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Introduction
Outbreaks and isolated cases of Bacillus anthracis (B. anthracis) infection in the United 
States and Europe over the past 15  years and this bacterium’s weaponization poten-
tial, have raised persistent concerns [1–3]. Invasive forms of infection produce shock 
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resistant to supportive measures and have a poor prognosis [3–5]. Anthrax lethal and 
edema toxin (LT and ET) have long been associated with B. anthracis lethality. Lethal 
toxin is a potent inhibitor of stress kinase pathways while ET has adenyl cyclase activity 
that increases intracellular cAMP to very high levels [3]. Both have the ability to produce 
shock and organ injury in animal models [6]. Notably though, shock and lethality with 
LT and ET have been shown not to be associated with the kind of systemic inflammatory 
response associated with bacterial sepsis [7, 8]. However, increasing evidence suggests 
that the B. anthracis cell wall and its peptidoglycan (PGN) component may contribute to 
shock and lethality with this bacterium, in part by stimulating maladaptive inflammatory 
responses [5, 9]. Infusion of viable lethal B. anthracis in baboons produced increases in 
inflammatory cytokines, shock and organ injury [10]. We then showed that B. anthracis 
cell wall alone produced a similar inflammatory response and lethality in rats [11]. In a 
subsequent study we conducted comparing similarly lethal 24-h challenges of B. anthra-
cis LT, ET or purified cell wall PGN in rats, only PGN produced significant increases in 
circulating inflammatory cytokine and nitric oxide levels and coagulopathy consistent 
with disseminated intravascular coagulation (DIC) [12]. The pattern and time course of 
these coagulopathic changes with anthrax PGN challenge were also noted in a baboon 
model by another group that has studied this component’s inflammatory effects [13–16]. 
Although excessive inflammation is implicated in the pathogenesis of cell wall compo-
nents from other bacteria, it may be more important during B. anthracis infection which 
produces exceptionally high bacteria burdens in blood and tissue and provides a poten-
tially large PGN reservoir [17–19].

While it is clear B. anthracis PGN stimulates a host inflammatory response, whether 
this proinflammatory effect contributes to lethality and organ injury is unknown. To 
examine this question, we pre-treated Sprague-Dawley rats with high, medium or low 
doses of either hydrocortisone (HC), a nonselective anti-inflammatory agent, or tumor 
necrosis factor soluble receptor (TNFsr), a selective one. Rats were then challenged 
with 24-h anthrax PGN infusions to simulate its release during bacterial infection. We 
hypothesized that suppressing host inflammation, either non-selectively with HC or 
selectively with TNFsr, would reduce PGN-associated lethality, inflammatory cytokine 
levels, and organ injury.

Methods
Animal care

This study was approved by the Animal Care and Use Committee of the Clinical Center 
of the National Institutes of Health, protocol #ASP CCM 1801.

Study design

Nineteen weekly experiments were performed examining either hydrocortisone (HC) 
or TNFsr (Additional file 1: Table S1). Male Sprague-Dawley rats (n = 198 total) weigh-
ing 250 to 300  g with indwelling carotid arterial and jugular venous catheters were 
challenged with an LD40 to LD80 dose of B. anthracis PGN infused over 24 h via the 
venous catheter. Three sets of weekly experiments examined either high, medium or 
low doses of HC (125, 12.5 or 1.25 mg/kg, respectively) and three other sets examined 
high, medium or low doses of TNFsr (2000, 1000 or 333 μg/kg, respectively). In each 
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weekly experiment, animals were randomized to receive the dose of anti-inflammatory 
agent being studied (n = 4 to 6) or diluent (control, n = 4 to 6) administered 6 h before 
(T-6) and at the time the PGN infusion was started (T0). From 6 h before until 48 h fol-
lowing the start of the PGN infusion, animals had mean arterial blood pressure (MBP) 
and heart rate (HR) continuously measured and data at 3 h intervals was analyzed. At 
4, 24 and 48 h after the start of PGN, 0.5 ml blood was drawn from the arterial cath-
eter for measurement of seven cytokines (IL-1β, IL-6, TNFα, MIP-1α, MIP-2, MCP-1 
and RANTES), nitric oxide (NO), complete blood count (CBC), arterial blood gas (ABG) 
with lactate, and chemistries with Na, K, Cl, alanine and aspartate amino-transferases 
(ALT and AST), creatine phosphokinase (CK) and blood urea nitrogen (BUN) and cre-
atinine (Cr). Sampled blood was replaced with saline 0.5  ml. Animals alive following 
168 h of observation were considered survivors and were euthanized. This study was ini-
tially designed to only include hemodynamic measures for 24 h. But after experiments 
testing the hydrocortisone dose 125  mg/kg were completed, a decision was made to 
extend these measures until 48 h.

Peptidoglycan and treatment preparation and dosing

Peptidoglycan was isolated and prepared from B. anthracis strain ΔSterne strain, which 
lacks capsule and toxins, as previously described [14, 16]. Briefly, bacteria grown over-
night on tryptic soy broth plates were boiled in 8% SDS for 30 min and centrifuged. The 
pellet was washed with endotoxin-free water and subjected to DNase I and RNase A 
treatment. The sample was boiled in 4% SDS for 30 min and washed three times with 
endotoxin-free water. The pellet was then treated with NaCl 2 M, washed six times with 
endotoxin-free water, dried, weighed, resuspended in endotoxin-free water and treated 
with hydrofluoric acid (HF) to remove the PGN-associated polysaccharide [20]. Fol-
lowing HF treatment, the PGN was treated with a denaturing buffer [50 mM Tris (pH 
8.0), 6 M guanidine HCl, 25 mM dithiothreitol (DTT)] at 60 °C for 1 h. Iodoacetamide 
75 mM was added and the preparation was incubated for 15 min in the dark to alkylate 
Cys residues. The reaction was stopped with DTT 40 mM. The PGN was resuspended 
in a buffer containing 50 mM Tris (pH 7.5), 1 M guanidine HCl, and 5 mM CaCl2 and 
was treated with 20 μg proteinase K, added every 12 h for 36 h at 50 °C. Finally, the PGN 
was washed three times with endotoxin-free water, dried, weighed, and resuspended in 
endotoxin-free water when used. It required 1.7 × 1010 CFU to produce 1 mg of purified 
PGN. The methods were previously shown to produce preparations free of other PGN 
binding molecules [12].

Three separate batches of PGN were employed for each dose of hydrocortisone inves-
tigated (i.e., one batch for each dose) and one batch for all TNFsr doses studied. Fol-
lowing preparation of each PGN batch, a survival dose response study was performed, 
and the PGN dose producing a lethality rate of 40 to 80% was employed in subsequent 
experiments. This dose was found to be 80 mg/kg administered at 3.3 mg/kg/h for 24 h 
for all experiments. As determined by the chromogenic limulus amoebocyte lysate assay 
(Clonogen, Germantown, MD) the lipopolysaccharide (LPS) content for each PGN 
preparation was ≤ 1.9 ng/mg and the LPS amount administered during a 24 h infusion of 
PGN for the average size animal studied was ≤ 152 ng/kg. Compared to diluent control 
rats (n = 6), a 24 h LPS infusion of 160 ng/kg in animals (n = 6) produced no lethality and 
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did not significantly increase IL-1β, IL-6, TNFα, MIP-1α, MIP-2, MCP-1, RANTES or 
NO at 4 or 24 h after the start of challenge (except MIP1α at 4 h, p = 0.007). By contrast, 
compared to another group of diluent controls (n = 14), a 24 h PGN infusion of 80 mg/
kg (n = 12) produced 50% lethality and significant increases in each of these parameters 
at 4 h (p = 0.005) and in IL-1β, MCP-1, MIP-1α, MIP-2 and NO at 24 h (p ≤ 0.009).

Based on a factor of 0.162 to convert animal to human dosing, the HC 125, 12.5 or 
1.25  mg/kg doses administered at T-6 and T0 in rats in these experiments would be 
equivalent to total doses in a 70 kg human of 2800, 280, and 28 mg [21]. These doses 
are comparable to a pulse, stress or maintenance HC dose, respectively, administered 
clinically [22–25]. The doses of TNFsr investigated here in rats (2000, 1000 and 333 μg/
kg administered at T-6 and T0) would be equivalent to total doses in a 70 kg human of 
45.4, 22.7, and 7.4 mg. The two higher TNFsr doses studied are equivalent to the 50 and 
25 mg doses recommended for humans with rheumatologic disease [26, 27]. The dose 
of 333 μg/kg employed here was greater than a dose of 250 μg/kg we previously showed 
was protective in rats challenged with lethal intravenous and intrabronchial E. coli chal-
lenges [28].

Laboratory measures

As previously described, protected catheters were attached to exteriorized arterial and 
central venous access ports on each animal [7]. Central venous catheters were attached 
via 3-way stop-cocks to a syringe pump to provide PGN as an infusion. Arterial cathe-
ters were connected to transducers to determine arterial blood pressure and heart rates. 
Arterial blood was collected for CBC, ABG and lactate, chemistry, cytokine and nitric 
oxide measures. Cytokine (IL-1β, IL-6, TNFα, MIP-1α, MIP-2, MCP-1 and RANTES) 
and NO levels and CBC and ABG were determined as previously described [12, 28].

Statistics

Survival times were plotted using Kaplan–Meier survival curves and analyzed using 
stratified log-rank tests and Cox proportional hazard model. For all other variables, we 
used linear mixed models to account for repeated measurements of each animal and the 
actual pairing of animals within each cycle. Standard residual diagnostics were used to 
check model assumptions. Due to limitations in the amount of purified PGN and ani-
mals available for study, the numbers of animals investigated with doses of either HC or 
TNFsr was based on whether there was a trend in efficacy noted in early experiments 
with each dose and the amount of PGN and animals available for study. Data were log-
transformed when needed. SAS version 9.4 (Cary, NC) was used for all analyses. All 
p-values are two-sided.

Results
Effects of hydrocortisone

Compared to diluent controls, following initiation of PGN challenge, survival with 
hydrocortisone was increased significantly with the high (125  mg/kg) and medium 
(12.5  mg/kg) HC doses [15 survivors of 23 total controls (65.2% survival) vs. 22 of 
22 HC 125  mg/kg animals (100% survival), p = 0.004; 11 of 23 controls (47.8% sur-
vival) vs. 25 of 25 HC 12.5 mg/kg animals (100% survival), p < 0.0001], but not with 
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the lowest dose (1.25 mg/kg) [3 of 9 controls (33.3% survival) vs. 5 of 11 HC animals 
(45.5% survival), p = 0.97] (Fig.  1). Compared to controls, high-dose HC increased 
mean arterial blood pressure (MBP) from 3 h after its first administration until 21 h 
after the start of the PGN infusion (p ≤ 0.05). Medium-dose HC increased MBP at 
12, 15, 27 and 30 h after the start of PGN infusion (p ≤ 0.05). Low-dose HC did not 
alter MBP significantly (p > 0.05 for all measures). Neither high nor medium-dose HC 
altered heart rate (HR) significantly although low-dose HC increased HR at 21, 30, 36, 
39, and 45 h after the start of PGN (p ≤ 0.05).

High and medium but not low-dose HC suppressed the intravascular inflammatory 
response stimulated by PGN. Compared to controls, after the start of PGN infusion, 
high-dose HC decreased all cytokines and NO at both 4 and 24 h (except for MCP-1 
at 24 h) and these decreases were significant for IL-1β, IL-6, TNFα, MCP-1, MIP-2, 
RANTES and NO at 4 h and for MIP-1α at 24 h (p ≤ 0.05) (Fig. 2, Additional file 1: 
Table S2). In a similar pattern, but less significantly, medium-dose HC decreased all 
cytokines and NO at 4, 24 and 48 h except for TNFα at 24 h, MIP-1α at 4 and 24 h and 
NO at 48 h. These decreases in IL-6 and NO with medium-dose HC were significant 
at 4 h (p ≤ 0.05). Different from high and medium-dose HC, low-dose HC was associ-
ated with non-significant increases in cytokines and NO levels at most time points 
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Fig. 1  This figure compares proportional survival and mean (± sem) serial changes in mean arterial 
blood pressure (MBP) and heart rate (HR) during and after a 24-h B. anthracis peptidoglycan infusion (PGN, 
horizontal arrows) in diluent (control) treated animals versus animals treated with either a high (125 mg/kg) 
(a), medium (12.5 mg/kg) (b) or low (1.25 mg/kg) (c) dose of hydrocortisone (HC). Hydrocortisone or diluent 
treatment were administered intravenously 6 h before and at the start of PGN infusion (inverted dark arrow 
heads). Survival is shown from the start of PGN and serial changes in MBP and HR were measured and shown 
from 6 h before until either 24 h (high-dose HC) or 48 h (medium and low-dose HC) after the start of PGN
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except for IL-1β, MIP-1α and NO at 4 h and IL-6 at the three time points that had 
non-significant decreases.

Consistent with their effects on intravascular inflammatory markers, high and 
medium-dose HC inhibited evidence of liver and muscle injury caused by PGN. Com-
pared to controls, high-dose HC significantly decreased alanine aminotransferase 
(ALT) at 4 and 24 h, aspartate aminotransferase (AST) at 24 h and CK at 4 h (p ≤ 0.05) 
(Fig. 3, Additional file 1: Table S3). Medium-dose HC decreased ALT, AST, and CK 
at 4, 24 and 48  h and these decreases were significant for each parameter at 24  h 
(p ≤ 0.05) as well as when averaged over the three time points (p ≤ 0.01). Low-dose 
HC did not alter these parameters significantly (p > 0.05 for all).

Compared to controls, high and medium but not low-dose HC produced several 
other significant changes on measured parameters (Table  1 and Additional file  1: 
Table S4). Consistent with corticosteroid’s hyperglycemic effects, high and medium-
dose HC increased blood glucose at 4 or 24 h, respectively (p ≤ 0.05). High-dose HC 
increased total circulating WBC, neutrophils and lymphocytes at 4 h and platelets at 4 
and 24 h while medium-dose HC increased neutrophils at 4 h, but decreased lympho-
cytes and total circulating WBC at 24  h (p ≤ 0.05). High-dose HC decreased serum 
chloride at 4 and 24  h while medium dose increased chloride at 4  h and decreased 
blood urea nitrogen at 24  h (p ≤ 0.05). High-dose HC increased arterial carbon 

a 

b 

c 

Fig. 2  This figure shows the mean effect (± SEM) of either a high (125 mg/kg) (a), medium (12.5 mg/kg) 
(b) or low (1.25 mg/kg) (c) dose of hydrocortisone (HC) compared to diluent (controls) on blood levels of 
IL-1β, IL-6, TNFα, MCP, MIP-1α, MIP-2, RANTES [all log10(pg/ml)] and nitric oxide [NO, log10(μM)] at 4 and 
24 h for high-dose hydrocortisone and 4, 24 and 48 h for medium and low doses following the start of a 
24 h peptidoglycan infusion. Down and upgoing going arrows indicate the amount that hydrocortisone 
decreased or increased, respectively, the parameter measured compared to control
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dioxide at 4 and 24 h and bicarbonate at 24 h, while medium-dose HC decreased both 
measures at 4 h p ≤ 0.05).

Effects of TNFsr

Following initiation of PGN challenge, compared to diluent controls, survival was 
increased with each TNFsr dose, but none significantly as follows; high dose [3 survi-
vors of 11 total controls (27.3% survival) vs. 4 of 11 TNFsr 2000 μg/kg animals (36.4% 
survival) p = 0.46); medium dose [5 of 22 controls (22.7% survival) vs. 6 of 22 TNFsr 
1000 μg/kg animals (27.3% survival), p = 0.26]; and the low dose [ 1 of 9 controls (11.1% 
survival) vs. 4 of 10 TNFsr 333 μg/kg animals (40% survival) p = 0.63] (Additional file 1: 
Fig. S1). These survival effects were consistent and not significantly different comparing 
the three TNFsr doses (p = 0.98). Therefore, to increase the power to detect an effect 
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of a 24-h peptidoglycan infusion. Down and upgoing going arrows indicate the amount that hydrocortisone 
decreased or increased, respectively, the parameter measured compared to control
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related to this selective anti-inflammatory agent, survival and the results from all other 
parameters were averaged across TNFsr dose for all further analyses.

Overall, compared to controls, TNFsr did increase survival in a positive trend 
(p = 0.16), but did not alter MBP significantly at any time point (p > 0.05 for all) (Fig. 4). 
However, TNFsr did increase HR from 6 to 45 h after starting PGN and this was sig-
nificant at 9  h (p = 0.04). Notably, TNFsr was associated with decreases in cytokines 
and NO at most time points measured and decreases in IL-6 and NO were both signifi-
cant at 4 h (p ≤ 0.05, Fig. 4 and Additional file 1: Table S5). TNFsr also decreased [mean 

Table 1  Mean (± SEM) effect of high (125 mg/kg), medium (12.5 mg/kg), or low (1.25 mg/
kg) hydrocortisone compared to  controls on  glucose, leukocytes, platelets, creatinine, 
blood urea nitrogen, electrolytes, and  arterial blood gas parameters at  4, 24 and  48  h 
after the start of peptidoglycan infusion

HC, hydrocortisone; BUN, blood urea nitrogen; Na, sodium; K, potassium; Cl, chloride, PaCO2, arterial carbon dioxide; HCO3, 
bicarbonate; PaO2, arterial oxygen

* p ≤ 0.05; ** p ≤ 0.001

HC dose 
(mg/kg)

Time (h) Glucose 
[log10(mg/dl)]

White 
blood cells 
[log10(×103/µl)]

Neutrophils 
[log10(×103/
µl)]

Lymphocytes 
[log10(×103/µl)]

Platelets 
[log10(×103/
µl)]

125 4 0.20 ± 0.07* 0.32 ± 0.05** 0.59 ± 0.08** 0.10 ± 0.05* 0.13 ± 0.06*

24 0.15 ± 0.08 0.03 ± 0.06 0.10 ± 0.08 0.001 ± 0.05 0.19 ± 0.06*

48 ND ND ND ND ND

12.5 4 0.01 ± 0.02 0.06 ± 0.06 0.28 ± 0.07** − 0.04 ± 0.06 0.09 ± 0.07

24 0.05 ± 0.02* − 0.18 ± 0.06* − 0.14 ± 0.08 − 0.17 ± 0.07* − 0.07 ± 0.07

48 0.02 ± 0.03 − 0.01 ± 0.08 0.11 ± 0.10 − 0.05 ± 0.09 0.02 ± 0.09

1.25 4 0.10 ± 0.07 0.03 ± 0.06 − 0.05 ± 0.14 0.08 ± 0.07 − 0.41 ± 0.19

24 − 0.08 ± 0.08 0.14 ± 0.11 0.10 ± 0.18 0.20 ± 0.11 − 0.37 ± 0.18

48 − 0.01 ± 0.09 − 0.14 ± 0.11 0.02 ± 0.18 − 0.13 ± 0.12 − 0.41 ± 0.19

Creatinine (µg/
dl)

BUN [log10(mg/
dl)]

Na (mmol/l) K (mmol/l) Cl (mmol/l)

125 4 47.1 ± 37.8 0.07 ± 0.05 − 1.1 ± 1.5 − 0.5 ± 0.3 − 2.6 ± 1.2*

24 64.1 ± 40.4 − 0.07 ± 0.06 0.2 ± 1.6 − 0.4 ± 0.3 − 4.2 ± 1.4*

48 ND ND ND ND ND

12.5 4 − 65 ± 89.1 − 0.02 ± 0.04 0.8 ± 0.5 − 0.1 ± 0.1 1.9 ± 0.6*

24 50.1 ± 97 − 0.14 ± 0.04* − 1.0 ± 0.6 0.03 ± 0.11 − 0.1 ± 0.7

48 ND − 0.05 ± 0.05 − 0.3 ± 0.7 0.2 ± 0.1 − 0.1 ± 0.9

1.25 4 34.8 ± 66.9 − 0.002 ± 0.09 0.6 ± 1.2 − 0.4 ± 0.4 − 0.34 ± 1.5

24 141.3 ± 108.8 0.11 ± 0.15 − 0.3 ± 1.9 − 0.2 ± 0.6 1.9 ± 2.4

48 − 114.2 ± 113.7 0.11 ± 0.15 2.4 ± 2.0 − 0.5 ± 0.6 2.1 ± 2.5

pH PCO2 (mmHg) HCO3 (mmol/l) Lac 
[log10(mmol/l)]

PO2 (mmHg)

125 4 − 0.02 ± 0.01 2.4 ± 0.9* 0.8 ± 0.7 − 0.001 ± 0.06 − 2.5 ± 5.2

24 0.001 ± 0.01 2.2 ± 0.9* 2.1 ± 0.7* − 0.09 ± 0.07 1.5 ± 5.8

48 ND ND ND ND ND

12.5 4 − 0.001 ± 0.01 − 1.9 ± 0.6* − 1.5 ± 0.4* 0.02 ± 0.04 1.5 ± 3.3

24 0.01 ± 0.01 − 0.7 ± 0.7 0.02 ± 0.4 − 0.05 ± 0.05 − 3.8 ± 3.9

48 − 0.01 ± 0.01 0.3 ± 0.9 − 0.2 ± 0.6 − 0.001 ± 0.06 0.4 ± 5.1

1.25 4 0.06 ± 0.07 − 1.8 ± 2.3 1.2 ± 1.6 − 0.05 ± 0.16 6.0 ± 12.8

24 0.01 ± 0.08 1.9 ± 3.7 − 0.2 ± 2.6 0.12 ± 0.22 − 2.0 ± 16.1

48 0.03 ± 0.08 0.9 ± 3.9 − 0.1 ± 2.7 0.01 ± 0.24 − 2.5 ± 16.5
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(± SEM) effect of TNFsr compared to control] lactate [log10(mmol/l)] at both 4 and 48 h 
(− 0.18 ± 0.06 and − 0.21 ± 0.09) and increased serum sodium at 24 h (1.6 ± 0.6 mmol/l) 
(p ≤ 0.05. Table 2 and Additional file 1: Table S6). Compared to controls, TNFsr did not 
alter any other parameter measured at any time point significantly (p > 0.05 for all).

Discussion
Although an early maladaptive host inflammatory response has been closely associ-
ated with the pathogenesis of many lethal bacteria, its role during B. anthracis infec-
tion is unclear. Lethal and edema toxins appear central to the lethality of B. anthracis, 
but not only elicit little host inflammation, actually inhibit the innate immune 
response and may promote early infection [7, 29–31]. However, our present findings 
support the possibility that excessive host inflammation stimulated by B. anthracis 
PGN also contributes to this bacteria’s lethality, an effect that may become stronger 
as the host’s bacterial cell wall burden increases. High and medium-dose HC limited 
PGN-associated intravascular inflammatory cytokine and NO levels while improving 
survival, hemodynamic function and evidence of liver and muscle injury. Administra-
tion of TNFsr, a selective anti-inflammatory agent, had limited effects, but was asso-
ciated with a trend towards increased survival and with early reductions in IL-6 and 
NO when examined across the three doses tested.

a b c

d

Fig. 4  a–c in this figure compares proportional survival (a) and mean (± SEM) serial changes in mean arterial 
blood pressure (MBP, b) and heart rate (HR, c) during and after a 24-h B. anthracis peptidoglycan infusion 
(PGN, horizontal arrows) in diluent (control) treated animals versus animals treated with tumor necrosis factor 
soluble receptor (TNFsr, averaged over the three doses tested; 2000, 1000, and 333 μg/kg). TNFsr or diluent 
were administered intravenously 6 h before and at the start of PGN infusion (inverted dark arrow heads). 
Survival is shown from the start of PGN and serial changes in MBP and HR were measured and shown from 
6 h before until 48 h after the start of PGN. d Shows the mean effect (± SEM) of TNFsr compared to diluent 
(controls) on blood levels of IL-1β, IL-6, TNFα, MCP, MIP-1α, MIP-2, RANTES [all log10(pg/ml)] and nitric oxide 
[NO, log10(μM)] at 4, 24 and 48 h following the start of the 24-h peptidoglycan infusion. Down and upgoing 
going arrows indicate the amount that TNFsr decreased or increased, respectively, the parameter measured 
compared to control
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The effectiveness of high and medium-dose HC in the present study likely relates to 
the direct effect endogenous or exogenous glucocorticoids have on inhibiting nuclear 
factor-κβ (NF-κβ), a transcription factor central to host cell proinflammatory responses. 
Peptidoglycan from B. anthracis and other Gram-positive bacteria, is a glycan poly-
mer composed of two alternating monomers: N-acetylmuramic acid and N-acetyl-
glucosamine [32, 33]. These monomers are joined by short stem peptides (4–5 l- and 
d-amino acids) that vary by bacteria type. The polymer also includes polysaccharides 
and lipoteichoic acid, both of which vary by bacteria type. Peptidoglycan and its com-
ponents, together or individually, represent pathogen-associated molecular patterns 
(PAMPs) that can elicit innate and adaptive inflammatory responses via their interac-
tions with immune cell membrane or cytosolic pattern-recognition receptors (PRRs) 
including toll-like receptor-2 (TLR-2), nucleotide-binding oligomerization domains 1 
and 2 (NOD-1 and NOD-2), respectively, and cryopyrin [32–35]. These PRRs ultimately 
all signal through NF-κβ. Activation of NF-κβ upregulates more than 100 genes includ-
ing ones for all of the inflammatory cytokines and chemokines measured here as well as 
inducible NO synthase that generates NO [36–39]. Glucocorticoid binding to glucocor-
ticoid receptor-α (GRα) is a primary inhibitor of NF-κβ and its downstream inflamma-
tory effects [40–42].

Consistent with our prior and present studies, administration of S. aureus PGN and 
lipoteichoic acid in a rat model produced lethality (60% mortality), increases in circu-
lating TNFα and NO levels and hepatic injury [43]. Administration of dexamethasone 
3 mg/kg (comparable to HC 75 mg/kg in the present model) 2 h before PGN challenge 

Table 2  Mean (± SEM) effect of  TNFsr averaged over  the  three doses tested compared 
to controls on alanine and aspartate amino transferases, creatine phosphokinase, glucose, 
leukocytes, platelets, creatinine, blood urea nitrogen, electrolytes, and arterial blood gas 
parameters at 4, 24 and 48 h after the start of peptidoglycan infusion

ALT and AST, alanine and aspartate aminotransferases; CK, creatine phosphokinase; BUN, blood urea nitrogen; Na, sodium; 
K, potassium; Cl, chloride; PaCO2, arterial carbon dioxide; HCO3, bicarbonate; PaO2, arterial oxygen

* p ≤ 0.05

Time (h) ALT 
[log10(U/l)]

AST 
[log10(U/l)]

CK [log10(U/l)] Glucose 
[log10(mg/dl)]

White 
blood cells 
[log10(×103/
µl)]

Neutrophils 
[log10(×103/
µl)]

4 − 0.11 ± 0.12 − 0.10 ± 0.11 − 0.05 ± 0.07 − 0.001 ± 0.04 0.03 ± 0.04 0.15 ± 0.08

24 − 0.05 ± 0.22 0.01 ± 0.21 0.03 ± 0.13 0.06 ± 0.05 0.12 ± 0.08 0.15 ± 0.14

48 0.03 ± 0.23 − 0.10 ± 0.22 − 0.08 ± 0.13 0.05 ± 0.09 − 0.02 ± 0.09 − 0.01 ± 0.16

Lymphocytes 
[log10 (×103/
µl)]

Platelets 
[log10(×103/
µl)]

Creatinine 
(µg/dl)

BUN 
[log10(mg/dl)]

Na (mmol/l) K (mmol/l)

4 0.02 ± 0.04 0.04 ± 0.07 − 20.4 ± 40.7 − 0.03 ± 0.04 0.5 ± 0.03 − 0.4 ± 0.3

24 0.12 ± 0.07 0.23 ± 0.12 3.8 ± 80.3 0.08 ± 0.07 1.6 ± 0.6* − 0.3 ± 0.3

48 0.004 ± 0.09 0.20 ± 0.14 35.7 ± 83.1 − 0.04 ± 0.07 0.7 ± 0.6 − 0.4 ± 0.3

Cl (mmol/l) pH PaCO2 
(mmHg)

HCO3 
(mmol/L)

Lactate 
[log(mmol/L)]

PaO2 (mmHg)

4 0.2 ± 0.5 0.01 ± 0.02 2.1 ± 1.3 1.7 ± 1.0 − 0.18 ± 0.06* − 5.6 ± 3.4

24 − 0.1 ± 1.0 0.03 ± 0.04 − 0.4 ± 2.5 1.9 ± 1.7 − 0.03 ± 0.09 − 1.3 ± 6.4

48 1.0 ± 1.0 − 0.02 ± 0.04 1.7 ± 2.6 1.7 ± 1.7 − 0.21 ± 0.09* 2.5 ± 6.6
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prevented lethality, increased blood pressure and reduced TNFα and NO levels and 
hepatic injury.

It is possible that high and medium-dose HC had protective effects here besides anti-
inflammatory ones. Hydrocortisone has mineralocorticoid effects which could have 
promoted sodium reabsorption and provided protective increases in intravascular vol-
ume. However, hemodynamic changes related to mineralocorticoids typically require 
several days to develop and sodium and potassium levels were not altered by high or 
medium-dose HC [44]. Alternatively, HC could have increased vascular smooth muscle 
responsiveness to endogenous catecholamines [44]. But blood pressure increases with 
the medium HC dose were not evident until after the start of PGN and its associated 
inflammatory cytokine and NO production.

We previously showed that 24  h B. anthracis PGN infusions similar to the present 
study produced significant increases in TNFα levels at 6 h that persisted at non-signifi-
cant levels at 24 and 48 h [12]. While TNFsr had effects on survival, IL-6 and NO in the 
present study that may implicate TNF in the lethal pathogenesis of B. anthracis PGN, 
this survival effect was far less pronounced than we observed with a lower TNFsr dose 
in E. coli challenged rats treated with antibiotics [28]. Lower TNFsr doses also improved 
survival significantly in antibiotic-treated mice challenged with S. aureus [45]. One 
interpretation of these findings is that other bacterial components present during a live 
bacterial challenge elicit lethal responses which are more TNFα dependent than with 
PGN alone.

Although this study suggests that host inflammatory mediator release is related to the 
lethal effects of B. anthracis PGN, it was not designed to investigate whether anti-inflam-
matory agents like HC or TNFsr have a therapeutic role. With the present model, such a 
study would have required anti-inflammatory agents be started no earlier than the start 
of the PGN infusion, and ideally sometime following that to simulate a patient with pro-
gressive infection. Furthermore, the potential adverse inhibitory effects of these agents 
on host defense and microbial clearance could only be tested in a model of live bacterial 
infection that would ideally also include antibiotic and other standard therapies. How-
ever, the present findings do have clinical implications. Patients progressing to severe 
anthrax infection have extensive extravascular fluid accumulation manifested as pleural 
and peritoneal effusions and tissue edema [4, 17, 46, 47]. Even though evidence suggests 
that lethal toxin disrupts endothelial barrier function, PGN-stimulated intravascular 
inflammation and coagulopathy could also contribute to this endothelial dysfunction 
[46, 48, 49]. Such inflammation is known to disrupt endothelial gap junction function 
and allows extravasation of protein and fluid [50, 51]. Consistent with that, B. anthra-
cis PGN administration in baboons was shown to disrupt endothelial gap junctions and 
increase vascular permeability measured with fluorescent labeled albumin [15]. At this 
time, based only on several small observational clinical studies, the CDC recommends 
consideration of corticosteroid use in patients with head and neck B. anthracis infection 
producing compromising edema of the airway [52]. The present findings are the first 
preclinical evidence we are aware of to provide support for this CDC recommendation.

In this and our previous present study, a highly lethal PGN dose infused over 24 h pro-
duced an early increase in circulating inflammatory cytokines that gradually subsided 
over 24 to 48 h. Under these conditions, HC and TNFsr had anti-inflammatory effects 
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with beneficial effects on survival and organ injury. However, PGN, like lipopolysaccha-
ride, under come conditions, has been shown to have immunosuppressive effects and 
may actually augment host defenses [53, 54]. Treatment strategies targeting PGN with B. 
anthracis or other Gram-positive bacteria, must account for the conditions under which 
this cell wall component elicits maladaptive harmful as opposed to adaptive beneficial 
host responses.

This study has limitations. First, it is unknown how the concentration of PGN 
employed in the present study relates to the levels occurring during live B. anthracis 
infection. The doses we employed in this and our prior study are comparable though to 
doses of B. anthracis PGN employed in a baboon model [12, 15]. Challenge with PGN 
in that model simulated changes associated with live B. anthracis challenge in a similar 
non-human primate model [7]. Second, the PGN preparation used here had very small 
amounts of LPS contamination. However, an LPS concentration greater than the high-
est level in the PGN batches employed produced no lethality and no significant changes 
in any of the same inflammatory markers measured in the HC and TNFsr experiments 
except for one. By contrast, the dose of PGN employed produced highly significant 
changes in all of these measures. Third, limitations on animal numbers and purified PGN 
prevented formal power analysis calculations for experiments as well as testing whether 
larger sample sizes or a wider range of treatment doses would provide stronger evidence 
regarding the effects of TNFsr or the lowest HC dose investigated. These restrictions 
also prevented determining whether HC or TNFs had inhibitory effects on PGN-asso-
ciated coagulopathy, tests which would have required additional PGN and animals for 
sampling. This limitation also prevented further exploration of a basis for the possible 
trend in survival and its associated inflammatory response noted with the lowest TNFsr 
dose studied. Fourth, blood measures with high-dose HC were only obtained over 24 h 
and the treatment’s effects on inflammatory mediators at 48 h are unclear. Finally, this 
model tested PGN alone, and as stated above, both LT and ET can inhibit components 
in the innate immune response which could alter the effectiveness of anti-inflammatory 
therapies themselves.

Conclusion
Invasive B. anthracis infection is associated with resistant shock and high lethality rates. 
While evidence supports the role LT and ET have in this lethality, these toxins do not 
produce the excessive intravascular inflammatory response observed in animals chal-
lenged with lethal B. anthracis doses. The present findings support the possibility that 
inflammation caused by B. anthracis cell wall PGN has lethal effects. The high bacterial 
loads patients and animals dying with B. anthracis provide a large PGN source. Further 
studies are necessary to determine whether anti-inflammatory agents like HC or more 
selective ones, add to the protective effects of standard and toxin directed therapies dur-
ing B. anthracis infection itself.

Disclaimer
The opinions expressed in this article are those of the authors and do not represent any 
position or policy of the National Institutes of Health, the US Department of Health and 
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