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Temporal structure of mouse courtship
vocalizations facilitates syllable labeling
Stav Hertz1, Benjamin Weiner2, Nisim Perets1 & Michael London 1,2✉

Mice emit sequences of ultrasonic vocalizations (USVs) but little is known about the rules

governing their temporal order and no consensus exists on the classification of USVs into

syllables. To address these questions, we recorded USVs during male-female courtship and

found a significant temporal structure. We labeled USVs using three popular algorithms and

found that there was no one-to-one relationships between their labels. As label assignment

affects the high order temporal structure, we developed the Syntax Information Score (based

on information theory) to rank labeling algorithms based on how well they predict the next

syllable in a sequence. Finally, we derived a novel algorithm (Syntax Information Max-

imization) that utilizes sequence statistics to improve the clustering of individual USVs with

respect to the underlying sequence structure. Improvement in USV classification is crucial for

understanding neural control of vocalization. We demonstrate that USV syntax holds valu-

able information towards achieving this goal.
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M ice emit ultrasonic vocalizations (USVs) in various
behavioral contexts1–8. Recently, this behavior has
gained interest as a proxy model for speech and lan-

guage9–13 and as a tool for behavioral phenotyping of neurode-
velopmental disorders14–18. However, to fully gain access to the
advantages provided by the information hidden in USVs, we need
adequate methods to analyze this complex signal.

Observing the spectrogram of the sound signal (Fig. 1a), it is
easy to appreciate that it is composed of distinct individual syl-
lables where the power in the ultrasonic range (>20 kHz) is made

of continuous stretches of positive power (USVs) or zero power
(silence). The periods of silence between USVs (inter-syllable
intervals, ISIs) follow a typical distribution with several distinct
peaks, suggesting a prototypical process of producing these
sounds. Thus, it is possible to parse the acoustic signal into
individual USVs and USV sequences based on the distribution of
ISIs (Fig. 1, and in refs. 3,12,19).

A closer look at these individual vocalizations suggests the
existence of classes. Many USVs have a rather simple form,
composed mainly of narrow-band frequency sweeps. Some other
USVs are composed of substructures of various sweeps, each of
which can change its length and central frequency, resulting in a
broad spectrum of shapes (Fig. 1a). Therefore, while the process
of parsing the sound into individual USVs is primarily one of
overcoming technical obstacles, the classification of the individual
USVs into syllable classes based on their acoustic features pre-
sents complex and fundamental challenges.

Individual vocalizations of human speech can be assigned into
well-known and distinct syllable classes. In sharp contrast, the
existence, number, and identity of these classes are unknown
when analyzing mouse USVs. Therefore, various approaches have
been taken in developing methods of labeling syllables. For
example, Holy and Guo3 and later19,20 have used frequency
jumps as the main feature of differentiating individual USVs, and
have labeled them according to the number and direction of the
jumps while ignoring other features (e.g., duration). Alternatively,
other algorithms have taken unsupervised learning approaches
without deciding upfront on hardwired features21–24. When the
same ensemble of USVs is labeled by different algorithms, there
might not be a one-to-one mapping between the resulting
labeling (Fig. 1b) and this will have important consequences, as
discussed below.

Figure 1a highlights another property of mouse vocalizations,
the existence of complex syllable sequences. Vocal commu-
nication systems in other species (e.g., human speech and bird
songs) are also based on sequences of sound units. Songbirds
are known to produce diverse and complex sequences or
“songs”25–27. Some of these songs contain hierarchical acous-
tical units: notes, syllables, and motifs28, which can be very
stereotypic (e.g., Zebra finch29,30) or have an underlying com-
plex syntax (e.g., Bengalese finches31,32). USVs produced by
male mice during courtship share some of the syntax char-
acteristics of bird songs3,19,33.

Taken together, the nonhomologous assignment of labels by
different labeling methods and the existence of complex struc-
tures in USVs sequences may lead to very different statistical
properties of labeled sequences from the same data. For example,
the distribution of the number of syllables with each label could
take many forms, and similarly, the probability of a syllable pair
appearing together in a sequence may vary. Therefore, the
selection of the labeling algorithm may lead to different scientific
conclusions and interpretations.

Here, we show that this undesirable consequence of
having different syntaxes from the same data could, in fact, be
useful in selecting and improving labeling methods. This is
based on the observation that a syntax imposed by an algo-
rithm dictates how well it predicts the label of the next syllable
in a sequence. A “meaningful” labeling should have a high
predictive power, which could then be taken as a measure for
the labeling quality. Moreover, the information that is present
in the sequence structure could improve the labeling. Using
information theory tools, we examine these ideas by compar-
ing the predictive power of various labeling methods, and we
suggest a simple way to incorporate optimization of the pre-
dictive power as an integral driving force of a labeling
algorithm.
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Fig. 1 Parsing and labeling of USV sequences. a A schematic diagram of
the recording setup and an example spectrogram of USV recording showing
two sequences. The yellow and orange frames zooming in on example USV
sequences composed of several syllables, displaying the richness of shapes.
Some shapes have distinctive features that may lead to natural
categorization, such as sudden jumps in frequency (e.g., syl. #3, #6).
However, syllables differ in many ways, including the duration of sub-
components (e.g., 3, 6, 7) or the number of sub-components (e.g., 1, 2 or 3,
4). Other features, e.g., syllable duration, have a continuous distribution
over a wide range, and their use for the distinction between syllable types is
less obvious (see also panel (c)). b Labeling examples by two illustrative
algorithms. Syllables are labeled with four labels, marked by the letters:
“RSTU”. Algorithm 1 labels by the number of subcomponents while
Algorithm 2 by syllable duration. The distributions of the labels,
presented in the pie charts, indicate that the algorithms are not
homologous. c–f Distributions of syllables parameters collected from
~345,000 syllables and ~33,000 sequences. c Syllable duration, d inter-
syllable interval (ISI), e average syllable frequency, and f number of
syllables in a sequence. g Correlation pattern between the durations of
adjacent syllables in sequences: expected pattern based on (c), and
measured pattern in the data). h same as g but for ISIs.
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Results
Analysis of basic USV properties suggests high-order struc-
tures. To study the differences between labeling algorithms we
compiled a database from our USV recordings. The recordings
were made during sessions of interaction between adult male and
female mice for a total of 78 h. We developed an analysis toolkit

(publicly available, see Methods) with a parsing algorithm to
detect in the audio files the exact start and end times of each USV
and each sequence of USVs. Applying this algorithm to our
recordings, we extracted 346,632 USVs, which were then stored in
the database along with their features. The individual USVs were
grouped into 33,481 sequences.

Figure 1c–f shows three fundamental properties of USVs in our
database: syllable duration, ISI, and syllable mean frequency. The
occurrence frequency of syllable duration fits a monotonically
decreasing exponential (two-sample Kolmogorov–Smirnov test:
D(1000)= 0.036, p > 0.05 (p= 0.56); see Methods for more
details) (Fig. 1c). The distribution of ISIs had two peaks, in
agreement with previous reports12,19; however, in our hands, the
two peaks occurred at shorter durations than previously reported.
The first peak was at 20 ms and a larger peak at around 70 ms.
Careful observation of the ISI distribution of different individual
mice revealed a more complex picture, in which some mice had
these double-peak distributions while others did not (Supple-
mentary Fig. 1). Figure 1f shows the sequence length distribution
in the database. Shorter sequences are more common than longer
ones, and the distribution has a one-term decreasing power
series fit (two-sample Kolmogorov–Smirnov test: D(1000)=
0.026, p > 0.05 (p= 0.78)).

We found a significant correlation in the distribution of
syllable duration (Pearson’s r test: r= 0.44, p < 0.001), such that
short syllables tend to follow short syllables and long ones to
follow long ones (Fig. 1g). Similar results were found for the
correlation of ISIs (Fig. 1h, Pearson’s r test: r= 0.17, p < 0.001). In
conclusion, the existence of correlations already at this level of
analysis (i.e., before labeling) suggests that USVs are not emitted
independently of each other and that USV sequences have a
nonobvious temporal structure.

Labeling of the same USVs with different algorithms. To test if
different labeling methods are homologous, we chose three
labeling algorithms that were recently published: MSA v1.319,
VoICE21, and MUPET22 (Fig. 2). We chose these algorithms
because (1) they represent different approaches to labeling, (2)
they require relatively low manual involvement, and (3) the
published algorithm provided code that could be applied to our
database with relatively minor modifications (see Methods). Here,
we refer to them as iMSA, iVoICE, and iMUPET to emphasize
that we used the modified algorithm, which was inspired by the
original one.

Figure 2a describes the key properties and the workflow of the
three methods. In short, iMSA is based on hardwired features
(pitch jumps), while iVoICE and iMUPET apply unsupervised
learning to cluster syllables. This clustering is done on a learning
set of a few thousands of USVs, resulting in a set of centroids
which represent the different clusters. iVoICE uses an hierarchical
clustering strategy, and iMUPET uses the k-means clustering
algorithm34 with a user-chosen predefined number of clusters.
The label of a USV is obtained by assigning each observed USV to
the closest cluster representative (centroid) using a similarity
metric function that is specific for each algorithm (spectral
similarity in the case of iVoICE and cosine distance in iMUPET).
Two example centroids are shown for each of the algorithms.

To compare the algorithms, we ran all of them with eight
labels. This gave a good balance of rich labeling on the one hand,
while still enabling the collection of enough higher-order
statistics, which will be important for later analysis. The number
of labels is a natural parameter for the iVoICE and iMUPET
algorithms, however, iMSA assumes only four labels, so we
obtained eight labels by splitting each label into two according to
the median syllable duration (Methods). Supplementary Figure 2

a

b

c

d

5000 syllables

Gammatone filter

Unsupervised

Training data

Pre-processing

Categorization

Labeling

Training

iVoICE iMUPET

4000 syllables

NA

Unsupervised

Simple

Up

Down

Multiple

Short Long

NA

Gap removal

Pitch jump

NA

iMSA

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Label Label Label

20 40 60
0

0.05

0.1

0.15

20 40 60 20 40 60
Syllable pair Syllable pair Syllable pair

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

0

1

1

104

2

23

3

84 75 66 57 48 321

0

1

1

104

2

2 3

3

84 75 66 57 48 321

C
ou

nt
 (1

0K
 s

yl
)

Actual

iMSA
iMUPET

Excpected

iMSA
iMUPET

Fig. 2 Labeling of the same data with different algorithms. a A concise
representation of the different algorithms that were adapted for this study.
iMSA (left column) first preprocesses the data for gap removal. It requires
no training data and labels the syllables based on their pitch jumps. The
four basic pitch jump labels: Simple (no pitch jump), Up, Down, and
Multiple. Each is then divided into two according to its median syllable
duration for a total of eight labels. iVoICE performs hierarchical clustering
on a training subset of 4000 syllables resulting in eight centroids that are
then used to label the rest of the syllables based on a similarity measure.
iMUPET algorithm performs a preprocessing gammatone filter on all
syllables and then uses the k-means algorithm to create centroids from
5000 syllables. These centroids are used to label the rest of the syllables
based on the cosine distance between the filtered syllable and the centroid.
b The distributions of the labeled USVs from the database are shown for
each algorithm, iMSA produces the most nonuniform distribution, and
iMUPET the most uniform one. The difference between the distributions
means that the algorithms are nonhomologous. c The distributions for pairs
of USVs are shown for each algorithm. The red line depicts the predicted
distributions derived from (b) assuming independence. The histograms are
sorted by the expected distribution. d Actual joint distribution of the labels
of iMSA and iMUPET for all USVs in the dataset and the expected joint
distribution assuming independence.
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presents example syllables that were sampled from each one of
the eight labels created by the three algorithms.

Figure 2b shows the distribution of the number of syllables
assigned to each of the eight labels for the three algorithms.
Because iMSA labels all syllables with no pitch jump as Simple
(long or short), the first two labels occupy over 50% of the data
and create a very non-uniform distribution compared to the two
other algorithms.

Like the analysis in Fig. 1g, we also computed the distributions
of pairs of labeled syllables imposed by the three algorithms
(Fig. 2c). The red line represents the expected distribution
(assuming statistical independence) derived from the distribu-
tions in Fig. 2b (this distribution was used for sorting the
histograms). It is easy to see that in all cases, there are deviations
from the expected distribution, implying that all algorithms
capture some high-order structure of USV sequences. However, it
is less obvious to deduce from that which algorithm captures
more of this complexity.

Even without comparing the labels of individual USVs, the
differences in the distributions in Fig. 2b already show that the
algorithms label USVs in a nonhomologous manner (i.e., it is not
that the labels can be permuted to obtain similar labeling) as
suggested in the introduction. However, it is possible that they
agree on the majority of the USVs, and there is a relatively small
group of USVs that are labeled differently. To better test this
possibility, we constructed the joint distribution between two
algorithms. For each USV in the database, we looked at the pair of
its label assigned by iMSA and iMUPET, and counted USVs for
each of these pairs. If this option was true, one would expect that
in each row in the joint matrix there would be one column with a
significantly high count, however, as depicted in Fig. 2f, this is not
the case. For most labels of iMSA, there is a fairly uniform
distribution of the count over the iMUPET labels and vice versa.
This distribution further strengthens the conclusion that the
algorithms are not homologous. On the other hand, comparing
this joint distribution with the expected one (Fig. 2d) reveals that
the mapping is also not independent. Similarly, Supplementary
Fig. 3 shows that when comparing the assignments of iMSA and
iVoICE there is also no one-to-one mapping between the
assigned labels.

The predictive power of labeling algorithms. Figure 2c suggests
that the difference between the distributions (of pairs of labels)
imposed by the algorithms on the same data may be used to
quantify the differences between them. Based on this observation,
we propose a framework for evaluating labeling algorithms. The
guiding principle is that a labeling that exposes regularities in
vocalization sequences is more likely to capture their underlying
statistical structure. The better the statistical model of the USV
sequences, the better the prediction it allows to draw about the
future of the sequence.

Therefore, we evaluate an algorithm by quantifying how well
the syntax model it imposes predicts the future of the sequence.

Given a USV dataset and a labeling method, the quantification
process is done in two steps: (1) generating the syntax model and
(2) calculating the model’s predictability. For step 1 (syntax
model), we applied a labeling algorithm to the USVs in the
database and obtained sequences of labeled USVs. We used
Markov chains of different order to represent the syntax model
and to account for the dependence of a syllable on its prefix.
Given that we assume that USVs come as individual syllables and
are assigned one out of a given number of labels, we consider only
discrete time and state-space Markov chains. In order to estimate
the model parameters from the data, we assumed that the
underlying Markov process is stationary and irreducible35. In our

case, this means that (1) we assume that the underlying
probabilities of label sequences are not changing with time (or
between recording sessions), and (2) it is possible to get to any
state from any other state in the Markov chain. We represent the
mth-order Markov model as a Suffix tree of depth m
(Fig. 3A–C36). Note that in our notation, a suffix is read
backwards in time, from right to left. In the leaves of the suffix
tree we store (1) the probability to obtain the suffix represented
by the branch leading to the leaf. For example, for the leaf in
Fig. 3 (e.g., in the branch DS, we keep p(DS) which counts how
many times the pair SD has appeared in all the sequences relative
to all pairs in all sequences. (2) The conditional probabilities for
each label given the suffix leading to the leaf. For example,
pðMjDSÞ; which is how many times M appeared following the
pair SD, relative to all the appearances of the pair SD.

In step 2, for a given suffix tree we evaluate its predictive power
by calculating the entropy rate of the mth-order Markov model.
The entropy rate quantifies the amount of uncertainty regarding
the label of the next USV given the syntax model and the labeled
syllables in the suffix of length m. A low entropy rate (bounded by
0 bits/symbol from below) means a high amount of predictability
while a high entropy rate means a high degree of uncertainty (and
is bounded from above by the log of the number of possible
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0th-order model. The dotted black lines mark the upper bound on the
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labels). The entropy rate is given by Hm ¼ �P
ij μiPijlogPij where

μi represents the probability of obtaining the suffix represented by
the branch leading to the ith leaf and Pij represents the
conditional probability of the jth label given the suffix represented
by the ith leaf35.

Definition of the SIS. Figure 3c demonstrates the application of
this strategy for a few illustrative cases. We labeled our USV
database using four simple labeling algorithms, and for each
algorithm computed the entropy rate for suffix tree models as a
function of the tree depths. The first algorithm (depicted in
green) uses only two labels: USVs containing pitch jump (J) or no
pitch jump (N). The entropy rate of this model is bounded from
above by 1 bit/symbol (dashed blue curve; when N and J appear
independently and with equal probability). The distribution of the
J and N syllables in our data was (43, 57%) and therefore with the
0th-order Markov model the entropy rate is 0.98 bits/symbol
(Fig. 3c). For a 1st-order Markov model, the entropy rate
decreases to 0.93 bit/symbol due to the apparent tendency of J
syllables to follow J (64%) and N to follow N syllables (67%).
Computing the entropy rate for higher-order Markov models
shows a modest decrease with the order, which saturates at order
4 (i.e., the additional contribution of the syllables beyond the first
4 in the suffix is negligible for predicting the label of the next
syllable).

Next, we considered two additional labeling algorithms. The
first is iMSA with the four original labels (Simple, Up, Down, and
Multiple; depicted in blue). The second was a variant where the
Up and Down labels were merged, and the Simple label was split
into Short and Long syllables (depicted in purple). With four
labels, the entropy rate is upper-bounded by 2 bits/symbol and for
the 0th-order Markov model both schemes are slightly below that
bound because the distribution of labels is not uniform.
Moreover, their 0th-order estimate of the entropy rate is not
equal. Like in the previous case, the entropy rate of both
algorithms decreases with increasing order of the Markov model.
Note that in all the cases, the entropy rate is significantly larger
than 0, implying that the production of a syllable is probabilistic
and even given the full history of the sequence, uncertainty
remains regarding its label. Lastly, it is worth noting (and will be
discussed further below) that the amount of drop in the entropy
rate between the 0th-order model (1.81 and 1.98, respectively)
and the 4th-order model (1.57 and 1.8, respectively) is not
identical. Hence, the information gain between the case where the
previous syllable is unknown and the case where we know the
previous four syllables is not the same for the two models. We
also considered an algorithm with five labels (Simple-Short,
Simple-Long, Up, Down, Multiple; depicted in red), which
strengthens our conclusions from the previous models, namely
that the 0th-order entropy rate is close to log2(5) bits/symbol and
that the reduction in entropy rate saturates at 4th-order
Markov model.

The analysis presented in Fig. 3c shows that the entropy rate
could be useful for comparing various labeling algorithms. It also,
however, highlights several subtleties. Firstly, the more labels the
algorithm assigns, the more likely its entropy rate will increase.
This happens because the upper bound on the entropy increases
logarithmically with the number of labels (as the number of
possible labels increases, so does the uncertainty regarding the
label of the upcoming syllable). A meaningful comparison using
entropy rate is possible only if the two algorithms use the same
number of labels (or, alternatively, one could normalize by the
upper bound). A second issue is that using entropy rate as a
predictive measure does not distinguish between data lacking
temporal structure and a poorly performing algorithm (an

algorithm that assigns random labels to USVs). Indeed, using
syntax to compare labeling algorithms is only meaningful when
the data itself has structure. In our case it is evident that USV
sequences have high order temporal structure (Fig. 2c).

Lastly, the examples in Fig. 3c highlight that an algorithm can
achieve high predictability (low entropy rate) simply by assigning
the same label to every USV independent of any acoustic feature.
In such a case, we know with certainty what will be the label that
the algorithm will assign for the upcoming syllable because it is
always the same one. Unfortunately, this is the exact opposite
result of finding regularities in the data. Rather, it is imposing
“fake” regularities by the algorithm. We conclude that merely
using entropy rate as a measure for comparing algorithms is not
ideal because the more nonuniform the distribution of labels at
the 0th-order is, the lower the entropy rate, and the higher the
predictability, irrespective of the true complexity of the sequences.

To overcome these challenges, we note that the entropy rate of
the 0th-order distribution is an inherent property of the labeling
algorithm. Since labeling algorithms consider one USV at a time
(independently of the order of which they appear in the
sequence), it is unlikely that they introduce regularities of high
order beyond those they impose on the 0th-order distribution.
Therefore, a measure that is insensitive to the 0th-order
distribution is more suitable for our purposes.

We claim that for sequences of labeled syllables Xn−D, …, Xn

the mutual information (MI) between the suffix and the next
syllable I(Xn ; Xn−1, …, Xn−D) provides a better measure to
quantify how knowledge of recent syllables in a sequence affects
our prediction of the next syllable. We denote this specific MI as
syntax information score (SIS; measured in units of bits/symbol,
see Methods). In our case the MI is equal to H(Xn) − H(Xn|Xn−1,
…, Xn−D)35, i.e., how much our uncertainty regarding the next
syllable drops when we are given the prefix. Note that for a D-
order Markov chain H(Xn|Xn−1, …, Xn−D) is actually the entropy
rate of the process35 and therefore the MI is given by the
difference between the entropy rate at order D and at order 0 (see
Fig. 3c).

The SIS being MI is bounded from above by the H(Xn), which
is the entropy of the 0th-order model. Consider the case of two
labeling algorithms that use the same number of labels, where
algorithm 1 imposes a very biased labeling (tending to assign
almost all USVs the same label) and algorithm 2 results with a
more balanced labeling at 0th-order. The entropy rate of the 0th-
order for algorithm 1 will be smaller than that of algorithm 2,
which sets an upper bound on the SIS as described above.
Therefore, algorithm 2 has a larger range to find regularities in
the higher-order distribution, while algorithm 1 is penalized for
the highly nonuniform distribution it imposes on the 0th-order
distribution. Indeed, at the limit, an algorithm that assigns all
USVs with the same label will have 0 entropy for the 0th-order
distribution, enforcing SIS of 0 bits/symbol for any higher-order
model, and consequently the lowest predictability measure
possible, in line with what we expect from our measure. On the
other extreme, an algorithm that assigns random labels to USVs
will achieve the highest possible entropy at 0th-order, but at the
same time, this entropy will not decrease for higher orders, setting
the SIS to 0 bits/symbol as well. Lastly, a dataset of sequences with
no temporal structure will result in SIS of 0 bits/symbol
independent of the algorithm being used. We, therefore, conclude
that the SIS may serve as a good candidate for comparing labeling
algorithms and will be used below. To validate our ability to
estimate the true entropy rate and SIS values from the data, we
ran simulations on synthetic Markov models for which these
values can be computed analytically. Supplementary Figure 4
shows that our estimations converge to the analytical values in all
cases tested.
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Comparing the SIS for existing labeling methods. We measured
the SIS for the three labeling algorithms presented in Fig. 2
applied to the USV database with eight labels. Figure 4a plots the
entropy rates for the three algorithms for different depth of the
suffix tree. Note that iMSA has the lowest 0th-order entropy as
expected from Fig. 2b, while iMUPET, which has the most uni-
form distribution at 0th-order, yields an entropy rate of 2.9 bits/
symbol (close to the maximum of 3 bits/symbol for 8 labels).
However, it is easy to see the iMSA has the largest drop between
the entropy rate at the 0th-order and the higher-order ones.
Figure 4b shows the SIS for all three algorithms for D= 1 and
D= 2. The graph shows that iMSA yields the highest SIS for both
depths, despite its lower 0th-order entropy rate. iMUPET pro-
duces the second-best result. This result suggests that the fre-
quency jumps in USVs are likely to be an important feature in
their classification. We conclude that our framework and the SIS
measure is a feasible method that is sensitive enough to measure
differences in existing labeling methods and highlight the method
that best captures regularities in the data.

The SIS increases for algorithms that detect regularities in the
higher-order structure of the sequences. In order to see what
these regularities are, we note that the SIS can be computed as a
sum of the individual contributions of each n-tuple (see
Methods). Therefore, we looked at the contribution of individual
syllable pairs (of the possible 64 pairs). The contribution of a
given observed pair xn−1, xn is calculated as Pilog

Pi
Qi
(equivalent to

the KL-divergence between P and Q) where Pi= p(xn, xn−1) and
Qi= p(xn)*p(xn−1) (i.e., the case where the next syllable is
independent of the suffix). A similar analysis was carried out for
triplets in Supplementary Fig. 5. Please see Methods for the
formulation of the general case of D-order suffix. For a given pair,
if Pi=Qi then the contribution of this pair to the SIS is
zero. However, for some pairs this value could be significant.
Figure 4c plots these values for both iMSA and iMUPET (see

Supplementary Fig. 5 for all three algorithms). It is clear that in
both cases the pairs that obtain the highest values are repetitions
of the same syllable (i.e., pairs of identical syllables). Interestingly,
however, for iMSA, the “Simple” syllables, which in the original
algorithm do not consider the duration of the syllable, show
repetition only for syllable of similar duration. The pairs of
Simple-long and Simple-short appear more than expected from
their occurrence probabilities (Fig. 2b) assuming independence.
However, pairs of Simple-long followed by Simple-short (or vice
versa) actually show up less than expected. While splitting the
Simple category into two labels by the median duration, as done
here, is quite arbitrary, it may indicate that a group of the USVs
labeled as Simple might be subdivided into subgroups (possibly
such that the feature of syllable duration plays an important role
in this division), and that finding these subgroups will reveal
more of the richness of the statistical structure of USV sequences.
This analysis indicates an interesting relationship between the SIS
and the occurrence of unexpected motifs in the data (see
Discussion).

In this analysis we have used eight labels for each algorithm.
Some algorithms, such as MUPET, emphasize that a larger
number of labels are required to achieve good clustering. Limiting
the number of clusters may result in misclustering USVs, which
may have a significant effect on the predictability of the next
syllable, and therefore a detrimental effect on the SIS. On the
other hand, increasing the number of clusters (Nc), as shown in
Fig. 3, will result in an increase of the entropies (increase the
uncertainty regarding the next syllable) and likely affect the SIS.
In order to look into this effect in more details, we have calculated
the SIS for the iMUPET algorithm for Nc ranging from 8 to 64 for
a tree of depth 1; and Nc of 8 and 16 for a tree of depth 2 (Fig. 5,
see also Supplementary Fig. 6). Note that for Nc > 64 for depth 1
and Nc > 16 for depth 2 we could not obtain a valid entropy
estimation37,38. Clearly, the entropy of the 0th-order distribution

a b

c
Depth

S
IS

 (b
its

/s
ym

bo
l)

Depth

E
nt

. r
at

e 
(b

its
/s

ym
bo

l)

iMSA
iVoICE
iMUPET

Syllable pair

iMUPET

Syllable pair

In
di

vi
du

al
 S

IS
 c

on
tri

bu
tio

n iMSA

20 40 60

0

0.05

0.1

20 40 60

0

0.05

0.1

SlSl
SsSs

MlMl

MsMsDlDl UsUsDsDs
AA

HH

I I

BB

DD

0 1 2
2.4

2.6

2.8

3

1 2
0

0.1

0.2

0.3

Fig. 4 Comparison of the labeling methods. a Entropy rate computed for the models produced by the three different methods (with 8 labels) for tree depth
of order 0–2. Solid lines represent the entropy rate for each depth; dotted lines represent the rate for zero depth. The black error bars represent 2 s.d.,
computed over 25 repetitions. In each repetition, 60% of the sequences in the database were used to construct the suffix tree (see Methods). b The syntax
information score computed for the models of depth 1 and 2 in bits/symbol. The values are calculated as the mutual information between the next syllable
and its prefix. c The individual contribution of each pair to the total SIS value (depth 1).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-1053-7

6 COMMUNICATIONS BIOLOGY |           (2020) 3:333 | https://doi.org/10.1038/s42003-020-1053-7 | www.nature.com/commsbio

www.nature.com/commsbio


increases monotonically with an increase in Nc (approximately as
log2(Nc)) (Figs. 3c and 5a). Similarly, the entropy rate for higher-
order models also increases with Nc but it is not clear a priori
what is the dependency of SIS on Nc. Figure 5b shows that in this
case, the SIS does increase as a function of Nc which means that
increasing the number of clusters does improve the predictability
of the next syllable given the suffix. Interestingly, when
considering tree of depth 1, the point at which iMUPET obtains
a larger SIS as compared to iMSA with 8 labels is Nc= 32, and for
a tree of depth 2 we have not had enough data to find that point
(compare Figs. 4b and 5b). Notice that the increase of SIS with Nc

comes at the price of an exponential increase in the complexity of
the model. It is therefore interesting to consider how the increase
in the SIS is compared to the number of bits required to encode
each syllable. This is obtained by normalizing SIS by log2(Nc) and
as shown in Fig. 5c this normalized SIS does not have a clear
dependency on the number of clusters (see Discussion).

Improving the SIS of current algorithms. Labeling algorithms
are forced by their very nature to assign a single label to each
USV, even in cases where the decision is not obvious. This is
especially evident for clustering-based algorithms such as VoICE
and MUPET. This difficulty arises from a combination of the lack
of a natural measure of similarity between USVs and the lack of
separability between clusters (often, the “clouds” around each
centroid have overlapping volumes creating some level of ambi-
guity). This poses a substantial challenge when attempting to
categorize syllables. Even when using “soft clustering”39, where a
probability of assigning a label to the USV is computed for all the
labels, the algorithm would eventually be forced to assign the
most likely label. The higher-order statistics that were showing up

in our previous analysis, suggest that the sequence data may hold
information that can assist labeling in such case of ambiguity.
This is analogous to trying to parse a note written with poor
handwriting and deducing that a certain letter is likely to be a U
rather than a V because it follows the letter Q. Figure 6a illustrates
such an example, where the probability assigned by an algorithm
for a USV to be labeled as S is larger than its probability to be
assigned the label T. If we assign this USV the label S, this
assignment, however, has also an effect on the syntax model. The
next USV in the sequence will have a higher probability of fol-
lowing S and a lower probability to follow T. This effect can be
evaluated using the SIS. Doing so may reveal that assignment of T
would, in fact, increase the SIS more than the assignment of S. If
this difference in the SIS in the two cases is large enough, we may
decide that this USV should be labeled T after all, and ignore our
feature-based similarity measure that is used by the labeling
algorithm.

We present the syntax information maximization (SIM)
algorithm that considers the SIS of the labeling as an optimization
constraint. Given a set of centroids, the goal is to find a new set
that has a larger SIS on a test set (that it was not trained upon).
That means that it has to consider the properties of the single
syllable as well as the syntax. To test this approach, it is useful to
use an algorithm that is bounded by the SIS of the other
algorithms, which give a natural scale to the comparison. For that
reason, we have chosen to use iMUPET (which achieved the
second-best SIS in our test, Fig. 4b) as a starting point for the SIM
algorithm. Figure 6b illustrates the process. We choose a training
set of USVs (composed of half of the sequences in the database)
and use iMUPET to compute centroids that represent the
different clusters. Next, each of the centroids is perturbed in
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turns, with an identical random perturbation. For every
perturbation, all the USVs are re-assigned to clusters and the
change in SIS (ΔSIS) is evaluated on the resulting syntax (still on
the training set). After the ΔSIS has been evaluated for all the sets
of perturbed centroids, the perturbation that resulted in the
largest ΔSIS is chosen. The USVs are re-assigned and the
procedure is repeated.

The results of the algorithm are shown in Fig. 7a. The
algorithm is designed to increase the SIS on the training set in
each step, and therefore it is not surprising that indeed the SIS is
improving on this set. However, we also evaluated the algorithm
on the test set after each step and as seen the SIS shows a similar
trend on the test set that is not considered during the iteration of
the algorithm. This demonstrates that the new set of centroids
found by the algorithm generalizes well and captures better the
syntax of the USV sequences. Note that for depth 1, the algorithm
yields an SIS that is larger than that of iMSA. For depth 2, the
algorithm obtains an SIS that is slightly lower than iMSA (but
significantly larger than the initial point). Figure 7b plots 0th-
order and 1st-order distributions for the resulting labels of SIM.

Notice that these distributions are different from those of the
algorithms shown in Fig. 2b, c. Moreover, as seen in Fig. 6c, SIM
captures pairs of syllables that have an unpredictable occurrence
(∼0.1). Lastly, Fig. 7d compares SIM to the other algorithms and
shows that the new algorithm obtained improved SIS for both
1st-order and 2nd-order models over the original iMUPET
algorithms and is comparable to that of the iMSA.

Discussion
The analysis of mouse USVs led to the development of many
methods that assign discrete labels to USV syllables19,21,22. These
proposed labeling methods are based solely on the spectral
representation of every single syllable. However, there is currently
no ground-truth that can serve as a standard to evaluate the
performance and accuracy of these methods and thus the selec-
tion of which method to use is somewhat arbitrary. We showed
that analyzing the syntax imposed by a labeling algorithm could
provide a good evaluation measure for its performance.

Our comparison revealed that while the algorithms differ in
their predictability, they all capture some meaningful features in
the temporal structure of USV sequences. Assuming there is a real
natural and true classification of USVs, there might be various
reasons why different labeling algorithms achieve different SIS.
One option is that each algorithm uses only a subset of the fea-
tures which are required for a true classification. For example, it
might be that pitch jumps are an essential feature for USV clas-
sification, but Simple upward sweeps are inherently different
from downward sweeps, a feature that is not considered by MSA,
but might appear as an implicit feature for the other algorithms.
A second possible reason is that the representation created by the
geometric projection and the similarity metric used by clustering
algorithms cause distinct clusters of USVs to become inseparable.
For example, MUPET pre-processes the frequency representation
of USVs before projecting them into high-dimensional space and
uses a cosine-based norm to cluster them. We could now use the
SIS and compare the resulting labels using other metric measures
and different pre-processing procedures over the same set of data
to test if this pair is optimal.

Another way to consider the problem of using syntax to assist
the labeling is to model it as an information channel40. Here, the
channel has a source given by a Markov chain with a finite
alphabet. The Markov input is transmitted through the channel
where the label can be corrupted (flipped) by the noise of the
channel. In this setting the noise is shaped by the bias of each
labeling algorithm (e.g., the specific similarity measure used by
the algorithm cause a USV on the border between two clusters to
be assigned to the wrong cluster). This setup is a particular case of
Hidden Markov models (HMMs)41, and therefore the combina-
tion of SIS and algorithms for estimating HMMs could prove
beneficial in the future for improving USV labeling.

Our vocalization database provided enough data to validly esti-
mate the high-order statistics of the labels. To achieve this large
database we recorded in a male–female interaction setup during all
phases of interaction, which provided many more vocalizations
than elicited in other contexts (e.g., female urine). However, this
may result in a low occurrence rate of female vocalizations, which
are not controlled for42. In addition, sessions of male–female
encounter follow a stereotypic pattern where specific mating
behavior (e.g., approach, sniffing, mounting, and intromission) tend
to appear at different phases of the session. Moreover, the prob-
ability distribution of syllables appearance also changes with these
phases8,43. It is possible that the syntax structure of USVs could
relate to the mating context. While we have not addressed this issue
in the study, careful experimental design that keeps for each USV
the behavioral context can unravel even finer structures of USV
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syntax, and make progress towards the goal of understanding the
information USVs carry about behavior.

Previous studies have identified repeating motifs in sequen-
ces of USVs3,44,45. Our analysis addresses motifs in the labeled
data, and emphasized “unexpected” motifs; namely when their
probability for appearing deviates from the expected probability
(given by the multiplication of the individual appearance
probabilities of each syllable in the motif). Theoretically, our
method could be applied for any motif length, but as the motif
length increases, the number of sequences required to collect
enough statistics increases exponentially. Therefore, we focused
on motifs of length 2 and 3 (in Figs. 4c, 7c, and S5). This
difficulty is also apparent in previous studies where statistical
analyses of motifs were limited to motifs of order 3 or less3,44.
While the SIS measure itself does not identify motifs, “unex-
pected” motifs contribute to an increase in the SIS. Therefore, if
the SIS increases with the depth of the suffix tree, it is an
indication that such “unexpected” motifs of that order exist. By
examining the individual SIS contribution of each potential

motif, we were able to show that the most dominant ones
included repeating syllables (Fig. 4c) for both the iMSA and
iMUPET algorithms.

The SIM algorithm that we developed (Fig. 6) suggests that
by considering the syntax when dividing the syllable space into
clusters, the resulting predictability of the algorithm can be
higher than the original one. Clearly, the algorithm we pro-
posed is computationally suboptimal. The cost of each iteration,
involving an evaluation of the syntax model at each step, is
high. Nevertheless, our motivation was to demonstrate that the
information existing in the syntax can be used to drive the
algorithm to obtain an improved representation of the clusters,
which generalizes to data that had not been considered before
(the test set).

The exploration of the true number of classes in USV classi-
fication is not over yet. Most of our analysis was carried out
assuming eight labels. This was done in order to balance between
richness of labeling and availability of data that is required to
construct valid high-order statistical models. Because some
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methods suggest using a higher number of labels, we also
explored a case with up to 64 labels. In our model, increasing Nc

increases the entropies (logarithmically). We found that
increasing Nc does increase the SIS. Our analysis shows that for a
1st-order Markov model, iMSA with 8 labels has larger SIS than
iMUPET with 16 labels but lower than iMUPET with 32 labels.
This implies that the initial gap between the two algorithms can
be minimized, and even reversed, but at a cost of a fourfold
increase in Nc. This improvement is of the same order of mag-
nitude obtained by using SIM while keeping Nc of 8, suggesting
that combining SIM with iMUPET with increased Nc may lead to
even higher SIS than obtained in this study. Increasing Nc also
comes at a significant (exponential) increase in the complexity of
the model (e.g., the number of states of the Markov model) and
the amount of data that is required to establish a valid statistical
model. To account for this increase, one can consider the nor-
malization of the SIS by log2(Nc). We found that after normal-
ization the residual effect of increasing Nc on the SIS is small. In
conclusion, the balance between improved SIS and compact
model is application dependent and can be tuned by the choice
of Nc.

As we continue to develop labeling methods, the syntactic
models they generate become more detailed and precise, enabling
a better quantification of social disorders and their treatments.
For example, we will be able to better measure the effect of a
treatment or a specific gene knockout on ASD12,46. Therefore,
carrying on the integration of such analytical tools together with
behavioral paradigms could result in advanced treatments for
social and speech disorders.

Methods
Animals. For the recordings performed in our lab, we used C57BL/6 male and
female mice (8–12 weeks old). All mice were group-housed (3–4 per cage) and kept
on a 12 h light (7 a.m.–7 p.m.)/dark cycle with ad libitum food and water.

Ethical note. Experimental protocols were approved by the Hebrew University
Animal Care and Use Committee and met guidelines of the National Institutes of
Health Guide for the Care and Use of Laboratory Animals (IACUC NS-16-14216-3).

USV database. We created a database of 385 USV recording sessions of C57
male–female interactions. Most of the recordings were performed in our lab. For
USV recording we used an UltraSoundGate system (Avisoft bioacoustic, Ger-
many) composed of a CM16/CMPA ultrasound microphone, UltraSoundGate
116H computer interface, and USGH recorder software on a standard PC
computer. A sampling frequency of 250 kHz and 16-bit recordings were used.
For online monitoring we used simultaneous display of the spectrogram (256
points FFT). Thirty-six additional files were downloaded from the mouseTube47

(“Female” context recordings from the “Social context comparisons” protocol19).
All files were in “wav” format, and their length ranged between 2 and 30 min.
Our approach in this work was to include different males, with different sexual
experience and to search for the underlying common sequence structure.
Therefore, many of the males were recorded several times and the sessions were
scheduled independently of the females’ estrous. The full set of files used in this
study was uploaded to mouseTube and can be found using the group label
“London Lab”. In addition, Supplementary Table 1 contains information about
the recording sessions and the male mouse that was recorded during that
session.

USV parser. After testing a few parsing tools, we noticed that they were not
optimized to cope with the different types of noise that existed in the USV files.
These different levels of noise in the recordings were a result of: varying cage sizes,
cage acoustics, locations of the recording device, and noise from the freely moving
mice. Therefore, we developed a USV parser that is robust to these types of noise.
Supplementary Figure 7 describes the flow of the parser. The parser receives as
input one or more “wav” USV files and returns the start and end time of each
syllable in the file.

USV statistics. The USV parser was applied to all recordings in the database. This
resulted in 346,632 syllables. Using the start and end time of each syllable, we
calculated the distributions of the syllable duration and ISI. We also examined the
ISI distribution for several specific mice in order to test the variability
between them.

In addition, the strongest frequency in each time point was detected
and the mean frequency of each syllable was stored in the database, enabling the
analysis of the mean frequency distribution. An ISI of more than 160 ms
represented the end of the current sequence and the beginning of a new one. We
calculated the number of syllables in the different sequences and created the
sequence length distribution. To test the exponential fit of the duration probability
density function (PDF) we performed a two-sided Kolmogorov–Smirnov test.
This was done by calculating the fit parameters for the function a∗eb∗x (in our case,
a= 0.51, b=−0.41). Then, we sampled 1000 values from the original and fit PDFs
and ran the test on these values. The reported results are the average of 1000
repetitions of the sampling and testing process. A similar calculation was done
for the sequence length, with the equation a∗xb (with resulting parameters a= 0.6,
b=−1.88).

For calculating the correlation between adjacent syllables, we collected all pairs
of consecutive syllables in the sequences. We then ran a Pearson correlation test for
both the duration and the ISI of the syllables.

Adaptation of existing algorithms. The source code for all three algorithms was
available in MATLAB. We performed several adaptations to each algorithm in
order to enable a fully automated execution.

Mouse Song Analyzer v1.319: The MSA algorithm includes a built-in syllable
parser. In order to label the same syllables for all algorithms, we replaced the
syllables detected by the MSA parser with those that were detected by our parsing
algorithm (see above). We ran the MSA algorithm on all files and saw that there
were files where more than 5% of the syllables were labeled as “unclassified”. For
those files, we re-ran the algorithm with lower and lower thresholds (default was
0.3, decrease steps were of 0.05 and the minimum value was 0.15). We selected the
first threshold with an “unclassified” rate lower than 5%. If there was no such
threshold, we selected the threshold with the lowest “unclassified” rate.
Nevertheless, manual examination of the remaining “unclassified” syllables showed
still a considerable amount of real USVs. The shorter “unclassified” syllables were
“simple” and the longer ones tended to be “multiple”. As a result, and in order to
assign each one of the syllables with one of the four basic labels (simple, down, up,
multiple), we gave the “unclassified” syllables one of two labels: “simple” or
“multiple”. We used the median duration of all syllables in the database (35.3 ms)
and set the syllables with a shorter duration as “simple” and with a longer duration
as “multiple”. In total there were 39,992 “unclassified” syllables of which 29,246
were labeled as simple (19.2% of the total simple population) and 10,746 were
labeled as multiple (18.3% of total multiple). Next, to support an eight-label model,
we split each one of the four labels into two. This was done using the median
duration of all syllables with that were assigned the same label (simple: 27.6 ms,
down: 48.1 ms, up: 50.7 ms and multiple: 96.3 ms). For example, “down” syllables
that were shorter than 48.1 ms were labeled as Down-short and “up” syllables
longer than 50.7 ms were labeled as Up-long.

VoICE21: The VoICE algorithm is based on hierarchical clustering. Running
the algorithm on all syllables in the database was not feasible because of
computation constraints. Therefore, 4000 syllables from different files were
selected and the algorithm was applied to them. VoICE includes a manual phase
(originally used for comparison) that was skipped. The results of the automatic
phase are centroids that were further used to label all 346,632 syllables. The
labeling was done using the same similarity measure that was used in the other
parts of the VoICE algorithm.

MUPET22: MUPET uses a gammatone filter as part of the preprocessing. For
the adapted version, we used 16 filters. As in the MSA algorithm, MUPET also
contains a parsing phase. We loaded our syllable times instead of the built-in ones
to maintain consistency. As the case with VoICE, the MUPET algorithm was not
able to run on the full database, therefore we applied it on 5000 syllables. Then, we
used the resulting centroids and the MUPET distance measure to label the rest of
the syllables.

Sample algorithms. The four sample algorithms used to demonstrate the quan-
tification framework are all based on the iMSA algorithm. The first algorithm
generates two labels: one label (N: no jump) that is the result of merging the two
simple labels (Simple-short and Simple-long) and another label (J: jump) that is the
result of merging all other six labels. Besides the original version of the MSA
algorithm, the second four-label algorithm contains both Simple-short and Simple-
long labels, another label that contains all four Down/Up-short/long labels and a
final label containing both the multiple labels (short and long). The final labeling
algorithm is composed of five labels which are: Simple-short, Simple-long, Down-
merged, Up-merged, and Multiple-merged. This diversity allows examining our
framework for classifications with different numbers of labels and different dis-
tributions of syllables.

Modeling the labeled sequences as Markov chains. We apply a given labeling
algorithm on all the syllables in our USV database and divide the labeled syllables
into sequences, based on their ISI (with 160 ms as a threshold). These labeled
sequences are discrete in time and space, where each discrete time-point has one of
Nc labels. We model these discrete sequences of random variables (X1, X2, …, Xn)
as a Markov chain with a specific order d, and assume that the Markov process is
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stationary and irreducible35. The realizations (observed values) of the random
variables are denoted as: x1, x2, …, xn. There are different ways to represent such
Markov chains, for example as states with transition probabilities, or with suffix
trees. We find that for our purpose suffix trees are more advantageous because they
naturally represent the probability for the next syllable given the realization of the
suffix and is easy to extend for increasing depth of the chain36. We define our suffix
tree as a full tree where each leaf is associated with one suffix. The suffix is
composed of the edge labels on the path from the root to the leaf. The number of
leaves in the suffix tree is Nd

c where Nc is the number of labels and d is the depth of
the tree. Therefore, for a labeling algorithm with four labels (like in Fig. 3): SUDM,
and a tree with depth 2, the leaves will represent the following 16 suffixes: SS, SU,
SD, SM, US, UU, UD,…, MU, MD, MM. In the leaves of the suffix tree we store
two counts that are computed by scanning all the sequences, one-by-one: (1)
We count how many times the branch leading to the leaf is visited. For example, for
the leaf in Fig. 3 (e.g., syllableM in the branch DS, we keep N(DS) which counts the
number of instances that the pair SD has appeared in all the sequences. (2) We also
count N(M|DS) which is given by he number of instances that M appeared fol-

lowing the pair DS. Therefore pðX3 ¼ MjX2 ¼ D;X1 ¼ SÞ ¼ NðMjDSÞ
NðDSÞ and

pðX2 ¼ D;X1 ¼ SÞ ¼ NðDSÞ
Total number of pairs. It is important to note that every Markov

chain of m-order could be represented as a 1st-order Markov chain (at the expense
of increasing the state space). In our case the path of a branch on the tree from the
source to the leaf is such a state, and the probability for each syllable at the leaf is
the transition probability to a new state.

Entropy rate calculation. Our representation of a Markov chain as a suffix tree
supports the calculation of the entropy rate based on the following equation:

Theorem 4.2.4 (Cover and Thomas, 2005) Let {Xi} be a stationary Markov chain
with stationary distribution μ and a transition matrix P. Let X1 ~μ. Then the
entropy rate is

H Yð Þ ¼ �
X

ij

μiPijlogPij;

where μi are given by the probabilities of visiting the leaves and Pij are the
transitions probabilities stored in the leaves (e.g., if we are in leaf DS the probability
p(M|DS) is the probability to move from state DS to state MD in the above
example).

SIS calculation. We define the SIS as the MI (denoted as I(X;Y)) between the two
random variables X and Y. The random variable X marks the next syllable Xn and
the random variable Y marks its prefix, which in our case for a given tree with
depth D is of length D: Y= Xn−d, …, Xn−1. For the calculation of the MI, we use
the following probability mass functions:

(1) p(y)= p(Xn−1, …, Xn−D), which is stored in the leaves as the probability to
obtain each suffix.

(2) p(x,y)= p(Xn, …, Xn−D), which is calculated based on the law of total
probability by multiplying each set of conditional probabilities p(Xn|Xn−1,
…, Xn−D) with their corresponding p(Xn−1,…,Xn−D).

(3) p(x)= p(Xn), which is equivalent to the 0th-order probability mass function.

With these three probability mass functions, the MI I(X;Y) is calculated as35

I X;Yð Þ ¼
X

xϵX

X

yϵY

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ ;

In our case, this calculation for a tree with depth D is done by iterating over all
possible (D+ 1)-tuples, such that for a (D+ 1)-tuple: xn−d, …, xn (a sequence of
observed values) the random variable Y is equal to Y= xn−1, …, xn−D and the
random variable X is equal to X= xn. By performing the summation of the values
for all (D+ 1)-tuples we compute the SIS score of the suffix tree.

In addition, instead of performing the summation, we can visualize each of
these values separately and plot them, as can be seen in Figs. 4c, 7c, and
Supplementary Fig. 5.

Finally, note that I(X;Y) can also be viewed in two additional ways:

ð1Þ I X;Yð Þ ¼ H Xð Þ � HðXjYÞ;
where H(X)=H(Xn) and H(X|Y)=H(Xn|Xn−1,…,Xn−D)

ð2Þ I X;Yð Þ ¼ DKL p x; yð Þjjp xð Þp yð Þð Þ;
where p(x, y), p(x) and p(y) are the same as previously defined and the DKL is
defined by:

Definition (Cover and Thomas, 2005) The relative entropy or Kullback–Leibler
distance48 between two probability mass functions p(x) and q(x) is defined as:

DKLðpjjqÞ ¼
X

xϵX

p xð Þlog p xð Þ
q xð Þ ;

Therefore, if X and Y are statistically independent then the MI I(X; Y) is 0.

Standard deviation of entropy rate and SIS calculations. The entropy rates and
SIS values are computed over 25 repetitions. In each repetition, 60% of the

sequences in the database are used to construct the suffix tree which the values are
calculated from. The mean value of the 25 repetitions is plotted as a dot and the
error bars mark 2 standard deviations.

Validating the estimations with synthetic Markov models. The ability to create
a stochastic model that successfully captures the statistics of the labeled USVs
depends on the amount of data that is available. As the order of the Markov
model (and the depth of the equivalent suffix tree, D) grows, a larger amount of
sequences is required for obtaining enough samples of each (D+ 1)-tuple. A case
where during the process of constructing the suffix tree, there are several
branches that are not reached due to a limited amount of data could lead to a
wrong estimation of both the entropy rate and the SIS of the model.
Therefore, to validate our estimation procedure, we have carried out a series
of simulations in which we have constructed synthetic Markov models of
various orders. For these synthetic Markov models, the analytical calculations
of the entropy rate and SIS are obtained from the transition probability
matrix. Given a Markov model represented by a suffix tree Tsynt with depth D
and a set of conditional probabilities p(xn|xn−1,…, xn−D), the entropy rate is
calculated as:

H Yð Þ ¼ �
X

ij

μiPijlogPij;

The values of Pij are given by the conditional probabilities p(xn|xn−1, … xn−D).
Since the stationary distribution μ is defined by μP= μ49 then the values of the

stationary distribution μi can be calculated as:

μ ¼ eP
i ei

;

where e is the eigenvector of the transition matrix P with an eigenvalue of 1.
Similarly, the SIS of the model can be calculated as

I X;Yð Þ ¼
X

xϵX

X

yϵY

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ ;

where the three probability mass functions in this equation are given by: (1) p(y),
which is equivalent to μi. (2) p(x, y), which is calculated by multiplying each
conditional probability p(xn|xn−1,…,xn−D) with its suffix probability p(xn−1,…,xn−D)
(based on the law of total probability) and (3) p(x), which can be obtained by
performing D iterations d= (D,.., 1) of μ ¼ eP

i
ei
, such that in each iteration e is the

eigenvector with an eigenvalue of 1 of the transition matrix P corresponding to the
stationary distribution of depth d.

After calculating the analytical values, the next step includes generating
realizations of label sequences from these synthetic models. The realizations are
generated by adding syllables one-by-one based the conditional probabilities of
each label given the current suffix: p(xn|xn−1,…,xn−d). Next, a new suffix tree Test is
created from the generated sequences and the entropy rate and SIS of Test are
calculated. Finally, the values calculated from Test are compared to analytical ones
and the difference between the estimated and analytical values embodies the
estimation error.

SIM algorithm. For a given USV database, the SIM divides the sequences into
two groups: training and test sets, with the same number of sequences in both
sets. Every syllable in the database goes through the MUPET preprocessing
procedure with 16 filters. This converts all the syllables into vectors with a length
of 2016. The initial SIS is calculated for the training set, as well as the centroid of
each cluster. The centroid is calculated as the mean of all syllables in the cluster.
Then, the iterative process starts. In each iteration, a random vector V is created
by generating values from a uniform distribution ranging between 0.9 and 1.1.
This vector is used to perturb each centroid, one at a time. The perturbation is
done as a dot product between the vector representing the centroid and V. For
each perturbation, all syllables in the training set are reclustered and the SIS is
calculated for the new labeling. After perturbing all centroids, there is an SIS
value corresponding to each perturbation. The maximum value is selected and
compared to the value before perturbation. If it is higher, the perturbation that
achieved that value is applied and stored and a new random vector V is gen-
erated. If the maximum value is lower, then a “failure counter” is increased and
no perturbation is done. Once the “failure counter” reaches the value of 5, the
perturbation with the maximum SIS is applied, no matter if it is larger or smaller
than the preperturbation SIS. Anytime a perturbation is applied, the “failure
counter” is reset to 0.

This iterative process is repeated until the SIS of the training set converges.
Once convergence is achieved, the SIM “replays” the same perturbation chain on
the test set and the SIS in each step is calculated. The progress of the SIS on the
training set and on the test set is then plotted.

Statistics and reproducibility. Parsing 385 recording sessions resulted with
346,632 syllables grouped into 33,481 sequences. The entropy rates and SIS values
were computed over 25 repetitions. In each repetition, 60% of the sequences in the
database are used to construct the suffix tree which the values are calculated from.
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The mean value of the 25 repetitions is plotted as a dot and the error bars mark
2 standard deviations.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data used to produce the figures and charts in this paper are available in
Supplementary Data 1. The USV audio recordings (‘wav’ files) that were used in this
study are available in mouseTube47 with the group label “London Lab”. Supplementary
Table 1 lists these files and complementary meta data.

Code availability
The computer code used in this study is available at: https://github.com/london-lab/
MouseUSVs.
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