected as points on the
xy-plane,

vi =
[
vix, viy

]T
=
[

ϕ(ai)x, ϕ(ai)y

]T
(9)

uj =
[
uix, uiy

]T
=
[

ϕ
(
bj
)

x, ϕ
(
bj
)

y

]T
(10)

The above points include only the chromaticity coordinates, which consists of hue and
colorfulness. By defining the sets V = {v1, v2, . . . , vnA} and U = {u1, u2, . . . , unB}, we
can easily verify that there is a bijective correspondence between V and SA (thus, between
V and {A1, A2, . . . , AnA}), and also between U and SB.

To recolor the elements of ϕ(SA) we must, first, recolor the elements of V. The re-
coloring of V is denoted as Vrec = {v1,rec, v2,rec, . . . , vnA ,rec}. To address this issue, a
confusion-line based algorithm has been developed, which is described within the next
paragraphs.

The colors {v1, v2, . . . , vnA} are ranked in decreasing order according to the cardi-
nalities of the associated clusters {A1, A2, . . . , AnA},

rank(vi) = |A|i

/
nA

∑
`=1
|A|` (11)

The reason for using the above ranking function is that a key color corresponding to a
cluster with large cardinality is associated with a large image area, and its contribution to
the final result should be more important.

Proper subsets of the set of confusion lines of Judd’s revised chromaticity diagram [3,9]
for protanopia and deuteranopia are employed. The number of total confusion lines is
defined as QD, where D refers either to protanopia or deuteranopia. All colors belonging
to the same confusion line are not discriminated one from another and they are perceived
as a single color by the color-blind. Using the standard point-to-line distance, each one of
the colors of V and U is assigned to its closest confusion line. The distance of the point
v = (vx, vy) to the confusion line L that passes through the copunctal point (xcp, ycp) and
a point (x0, y0) in the chromaticity diagram is given as follows,

d(v, L) =

∣∣(xcp − x0
)(

y0 − vy
)
− (x0 − vx)

(
ycp − y0

)∣∣√(
xcp − x0

)2
+
(
ycp − y0

)2
(12)

Each confusion line is labeled as “occupied” if it contains at least one of the colors
{v1, v2, . . . , vnA} and {u1, u2, . . . , unB}, or “non-occupied” if it does not contain any

colors. The set of the “non-occupied” confusion lines is CLD =
{

L1, L2, . . . , L|CLD |

}
,

where |·| stands for set cardinality.
Next, we identify colors of the set V to be translated to different confusion lines.

Regarding the occupied confusion lines, the following cases can happen:

• Case 1: A confusion line contains at least one color from the set U. If it also contains
colors from the set V, then all these colors are going to be translated to separate
confusion lines.

• Case 2: A confusion line does not contain colors from the set U, but it contains at least
two colors from the set V. In this case, the color with the lowest rank remains on the
confusion line, while the rest of the colors are translated to different confusion lines.

• Case 3: A confusion line contains only one color, which belongs to the set V. In this
case, no color is going to be translated.

The identified colors to be translated form the set ΦV , with ΦV ⊆ V. The point-to-line
distances (see Equation (12)) between colors belonging to ΦV , which are points on the
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chromaticity diagram, and lines belonging to the set CLD are calculated. In addition, the
standard projection of the point v on the line L is calculated and symbolized as proj(v, L).

Then, an iterative algorithm takes place. Each iteration involves the following steps.
First the algorithm identifies the color v∗ ∈ ΦV with the highest rank as,

v∗ =
{

v′ ∈ ΦV : rank(v′) = max
v∈ΦV
{rank(v)}

}
(13)

Then, the non-occupied confusion line L∗ ∈ CLD that is closer to v∗ is determined,

d(v∗, L∗) = min
L∈CLD

{d(v∗, L)} (14)

Next, the v∗ is translated to its projection point v∗,tr on the line L∗,

v∗,tr = proj(v∗, L∗) (15)

Since the color v∗ has been removed it must be deleted form the set ΦV , while the
same holds for the line L∗ and the set CLD. Thus, the iteration ends with the updating
process of the sets ΦV and CLD,

ΦV = ΦV − {v∗} (16)

CLD = CLD − {L∗} (17)

Using the above iterative process, all colors of V = {v1, v2, . . . , vnA} are recolored,

vi,rec =

{
vi,tr, i f vi was translated

vi , otherwise
(18)

Finally, we obtain the recoloring of the set V as follows,

Vrec = {v1,rec, v2,rec, . . . , vnA ,rec} (19)

The next algorithm presents the above steps in a systematic manner.

Algorithm 1: Translation process of the colors belonging to the set V

Inputs: The sets V, ΦV , CLD; Output: The set Vrec
Set |ΦV |0 = |ΦV | and |CLD|0 = |CLD|
While |ΦV | > 0 and |CLD| > 0 do

1. Apply Equation (13) to estimate the v∗ ∈ ΦV with the highest rank.
2. Apply Equation (14) to identify the confusion line L∗ ∈ CLD, which is closer to v∗.
3. Apply Equation (15) to translate the color v∗ to its projection point v∗,tr lying on L∗.
4. Apply Equation (16) to update the set ΦV
5. Apply Equation (17) to update the set CLD

End While

6. Apply Equation (18) to recolor the elements of V and form the recolored set Vrec in
Equation (19)

Remark 1. Regarding Algorithm 1, the following observations are brought into spotlight.

1. It is possible that at least two colors will move to distant confusion lines. Although this will
increase contrast, the naturalness will be compromised.

2. It is recommended nA + nB ≤ QD so that |ΦV | ≤ |CLD|, and all colors of ΦV will move to
different confusion lines. We performed extensive experiments on the Flowers and Fruits data
sets, which contain 195 calibrated color images and were taken from the McGill’s calibrated
color image database [41] and found that the above condition is effective as far as the color
segmentation of the input image is concerned. However, depending on the designer’s choice,
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if nA + nB > QD it is possible to get |ΦV | > |CLD| and some key colors of ΦV will not be
removed. In this case the naturalness will be enhanced, and the contrast will be reduced.

Remark 2. In steps 1–3 the key color with the highest rank is translated first, while the key color
with the lowest rank last. Given that the higher ranked key color corresponds to larger image area,
the reasons behind this choice are enumerated as follows:

1. Let us assume that there is an occupied confusion line, which falls in the above-mentioned
Case 1. Thus, the confusion line contains key colors from the sets U and V and therefore, all
key colors belonging to V and lying on that confusion line must be translated. By translating,
first, the key color with the highest rank, this color will be removed to its closest non-occupied
confusion line, and the final color will be close to the original one. In this direction, a low
ranked key color will be removed to a distant non-occupied confusion line. Following this
strategy, large image areas will be recolored using colors similar to the original ones, while
small image areas using colors much different to the original ones. This fact directly implies
that the recolored image will preserve the naturalness criterion. On the other hand, if we
choose to remove the low ranked key colors first, the opposite effect will take place and the
naturalness criterion of the recolored image will be seriously compromised.

2. Let us assume that there is an occupied confusion line, which falls in the above-mentioned
Case 2. Thus, the confusion line contains key colors from the set V and therefore all but one
key colors must be translated. If we choose to remove the low ranked key colors first, then the
non-occupied confusion lines closer to the above occupied one will be exhausted, and the higher
ranked key colors will be forced to be removed to distant confusion lines. Thus, large images
areas will be recolored using much different colors to the original one and the naturalness
will be seriously damaged. Yet, the highest ranked key color will remain the same. However,
there is no guarantee that this counterbalancing effect will be strong enough to improve the
naturalness criterion.

Figure 3 illustrates the mechanism of Algorithm 1 using four color translations. Note
that the projection of color v4 lies outside the chromaticity diagram. This is a rare situation,
and the final position of v4,tr is selected above the diagram’s baseline, called “line of
purples”. This line contains non-spectral colors. Therefore, the selected point is located at a
very small distance ε = 0.01 above that line. Since we are moving on the same confusion
line, the result will be the same for the color-blind.

So far, the translation process focused on the chromaticity values ϕ(ai)x and ϕ(ai)y
of the color ϕ(ai) (see Equations (7) and (9)). Thus, the luminance coordinates ϕ(ai)Y
(i = 1, 2, . . . , nA) have not been considered yet. A simple approach to this problem would
be to avoid changing the values of luminance. However, in view of the difficulties reported
in Remarks 1 and 2, keeping the input image’s luminosity might lead to suboptimal results
as far as the naturalness and contrast criteria are concerned. Therefore, we further optimize
the adapted key colors by manipulating their luminance values only. This task will be
presented in the next module. For the moment, we complete the analysis of the current
module as indicated in the next paragraphs. Based on Equations (9) and (18) it follows that,

vi,rec =
[
vix,rec, viy,rec

]T
=
[

ϕ(ai)x,rec, ϕ(ai)y,rec

]T
(20)

Using Equations (5), (7), (18), and (20) the recoloring of ϕ(SA) reads as,

ϕ(SA)rec =
{

ϕ(a1)rec, ϕ(a2, rec)rec, . . . , ϕ(anA)rec
}

(21)

where
ϕ(ai)rec =

[
ϕ(ai)x,rec, ϕ(ai)y,rec, ϕ(ai)Y,rec

]T
(22)
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Note that the luminance values of the recolored key colors are defined as ϕ(ai)Y,rec
(i = 1, 2, . . . , nA). Their values will be determined in the next section in terms of an
optimization procedure.

3.4. Module 3: Key Color Optimization

Having estimated the recolored chromaticity values ϕ(ai)x,rec and ϕ(ai)y,rec for the
key colors of the set ϕ(SA)rec, the respective luminance values ϕ(ai)Y,rec should be defined
as functions of the input image’s luminance values ϕ(ai)Y. If ϕ(ai)Y,rec >> ϕ(ai)Y then
the image will be much brighter, while in the opposite case much darker. Imposing
such aggressive changes in the input image’s luminance will negatively affect the balance
between naturalness and contrast. To resolve this problem, the following domain of values
for the recolored luminance values ϕ(ai)Y,rec ∈ Θi is suggested,

Θi =


(0, ϕ(ai)Y + γ] , i f ϕ(ai)Y < γ

[ϕ(ai)Y − γ, 100] , i f 100− ϕ(ai)Y < γ

[ϕ(ai)Y − γ, ϕ(ai)Y + γ] , otherwise
(23)

In general, the above relation implies that the recolored luminance Yrec lies within
an interval with radius equal to γ and center the original image luminance Y, with
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Yrec ∈ [Y− γ, Y + γ], retaining the edges of the interval [0, 100] inviolable. The parameter
γ should neither be large nor small. Through trial-and-error it was found that a credible
value is γ = 5.

The set ϕ(SA)rec is mapped from the xyY into the RGB space as SA,rec = ϕ−1(ϕ(SA)rec),
where based on Equations (4), (20), and (21) each element of SA,rec is,

ai,rec = ϕ−1(ϕ(ai)rec) = h
(

ϕ(ai)Y,rec

)
, (i = 1, 2, . . . , nA) (24)

Note that the above inverse mapping defines the ai,rec ∈ RGB as a function of the
corresponding luminance ϕ(ai)Y,rec. The dichromat simulation of SA,rec is,

fD(SA,rec) = { fD(a1,rec), fD(a2,rec), . . . , fD(anA ,rec)} (25)

To this end, there are five sets involved in the optimization approach namely, SA
given in Equation (3), SA,rec reported in Equation (4) and its dichromat simulation
fD(SA,rec) in Equation (25), SB in Equation (3) and its dichromat simulation fD(SB) =
{ fD(b1), fD(b2), . . . , fD(bnB)}. Recalling that SA and SB respectively include the key
colors that correspond to the clusters of image’s confusing and non-confusing colors, the
color differences between the elements of SA and SB as perceived by a normal trichromat
are determined as ‖ai − bj‖ (1 ≤ i ≤ nA; 1 ≤ j ≤ nB). After the recoloring, the same
differences as seen by a dichromat color-blind are defined between the elements of the sets
fD(SA,rec) and fD(SB) as ‖ fD(ai,rec)− fD

(
bj
)
‖. To enable a dichromat to perceive the color

differences in a similar way as a normal trichromat does, thus enhancing the contrast of
the recolored image, the above distances must be as similar as possible [32],

E1 =
1

nAnB

nA

∑
i=1

nB

∑
j=1

∣∣‖ai − bj‖ − ‖ fD(ai,rec)− fD
(
bj
)
‖
∣∣ (26)

Following the same reasoning between the elements of SA and fD(SA,rec) [32],

E2 =
1

nAnB

nA

∑
i=1

nB

∑
j=1

∣∣‖ai − aj‖ − ‖ fD(ai,rec)− fD
(
aj,rec

)
‖
∣∣ (27)

Thus, E1 and E2 quantify the contrast enhancement of the recolored image [32]. To
further improve the naturalness, the subsequent error function is employed [32],

E3 =
1

nA

nA

∑
i=1
‖ai − ai,rec‖ (28)

Based on the above analysis, the overall optimization approach is defined as,

Minimize: E = (E1 + E2) + λE3 (29)

with respect to the luminance variables ϕ(ai)Y,rec i = 1, 2, . . . , nA.
As indicated in Equation (23) ϕ(ai)Y,rec ∈ Θi. Note that Equation (24) defines the

colors ai,rec as functions of ϕ(ai)Y,rec. The parameter λ is the regularization factor that takes
positive values, and its functionality relies on obtaining a counterbalance between contrast
and naturalness.

To perform the above optimization the well-known differential evolution (DE) algo-
rithm is applied [36]. The DE is carried out in three evolutionary phases namely, mutation,
crossover, and selection. It also includes two pre-defined learning parameters: (a) the
parameter that controls the population’s evolving rate denoted as FR ∈ (0, 1], and (b) the
parameter that controls the fraction of the feature values copied from one generation to the
next, denoted as CR ∈ [0, 1]. The population consists of q particles. Each particle encodes
the luminance variables, ϕ(a1)Y,rec, ϕ(a2)Y,rec, . . . , ϕ(anA)Y,rec. Thus, the size of feature
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space where the DE searches for a solution is nA. The maximum number of iterations
is tmax.

The result of the above-mentioned optimization is the final calculation of the recoloring
set SA,rec = {a1,rec, a2,rec, . . . , anA ,rec}.

3.5. Module 4: Cluster-to-Cluster Color Transfer

The implementation of this module obtains the recolored image, eventually. The
key idea is to elaborate on the clusters A1, A2, . . . , AnA , the respective cluster centers
SA = {a1, a2, . . . , anA}, and the recolored centers SA,rec = {a1,rec, a2,rec, . . . , anA ,rec},
obtained in the previous module, with ai ∈ RGB and ai,rec ∈ RGB.

According to Definition 1, each cluster Ai includes |Ai| pixels from the input image,
which correspond to confusing colors. Those pixels along with the cluster center ai and its
recoloring ai,rec are mapped from RGB in the lαβ space as

plαβ
t1t2

= ψ
(

pt1t2

)
=
[

pl
t1t2

pα
t1t2

pβ
t1t2

]T
such that pt1t2

∈ Ai (30)

alαβ
i = ψ(ai) =

[
al

i aα
i aβ

i

]T
(31)

and
alαβ

i,rec = ψ(ai,rec) =
[

al
i,rec aα

i,rec aβ
i,rec

]T
(32)

In [39,40], Reinhard et al. developed a color transfer technique between images. In
this paper, we adopt that technique and use it to perform color transfer between clusters.
A detailed analysis of the color transfer technique is given in [39,40].

Our target is to obtain a recoloring plαβ
t1t2,rec =

[
pl

t1t2,rec pα
t1t2,rec pβ

t1t2,rec

]T
of the pixels

plαβ
t1t2

that belong to the cluster Ai. We can easily calculate the standard deviation vector

σi = [σl
i σα

i σ
β
i ]

T
of the cluster Ai in lαβ color space.

Upon the assumption that alαβ
i,rec is the center of a hypothetical cluster, which has

the same cardinality with Ai and the same standard deviation σi,rec = σi, we use the
mechanism of Reinhard et al. [39,40] to transfer the color of the second hypothetical cluster
to the first cluster and to obtain the recoloring of each pixel as follows,

plαβ
t1t2,rec =

 pl
t1t2,rec

pα
t1t2,rec

pβ
t1t2,rec

 =


 pl

t1t2
pα

t1t2

pβ
t1t2

−
 al

i
aα

i
aβ

i


+

 al
i,rec

aα
i,rec

aβ
i,rec

 (33)

The colors plαβ
t1t2,rec are mapped back to the RGB space as,

pt1t2,rec = ψ−1
(

plαβ
t1t2,rec

)
such that pt1t2

∈ Ai (34)

Finally, the recolored image Irec is generated by recoloring all pixels belonging to the
clusters A1, A2, . . . , AnA , while the rest of the pixels remain unchanged.

3.6. Computational Complexity Analysis

In this section, the computational complexity of the algorithm is evaluated in terms of
distance calculations per iteration.

First, Module 1 is considered. Recalling that the size of the input image is N ×M, the
number of distance calculations involved in the generation of the bins Bk (1 ≤ k ≤ m) is less
than NMm. Also, it is easily verified that for the implementation of Equations (1) and (2),
NM distance calculations are needed. On the other hand, it is well known that the
complexity of the fuzzy c-means for c clusters and H data is O

(
H c2) [35]. As indi-

cated previously by Equation (3) and the corresponding analysis, the sets CA and CB,
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defined in Equations (1) and (2), are separately clustered by the fuzzy c-means into nA
and nB fuzzy clusters, respectively. Thus, the computational complexity of this proce-
dure is O

(
|CA|n2

A + |CB|n2
B
)
. By setting n = max{nA, nB}, and taking into account that

|CA|, |CB| < m it follows that O
(
|CA|n2

A + |CB|n2
B
)
∼ O

(
mn2). In total, for Module 1

we get O
(

NMm + Nm + mn2) ∼ O
(

NMm + mn2). By considering the maximum of n2

and NM it follows that NMm + mn2 ≤ 2m max
{

NM, n2}. Thus, the computational
complexity of Module 1 is O

(
m max

{
NM, n2}).

In Module 2, the mappings and the ranking process take place only once, and their
effects are not significant. Thus, there are only two dominant effects. The first is related to
the implementation of Equation (12) and the second to the implementation of Algorithm 1.
The Equation (12) is applied between the elements of the sets V and U and the QD confusion
lines. The number of distance calculations is (nA + nB)QD < 2nQD. In Algorithm 1,
step 1 involves less than |ΦV |0 calculations, while step 2 less than |ΦV |0 |CLD|0. Since
|ΦV |0 ≤ nA ≤ n and |CLD|0 < QD, the number of calculations for Algorithm 1 is
less than n(QD + 1). Thus, the total number of calculations in Module 2 is less than
2nQD + n(QD + 1), and since QD is fixed it follows that the computational complexity of
Module 2 is O(n) .

In Module 3, the estimations of E1, E2, and E3 (see Equations (26), (27), and (28))
involve 3nAnB, 3nAnB, and nA distance calculations, respectively. It can be easily shown
that the sum of the above numbers is less than 6n2 + n. In addition, the implementation
of the differential evolution is carried out using q particles. Thus, the total number of
distance calculations performed in this module is less than q(6n2 + n). Since q is fixed, the
computational complexity of Module 3 is O

(
n2).

Regarding Module 4, the most dominant effect is the implementation of Equation (33).

The resulting number of calculations is
nA
∑

i=1
|Ai| < NM, and the computational complexity

of Module 4 is O(NM) .
Thus, the overall computational complexity is O

(
m max

{
NM, n2}+ n + n2 + NM

)
.

We can easily show that m max
{

NM, n2}+ n + n2 + NM < 4m max
{

NM, n2}, which
implies that the computational complexity is modified as O

(
m max

{
NM, n2}).

4. Experimental Evaluation

The performance of the proposed method was evaluated and compared to the re-
spective performances of three related methods. The first, called here Method 1, is the
algorithmic scheme developed by Huang et al. in [25]. The second, called here Method 2,
was introduced in [27] by Wong and Bishop. Finally, the third, called here Method 3, was
developed by Ching and Sabudin in [28]. The basic structures of the three methods are
described in Section 2. At this point, it is emphasized that Method 2 produces only one
recolored image for both protanopia and deuteranopia [27]. The only difference is that the
dichromat simulated images of that recolored image are obviously different for protanopia
and deuteranopia. Therefore, the quantitative results obtained by this method are the same
for both the protanopia and deuteranopia cases. Table 1 depicts the parameter setting for
the proposed method. For the other three methods the parameter settings were the same
as reported in the respective referenced papers.

Two data sets were used. The first data set includes the Flowers and Fruits data sets
taken from the McGill’s calibrated color image database (http://tabby.vision.mcgill.ca
(accessed on 5 January 2021)) [41]. The Flowers data set includes 143 natural images, while
the Fruits data set 52 natural images. In total there were 195 natural images. Figure 4
illustrates four of those images.

http://tabby.vision.mcgill.ca
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Table 1. Parameter setting for the proposed method.

Module 1 Modules 2 and 3 Differential Evolution

Parameter Value Parameter Value Parameter Value

ρ 10 QD
(Protanopia) 17 q 20

δ 25 QD
(Deuteranopia) 15 FR 0.8

nA 5 γ 5 CR 0.6

nB 5 λ 0.2 tmax 100
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The second data set includes six paintings taken from the Web Gallery of Art (https:
//www.wga.hu (accessed on 28 September 2020)), which are depicted in Figure 5.
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To perform the overall comparison, three kinds of experimental evaluations were
conducted, which are analytically described in the following subsections.

4.1. Quantitative Evaluation

To conduct the comparative quantitative evaluation of the four methods, two perfor-
mance indices were employed. First the naturalness index [17,22,32]

Jnat =
1

N M

N

∑
t1=1

M

∑
t2=1
‖pt1t2

− pt1t2, rec‖ (35)

Second, the feature similarity index (FSIMc) that was developed in [42]. FSIMc takes
values in [0, 1] and quantifies the chrominance information of the recolored image in
relation to the original image. A higher value of FSIMc indicates that the recolored image’s
chrominance information is closer to the chrominance information of the original image.
The interested reader may refer to [42] for a detailed description of the index, while a brief
derivation of its basic structure is given in the Appendix A.

4.1.1. Quantitative Evaluation Using the Data Set of the Art Paintings

In this evaluation, the six art paintings are used to compare the four methods. Specifi-
cally, the values of the two indices Jnat and FSIMc obtained by the four methods are directly
compared. In addition, diagrammatic illustration of the translation process is given.

Table 2 presents the results for the naturalness index. Apart from the simulations
in Painting 6 (concerning both protanopia and deuteranopia), the proposed method out-
performs the other three methods, indicating a high-quality natural appearance of the
recolored images when they are viewed by a normal trichromat. This fact is also supported
by the subjective evaluation presented later on in this paper.

Table 2. Naturalness index (Jnat) values obtained by the four methods for protanopia and deuteranopia considering the
paintings reported in Figure 5.

Protanopia Deuteranopia

Painting Proposed Method
1

Method
2

Method
3 Proposed Method

1
Method

2
Method

3

1 4.8324 9.9372 13.2600 12.0398 7.4648 13.6121 13.2600 9.6462

2 2.2735 7.7299 8.3201 8.4141 2.4797 9.1270 8.3201 5.6994

3 4.4311 6.5477 9.3297 9.5566 2.1356 4.6454 9.3297 6.9328

4 4.2495 6.5726 11.8014 11.7561 4.1392 4.5544 11.8014 9.4815

5 3.7393 7.5320 8.7266 10.8788 3.9259 7.9379 8.7266 7.5273

6 2.6914 2.4915 6.7193 6.4676 2.6676 1.5740 6.7193 4.7121

Table 3 reports the FSIMc index values obtained by the four methods for both dichro-
macy cases. This table shows some interesting results. Regarding the protanopia case, it
seems that Method 1 appears to be very competitive to our proposed method. Similar
results are reported in the case of deuteranopia, where, in addition to the previous results,
Method 3 gives the best index value for Painting 1. In total, the proposed method achieves
a competitive performance when compared to the other methods, which directly implies
that the chrominance information of the recolored paintings is close to the original ones.
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Table 3. Feature similarity index (FSIMc) values obtained by the four methods for protanopia and deuteranopia considering
the paintings reported in Figure 5.

Protanopia Deuteranopia

Painting Proposed Method
1

Method
2

Method
3 Proposed Method

1
Method

2
Method

3

1 0.9386 0.9828 0.9654 0.9342 0.9443 0.9430 0.9654 0.9752

2 0.9939 0.9832 0.9663 0.9518 0.9690 0.9936 0.9663 0.9922

3 0.9891 0.9735 0.9254 0.9099 0.9922 0.9831 0.9254 0.9788

4 0.9454 0.9747 0.9647 0.9141 0.9212 0.9778 0.9647 0.9707

5 0.9911 0.9882 0.9676 0.9545 0.9907 0.9854 0.9676 0.9828

6 0.9895 0.9917 0.9631 0.9423 0.9953 0.9760 0.9631 0.9842

Figure 6 depicts a sample of two key color translations as described in Algorithm 1.
The first refers to Painting 1 and concerns the protanopia case, while the second refers to
Painting 5 and concerns the deuteranopia case.
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4.1.2. Quantitative Evaluation Using the Data Set of Natural Images

Herein, the four algorithms are compared in terms of statistical analysis using the two
above-mentioned indices and considering the 195 calibrated natural images taken McGill’s
color image database [41].

For both protanopia and deuteranopia we explored differences between the four
methods separately for the Jnat index and the FSIMc index. We utilized nonparametric
methods for statistical inference. For each CVD type by index combination, we employed an
overall 0.05 significance level. The Friedman test was used to assess differences in median
between the four methods. Follow-up, pairwise comparisons between our proposed
method and the other three were conducted using the Wilcoxon signed rank procedure. The
confidence intervals and associated p-values concerning follow-up comparisons reported in
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this paper are Bonferroni adjusted to ensure an overall 0.05 type-I error for each CVD type
by index combination. A detailed report of the results of the statistical analysis follows,
separately for each CVD type.

Table 4 and Figure 7a summarize the Jnat results for Protanopia. There were statisti-
cally significant differences in median Jnat between the four methods. The overall p-value
was <0.001 (based on the Friedman test).

Table 4. Descriptive Statistics of the Jnat and FSIMc indices for the protanopia case considering the
McGill’s Flowers and Fruits data sets (in total 195 images).

Method Min 1st Quartile (Q1) Median 3rd Quartile (Q3) Max

Jnat

Method 1 0.994 8.579 12.881 16.082 22.042

Method 2 5.262 10.149 12.181 14.003 17.825

Method 3 6.494 11.649 13.277 14.783 20.177

Proposed 0.036 2.297 4.802 8.208 17.376

FSIMc

Method 1 0.897 0.955 0.972 0.986 0.999

Method 2 0.836 0.916 0.939 0.955 0.986

Method 3 0.756 0.889 0.926 0.947 0.988

Proposed 0.885 0.959 0.973 0.986 1.000Sensors 2021, 21, x FOR PEER REVIEW 20 of 32 
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Table 5. Descriptive statistics of the observed Jnat and FSIMc differences between the three competing methods and the
proposed method for the protanopia case considering the McGill’s Flowers and Fruits data sets (in total 195 images).

Method Min Q1 Median Q3 Max 95% CIs for Medians
(Bonferroni adj.) p-Value (Bonferroni adj.)

Jnat Differences (Method–Proposed)

Method 1 −9.887 3.214 6.579 10.987 18.659 (5.736, 8.035) <0.015

Method 2 −3.085 4.611 7.020 8.435 13.017 (6.016, 7.400) <0.015

Method 3 −1.251 4.912 7.475 10.254 14.898 (6.810, 8.208) <0.015

FSIMc Differences (Proposed–Method)

Method 1 −0.078 −0.012 0.002 0.015 0.072 (−0.001,0.006) 0.603

Method 2 −0.046 0.022 0.037 0.053 0.118 (0.033, 0.040) <0.015

Method 3 −0.041 0.027 0.049 0.076 0.198 (0.042, 0.058) <0.015

Table 5 and Figure 7b provide a summary of the differences in Jnat (competing method
value–proposed method value). The median difference was statistically significantly greater
than zero. The p-values are Bonferroni adjusted and based on the Wilcoxon signed rank
testing procedure. We conclude that our proposed method was superior to the other three.

Table 4 and Figure 7c summarize the FSIMc results for protanopia. There were statisti-
cally significant differences in median FSIMc between the four methods (p-value < 0.001).

Table 5 and Figure 7d provide a summary of the differences in FSIMc (proposed
method value–competing method value). The p-values are Bonferroni adjusted and based
on the Wilcoxon signed rank testing procedure. Our proposed method was superior to
Method 2 and Method 3. On the other hand, the median difference in FSIMc between our
method and Method 1 was not statistically significant.

Table 6 and Figure 8a summarize the Jnat results for deuteranopia. There were
statistically significant differences in median Jnat between the four methods. The overall
p-value was <0.001 (based on the Friedman test).

Table 6. Descriptive statistics of the Jnat and FSIMc indices for the deuteranopia case considering the
McGill’s Flowers and Fruits data sets (in total 195 images).

Method Min 1st Quartile (Q1) Median 3rd Quartile (Q3) Max

Jnat

Method 1 0.312 6.901 11.590 15.072 20.727

Method 2 5.262 10.149 12.181 14.003 17.825

Method 3 2.842 7.155 9.485 12.239 15.946

Proposed 0.045 2.523 4.890 8.197 17.076

FSIMc

Method 1 0.897 0.956 0.976 0.910 1.000

Method 2 0.836 0.916 0.939 0.955 0.986

Method 3 0.790 0.949 0.972 0.985 1.000

Proposed 0.908 0.960 0.978 0.990 0.998
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Table 7. Descriptive statistics of the observed Jnat and FSIMc differences between the three competing methods and the
proposed method for the deuteranopia case considering the McGill’s Flowers and Fruits data sets (in total 195 images).

Method Min Q1 Median Q3 Max 95% CIs for Medians
(Bonferroni adj.) p-Value (Bonferroni adj.)

Jnat Differences (Method–Proposed)

Method 1 −8.516 0.460 4.880 10.072 19.144 (3.569, 7.572) <0.015

Method 2 −2.655 5.022 6.558 7.945 12.800 (5.866, 7.151) <0.015

Method 3 −2.209 2.259 3.768 5.335 10.739 (3.223, 4.345) <0.015

FSIMc Differences (Proposed–Method)

Method 1 −0.081 −0.020 −0.001 0.018 0.090 (−0.005, 0.006) 1.000

Method 2 −0.031 0.022 0.038 0.056 0.096 (0.033, 0.044) <0.015

Method 3 −0.084 −0.004 0.005 0.019 0.141 (0.001, 0.009) <0.015
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Figure 8. Boxplots for deuteranopia case considering the McGill’s Flowers and Fruits data sets (in total 195 images): (a) the
Jnat values (see Table 6), (b) Jnat differences between the three competing methods and the proposed method (see Table 7),
(c) FSIMc values (see Table 6), and (d) FSIMc differences between the three competing methods and the proposed method
(see Table 7).

Table 7 and Figure 8b provide a summary of the differences in Jnat between our
proposed method and the other three methods (competing method value–proposed method
value). The median difference in Jnat between our method and any competing method was
statistically significantly greater than zero. The p-values are Bonferroni adjusted and based
on the Wilcoxon signed rank testing procedure. Our proposed method was superior to the
other three methods.

Table 6 and Figure 8c summarize the FSIMc results for deuteranopia. There were statis-
tically significant differences in median FSIMc between the four methods (p-value < 0.001).

Finally, Table 7 and Figure 8d provide a summary of the differences in FSIMc (proposed
method value–competing method value). The p-values are Bonferroni adjusted and based



Sensors 2021, 21, 2740 21 of 30

on the Wilcoxon signed rank testing procedure. We conclude that our proposed method
was superior to Method 2 and Method 3. On the other hand, the median difference in
FSIMc between our method and Method 1 was not statistically significant.

In summary, there were statistically significant differences between the four methods
for all four CVD types by index combinations. Follow up testing revealed that: (a) our
proposed method performed better than the other three methods in terms of Jnat, for both
protanopia and deuteranopia, (b) our proposed method performed better than Method 2
and Method 3 in terms of FSIMc, for both protanopia and deuteranopia, (c) there was no
difference in performance in terms of FSIMc between our proposed method and Method 1,
either for protanopia or deuteranopia.

4.2. Qualitative Evaluation

In this section visual comparison is conducted considering the paintings in Figure 5.
Figure 9 illustrates the results for the case of protanopia using Paintings 1, 3, and 4.
Considering Painting 1 (rows 1 and 2), the proposed recolored image clearly enhances
the contrast of the depicted cows. In addition, it softly modifies the background and the
grass, maintaining the overall painting’s naturalness. Those properties are passed in the
dichromat simulation of the recolored painting, also. On the other hand, Methods 1 and 2
enhance the contrast by mainly modifying the background and the grass. However, this
strategy imposes an apparent negative effect on the naturalness. Method 3 also changes
the background but not as much as Methods 1 and 2. To enhance contrast, it chooses to
use mainly pure green color for the cows resulting in an unnatural representation of the
painting.

In the case of Painting 3 (rows 3 and 4), the colors used by the proposed method
are closer to the original painting. Moreover, the contrast (especially in the dichromat
simulated painting) is enhanced when compared to the other methods. This fact is obvious
at the edge line that separates the flowers and the background. The recoloring of Method
1 seems to be more competitive to our method. In Method 2 the colors of the dichromat
simulated painting look alike the colors of the respective modified painting. While the
same characteristic appears in the adapted paintings obtained by Method 3, the contrast in
this case provides better object discrimination than Methods 1 and 2.

In Painting 4 (rows 5 and 6) the effect of the contrast enhancement is obvious regarding
the proposed method. Specifically, the method chooses colors that enable the color-blind
to easily discriminate between different areas of the painting. This effect is justified by
the luminance optimization process. Regarding this issue, Methods 2 and 3 seem to be
more competitive to our method, while the contrast of Method 1 has not been enhanced
significantly.

Figure 10 summarizes the results for the case of deuteranopia using Paintings 2, 5, and
6. In the case of Painting 2 (rows 1 and 2), Methods 1 and 3 perform the color adaptation
using mainly green color. On the other hand, Method 2 is slightly diversified from the
above two methods. As far as the proposed method is concerned, the adapted colors are
closer to the original colors, retaining the painting’s aesthetics and therefore its naturalness.
Note that in the simulated painting of the proposed method the different areas of the
paintings are clearly distinguishable one from another.

In the case of Painting 5 (rows 3 and 4) the proposed algorithm obtains the best tradeoff
between naturalness and contrast when compared to the rest of the methods. For example,
the color of the cloak in our recolored painting resembles the color of the original image,
while the dichromat simulated painting obtains more pleasant contrast enhancement than
the other three methods.
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Finally, in the case of Painting 6 (rows 5 and 6), the results support the above-
mentioned remarks. Clearly the recolored painting obtained by the proposed method
chooses more pleasant colors retaining the overall image aesthetics. Moreover, in the
dichromat simulated image, the contrast is effectively enhanced providing better discrimi-
nation abilities for the color-blind.

4.3. Subjective Evaluation

The four methods were evaluated in terms of pairwise comparisons performed by 28
volunteers. The responses of the volunteers were completely anonymous and no personally
identifiable information was captured. Each volunteer was subjected to the well-known
Ishihara test [43], which identifies if a person is protanope, deuteranope, or has normal
color vison. The test suggested that eight are normal color viewers, two protanopes, seven
protanomalous trichromats, three deuteranopes, and eight deuteranomalous trichromats.

Color confusions between protanopes and protanomalous trichromats are qualita-
tively similar, while the same holds between the deuteranopes and deuteranomalous
trichromats [3,44]. This remark justifies term “protan” for protanopia/protanomaly and
“deutan” for deuteranopia/deuteranomaly [3,44]. Based on this remark, three groups were
identified: (a) Group1 including eight normal color vision viewers; (b) Group 2 including
nine protan viewers; (c) Group 3 including 11 deutan viewers. The tested images were
the six paintings reported in Figure 5. To carry out the evaluation, the subsequent three
questions were used. Q1: “Which image looks more similar to the original one?” Q2:
“Which image has the most pleasant contrast?” Q3: “What is your overall preference?”
The first question refers to the naturalness, the second to the contrast, and the third to the
overall appearance of the recolored images.

For Group 1 two experiments took place. In the first experiment, called experiment 1,
viewers were asked to indicate their binary preferences for the above-mentioned questions
regarding the protanopia (protan case) recolored images. Given the six images and the
eight viewers belonging to Group 1, the comparison between a specific pair of methods
was conducted using 48 binary choices for each pairwise comparison. Since there were six
pairwise cases, the number of binary choices, called preference scores, between all pairs of
algorithms was equal to 288 per question. In the second experiment, called experiment 2,
the viewers did the same procedure regarding the deuteranopia (deutan case) recolored
images, obtaining again 288 preference samples per question.

For Group 2 and Group 3, the first question Q1 was discarded. The reason behind this
choice relies on the fact that when protans and deutans look at the original image they do
not perceive it correctly, and any attempt to judge whether the recolored image is similar
or not to the original will fail. Therefore, for Groups 2 and 3 only the questions Q2 and
Q3 were considered for the protanopia and deuteranopia recolored paintings, respectively.
Given the six images and the nine viewers belonging to Group 2, the comparison for a
specific pair of algorithms was conducted using 54 binary choices. Since there were six
pairwise cases, the total number of binary preferences between all pairs of algorithms was
equal to 324 per question. Following the same analysis for the Group 3, which included
11 participants, we obtained a set of 396 binary choices for each question.

The pairwise-comparison data were analyzed by the Thurstone’s law of comparative
judgement, case V [45]. Case V of Thurstone’s comparative judgment law is a classical
tool to perform ranking of items based on subjective choices of individuals by measuring
the individuals’ preference orderings for some stimuli taken from a set of discrete binary
choices. In his seminal paper [45], Thurstone proposed a solution in calculating the average
preference scores for each item, which Mosteller later showed was the solution to a least
squares’ optimization problem [46]. In this paper, the items correspond to the four methods,
and the Thurstone–Mosteller fitting model is used to estimate the average preference scores.

The results from the above analysis are depicted in Figure 11 for the Group 1, and in
Figure 12 for the Groups 2 and 3.
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Figure 11. Average preference scores (blue column bars) and the corresponding 95% confidence intervals (error bars) of
the pairwise comparisons for the participants belonging to Group 1: (left column) reports the results for experiment 1
(recolored paintings for protanopia) for the three questions, and (right column) reports the results for the experiment 2
(recolored paintings for deuteranopia) for the three questions.

Figure 11 illustrates the average preference scores and the corresponding 95% confi-
dence intervals of the pairwise comparisons between the four methods with respect to the
normal color vision participants regarding the three aforementioned questions Q1, Q2, and
Q3. Recalling that Q1 refers to the naturalness, Q2 to the contrast, and Q3 to the overall
appearance of the recolored paintings, we can easily point out the following observations.
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Figure 12. Average preference scores (blue column bars) and the corresponding 95% confidence intervals (error bars) of the
pairwise comparisons for the participants belonging to Group 2 and 3: (first raw) reports the results for the protan viewers
regarding the protanopia recolored images and the questions 2 and 3, and (second raw) reports the results for the deutan
viewers regarding the deuteranopia recolored paintings and the questions 2 and 3.

First, the analysis indicates that the normal color vision viewers clearly preferred the
proposed method for all questions and cases of recolored paintings (protan and deutan).
In particular, the participants’ preference to the proposed method becomes more evident
in Question 2—Protan, Question 2—Deutan, and Question 3—Deutan cases. Second, the
most competitive method to our proposed one is Method 1 (Huang et al. [25]). Indeed,
apart from the case Question 2—Deutan, that method outperformed the other two. Third,
Method 2 (Wong and Bishop [27]) performs better than Method 3 (Ching and Sabudin [28]).

Figure 12 illustrates the average preference scores and the corresponding 95% con-
fidence intervals of the pairwise comparisons between the four methods with respect to
Group 2 and Group 3, regarding Questions 2 and 3. The analysis illustrated in this figure
directly indicates the superiority of the proposed method, supporting the results reported
in Figure 11. However, the difference between the proposed and the other three methods
has been clearly reduced for both the protans and deutans when compared to the results
in Figure 11. As far as the other three methods are concerned, Method 2 outperforms the
others in two cases of deutan viewers (second raw in Figure 12), while each one of Method
1 and Method 3 in only one, respectively.

In summary, the results of the subjective evaluations show that the proposed method
improves the visual details, enhances the contrast, and provides a pleasant appearance for
normal color vision viewers as well as for protans and deutans.

5. Discussion and Conclusions

This contribution presents a novel method to modify color images for protanopia
and deuteranopia color vision deficiencies. The method consists of four main modules,
which are applied in sequence. The first module concerns the color segmentation of the
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input image and the generation of a number of key colors that might be confusing or
non-confusing for the color-blind. The second module maps the key colors onto CIE 1931
chromaticity diagram, where a sophisticated mechanism removes confusing key colors that
lie on the same confusion line to different confusion lines so that they can be discriminated
by the color-blind. Specifically, each confusing key color is translated to its closest non-
occupied confusion line. Next, the above modified key colors are further optimized in the
third module through a regularized objective function. Finally, the fourth module obtains
the recolored image by adapting the pixels of the input image that correspond to confusing
key colors using a color transfer technique.

The implementation of the proposed method is carried out by considering two basic
criteria. First, the preservation of the natural appearance of the recolored image in relation
to the original input image. Second the contrast enhancement between different image areas.
The former is related to the preservation of the recolored image aesthetics as perceived by
a normal color vision viewer. The latter refers to the discrimination of image areas that
include colors confused by the color-blind.

The above-mentioned criteria are implemented throughout the whole method. To
justify that conclusion the following remarks are pointed out. First, the image pixels that
are recolored are those that correspond to the confusing key colors. Thus, the part of the
input image that corresponds to non-confusing colors remains unchanged; a fact that favors
the naturalness criterion. Second, in the key color translation process, the key colors that lie
on the same confusion line are removed to different confusion lines. This strategy enhances
the contrast because colors that were initially confused can now be discriminated by the
color-blind. Moreover, since each confusing key color is moved to its closest non-occupied
confusion line, the recolored key colors will be close to the original ones, preserving the
naturalness criterion. Finally, the optimization procedure presented in the third module
uniformly takes into account both criteria and finally obtains an optimal recoloring of the
input image.

For a full validation of the proposed method, extensive experimental studies were
conducted. The validation demonstrated the improved performance compared to other
three recoloring methodologies. By way of the next steps, future research efforts could
be made in the following directions. First, in extending the methodology to cope with
the tritanopia and anomalous trichromacy defects. Second, in developing more effective
machine learning approaches in the recoloring process. Third, in implementing more
sophisticated optimization procedures to maintain an optimal tradeoff between naturalness
preservation and contrast enhancement.
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Appendix A

In this Appendix, a brief description of the form of the FSIMc index is given. Further
details can be found in reference [42]. The analysis involves the input image P =

[
pt1t2

]
and its recolored image Prec =

[
pt1t2,rec

]
, (1 ≤ t1 ≤ N; 1 ≤ t2 ≤ M).

To obtain the FSIMc index the above two images are transformed into the YIQ color

space. The transformation of pt1t2
is pYIQ

t1t2
=
[

pY
t1t2

pI
t1t2

pQ
t1t2

]T
. Relationally, the transfor-

mation of pt1t2,rec is pYIQ
t1t2,rec =

[
pY

t1t2,rec pI
t1t2,rec pQ

t1t2,rec

]T
. Only for the luminance channel

Y, for each of the above pixels, we calculate the phase congruencies (PC), which are denoted
as PC(pY

t1t2
), PC(pY

t1t2,rec). In addition, only for the luminance channel, we calculate the
respective image gradient magnitudes (G), which are denoted as G(pY

t1t2
), G(pY

t1t2,rec).
The maximum value between PC(pY

t1t2
), PC(pY

t1t2,rec) is

PCmax, t1t2 = max
{

PC(pY
t1t2

), PC(pY
t1t2,rec)

}
(A1)

Next, the following similarity measures are estimated,

SPC, t1t2 =
2 PC(pY

t1t2
) PC(pY

t1t2,rec) + θ1(
PC(pY

t1t2
)
)2

+
(

PC(pY
t1t2,rec)

)2
+ θ1

(A2)

SG, t1t2 =
2 G(pY

t1t2
) G(pY

t1t2,rec) + θ2(
G(pY

t1t2
)
)2

+
(

G(pY
t1t2,rec)

)2
+ θ2

(A3)

Relationally, for the chromaticity channels I and Q the subsequent similarity measures
are estimated,

SI, t1t2 =
2 pI

t1t2
pI

t1t2,rec + θ3(
pI

t1t2

)2
+
(

pI
t1t2,rec

)2
+ θ3

(A4)

SQ, t1t2 =
2 pQ

t1t2
pQ

t1t2,rec + θ4(
pQ

t1t2

)2
+
(

pQ
t1t2,rec

)2
+ θ4

(A5)

To this end, the FSIMc index is defined as follows,

FSIMc =

∑
t1, t2

SPC, t1t2 SG, t1t2

(
SI, t1t2 SQ, t1t2

)η PCmax, t1t2

∑
t1, t2

PCmax, t1t2

(A6)

The detailed calculation procedure of the phase congruencies and image gradient
magnitudes as well the appropriate values for the parameters θ1, θ2, θ3, θ4, and η are
given in reference [42].
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