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Abstract

Background: DNA methylation at the fifth position of cytosine (5mC) is a common epigenetic alteration affecting a range of cellular
processes. In recent years, 5-hydroxymethylcytosine (5hmC), an oxidized form of 5mC, has risen broad interests as a potential bio-
marker for lung cancer diagnosis and survival.
Methods: We analyzed the epigenome-wide 5hmC profiles of paired lung tumor and adjacent normal tissues, using the TET-Assisted
Bisulfite (TAB) array – Infinium MethylationEPIC BeadChip (EPIC) approach. The differentially methylated CpG sites were iden-
tified, and the biological relevance of 5hmC was assessed by differential methylation regions (DMR) analysis and gene set analysis
(GSA).
Results: We observed global hypomethylation of 5hmC comparing tumor to normal tissues, and hypermethylated 5hmC were
enriched in CpG islands and gene upstream. Comparison of 5hmC and 5modC (total methylation: 5mC + 5hmC) profiling showed
low correlation, and only a small proportion of the significant 5hmC loci overlapped with the significant total methylation loci. GSA
analysis suggested that 5hmC was mainly involved in biological processes such as cellular process, biological regulation, and meta-
bolic process.
Conclusion: This is the first study to analyze the epigenome-wide 5hmC profiles among paired lung tumor and normal tissues. We
observed global hypomethylation of 5hmC in lung cancers, and hypermethylated 5hmC enriched in CpG islands and gene
upstream. We found that the genome-wide 5hmC levels do not correlate with the total methylation, and the GSA suggested different
biological functions of 5hmC compared to 5modC. Overall, our results demonstrate the potential of 5hmC as a novel biomarker for
lung cancer.
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Introduction

Lung cancer is the leading cancer-related cause of death in the world.
There were an estimated 1.8 million lung cancer deaths globally [10,11]
and 154 thousand deaths [45] in the United States in 2018 alone. The
current five-year relative survival is about 19% [37], which is lower than
most leading cancers and has improved only slightly over the past four dec-
ades. The five-year relative survival for localized tumors is 56%; however,
only 16% of all lung cancer cases are diagnosed at an early stage and the
five-year relative survival for distant tumors is only 5%. Therefore, early
detection and intervention remain to be some of the most important
strategies to improve long-term outcomes.

The rapid advancement of affordable `omics'-based technologies has
allowed faster identification of putative biomarkers for improving lung
cancer diagnosis and prognosis [48]. As one of the most important epige-
netic mechanisms, DNA methylation at the fifth position of cytosine
(5mC) plays a vital role in many cellular processes, such as embryonic
development, gene expression, genomic imprinting, X-chromosome inac-
tivation, and chromatin structure and stability [9,12,28,33,41]. DNA
methylation abnormalities, such as global hypomethylation [13] and
hypermethylation at promoters of tumor suppressor genes [18], are found
in most tumors including lung cancer.

In recent years, 5-hydroxymethyl-cytosine (5hmC), an oxidized form
of 5mC by Fe(II) and a-KG-dependent Ten-eleven translocation (TET)
dioxygenases [24,47], has risen broad interests. It has been purported that
5hmC could act as an intermediate in DNA demethylation, either through
active TET-assisted oxidation [20], or passive replication dependent loss
[7,19]. Others also suggested that 5hmC could confer a distinct epigenetic
function independent of DNA demethylation [7].

Early studies were made through global detection approaches, and glo-
bal loss of 5hmC has been commonly observed across a spectrum of
human tumors [15,22,27,30,51]. Mutations in IDH, SDH, and FH
genes can control 5hmC genomic levels and trigger carcinogenesis by reg-
ulating TET activity [5,8,23,31].

Given the important epigenetic functions of 5hmC and its interplay
with 5mC, it's essential to develop accurate and reliable methods to distin-
guish 5hmC from 5mC at single-base resolution, to better understand the
biological mechanisms of 5hmC in cancer etiology and progression. How-
ever, the conventional bisulfite sequencing, which is the gold standard for
methylation analysis, cannot distinguish 5hmC from 5mC. In the study,
we analyzed the whole-genome 5hmC profiles of paired tumor and adja-
cent normal tissues from 8 patients with primary lung squamous cell car-
cinoma (LUSC), using a state-of-the-art technique of the TET-Assisted
Bisulfite (TAB) array [52] with Infinium MethylationEPIC BeadChip
(EPIC) [34]. We propose to use this as an exploratory study to assess
the potential of using 5hmC as a novel epigenetic biomarker for lung can-
cer, and to lay the foundation for future clinical assay development and
validation studies.
Material and methods

DNA samples

Genomic DNA was extracted for eight lung squamous cell carcinoma
(LUSC) tissues and adjacent normal tissues. Tissues samples were
obtained from lung cancer patients in the Harvard Lung Cancer Study
(HLCS) who underwent surgical excision of tumors at Massachusetts
General Hospital or Dana-Farber Cancer Institute. Manual microdissec-
tions of 5-u histopathologic sections have been conducted by one of our
anatomic pathologists. Each specimen was evaluated for the amount and
quality of tumor cells and histological classification was conducted by a
pathologist using the WHO criteria. Tissue DNA was extracted from
50 mg of frozen tumor or normal tissue using the Maxwell 16 tissue
DNA purification kit (Promega, USA). Tumor purity has been analyzed
using LUMP analysis [4], which uses the mean normalized methylation
level of 44 CpGs found to be unmethylated in blood cells.
5hmC and 5mC profiling

Illumina MethylationEPIC with bisulfite and TET-assisted bisulfite
treatment

The 5mC and 5hmC profiling was completed at the Northwestern
University Population Epigenetics Laboratory. A total of 1000 ng genomic
DNA (gDNA) was split into two aliquots of 500 ng processed through
either traditional bisulfite conversion (Bis) or TET-assisted bisulfite con-
version (TAB) (WiseGene, Inc., Chicago, IL) [36]. As shown in Fig. 1,
bisulfite treatment alone converted unmethylated cytosine into uracil that
would be read as thymine (T) after PCR amplification, whereas both 5mC
and 5hmC were resistant to conversion and would be read as cytosine (C).
The TAB workflow involved protection of 5hmC with b-
glucosyltransferase, followed by TET-assisted oxidation of unprotected
5mC to 5caC, which would be converted to uracil by bisulfite treatment
and be read as thymine just as unmethylated cytosine. Therefore, Bis
workflow give readout of total methylation (5mC + 5hmC), while TAB
workflow gives direct readout of 5hmC. Converted DNA of both work-
flows was input into the Illumina MethylationEPIC BeadChip (Illumina,
Inc., San Diego, CA) [40].
Whole genome bisulfite sequencing with Illumina Methyl-Seq
To validate our results and to establish the feasibility of using next gen-

eration sequencing (NGS) to profile 5hmC in lung tissues, the total
methylation profiling was repeated among 5 pairs of tumor and adjacent
normal tissues using the targeted bisulfite sequencing (Methyl-Seq).
Briefly, 1000 ng of gDNA was sheared to yield fragment DNA between
100–300 base pair. These fragment DNA was further end-repaired, 30-
end adenylated, ligated, and hybridized; and captured DNA was
bisulfite-converted using the Illumina TruSeq Methyl Capture EPIC
Library Prep Kit (Illumina, Inc., San Diego, CA) [32]. Last, DNA was
PCR-amplified and sequenced on Illumina Hi-Seq2500 System.
Statistical analysis

Illumina MethylationEPIC Bis/TAB data
The raw Tab-array and EPIC array data in IDAT format were read

directly into R (version 3.2.4) and were processed using the Chip Analysis
Methylation Pipeline (ChAMP) [35].

Quality control was conducted separately for the Bis and TAB work-
flow using the same criteria. We excluded unqualified probes, including:
1) probes with detection p value less than 0.01 in one or more samples
(NBis = 1476, NTAB = 84,125); 2) probes with a bead count < 3 in at least
5% of samples (NBis = 14,963, NTAB = 23,966); 3) Non CpG probes
(NBis = 2947, NTAB = 2526); 4) SNP-related probes [53] (NBis = 96,512,
NTAB = 87,925); and 5) multi-hit probes [38] (NBis = 11, NTAB = 10).
Note that the number of probes removed due to low detection p value
is much higher for 5hmC as the genome-wide 5hmC level is much lower
than that of 5mC. Because the p value filter was applied first, the number
of probes deleted for annotation purposes were different for 5hmC and 5-
modC accordingly. After filtering, 750,009 and 667,366 probes were
included for Bis and TAB workflow respectively. Normalization was per-
formed to minimize unwanted variation within and between samples and
we chose peak-based correction (PBC) [11], which has been shown as the
most effective method when comparing with the whole genome bisulfite
sequencing results [49].



Fig. 1. The workflow of Bis and Tab conversion. Adapted from by Skvortsova et al. [44]. Copyright 2017 by BioMed Central.
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For each CpG site, the methylated intensity (M) and unmethylated
intensity (U) was transformed to b ¼ M

MþU . The beta values with Bis con-
version represent the proportion of total methylation (5modC = 5mC
+ 5hmC), whereas the beta values with TAB conversion represent the pro-
portion of 5hmC methylation for each CpG site. The M values were cal-
culated as M ¼ log2ðMU Þ and were used for regression analyses. To detect
the differential methylation patterns between tumor and normal tissues,
differential methylation probes (DMP) analysis were conducted using
the paired t-test with Limma [42]. The DMPs were grouped into clus-
ters/regions and differential methylated regions (DMRs) were identified
using the Bumphunter algorithm [21]. The functional relevance of
5hmC/5modC-containing genes was explored using Gene Set Analysis
(GSA) [39] with 15,996 Gene Ontology Biological Process (GOBP) path-
ways [6], while accounting for the number of probes per gene [14]. False
discovery rate (FDR) of <0.05 was used in all analyses to account for mul-
tiple comparisons.
Whole genome bisulfite sequencing data
Whole genome bisulfite sequencing data was analyzed in collaboration

with Harvard Chan Bioinformatics Core. FASTQC (Version 0.11.8) [3]
was used for quality control to examine sequence counts, sequence quality
histograms, per sequence quality scores, per base sequence GC content,
per base N content, sequence length distribution, sequence duplication
levels, overrepresented sequences, and adapter content. We observed very
low proportion of cytosine bases in R1s (forward reads or read-1 s of the
read pairs), suggesting good bisulfite conversion. Reads were trimmed
using Trim Galore (Version 0.6.0) [25] after assessment by M-bias plot
[29] to remove low quality sequences, adapter sequences, and biased
sequences. FASTQC was rerun after trimming to confirm efficacy. Bis-
mark (version 0.21.0) [26] was used to align the reads to the Ensembl
GRCh37 Homo sapiens assembly [2], and duplicates reads removed using
Picard Tools (http://broadinstitute.github.io/picard/). Bismark also
summarized the cytosine counts at cytosines followed by guanines (CpGs),
cytosine followed by non-guanines followed by guanines (CHGs), and
cytosines followed by at least two non-guanines (CHHs). We observed
very low proportion (<0.2%) of CHG and CHH methylation, suggesting
good bisulfite conversion.

CpG methylation percentages and read coverage of CpG generated
from Bismark was assessed for adequate coverage (>10) and expected
methylation percentage distributions in R using methylKit (version
1.8.1) [1]. The Bismark generated data was then imported into R using
the bsseq Bioconductor package [16] and annotated with Ensembl
GRCh37 Homo sapiens assembly using annotatr (version 1.8.0). Differ-
ential methylation analysis for the sequencing data was conducted using
a general linear model accounting for tumor-normal pairing in DSS (ver-
sion 2.30.1) [50], a new dispersion shrinkage method that estimates the
dispersion parameter from beta-binomial distribution. Again, test statistics
were calculated at each differentially methylated loci (DMLs) and signifi-
cant DMLs were aggregated into DMRs.
Results

Study subjects and sample characteristics

Tissue samples were obtained from 8 Caucasian males with early stage
(stage 1 and 2) lung squamous cell carcinoma. The mean age at diagnosis
is 69.2 years old (range = 63.1–76.9 years).

Using the LUMP method for tumor purity, the average tumor purity is
around 40%, with the average normal tissue purity to be around 39%.

Genomic alterations of 5hmC among lung tissues

Using the TAB – EPIC and Bis – EPIC array, we profiled the 5hmC
and 5modC levels in 8 pairs of tumor and adjacent normal samples

http://broadinstitute.github.io/picard/
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(Supplementary Fig. 1). While the distribution of total methylation
demonstrated a typical two-mode distribution with peaks at both low
and high b levels (Supplementary Fig. 1B), the distribution of 5hmC
showed a unimodal distribution with the b values of most probes to be
less than 0.1 (Supplementary Fig. 1A).

We further examined the genomic 5hmC and 5modC alterations by
CpG island (CGI) status as well as genomic features. With regards to
CGI status, we observed similar patterns for both 5hmC and total methy-
lation: there was higher likelihood of hypomethylation at opensea and
shelf regions as well as hypermethylation at shore and CGI regions
(Supplementary Fig. 1C and D). For genomic features, 5hmC was hyper-
methylated at gene promoter regions (TSS1500 and TSS200), 50UTR, and
the 1st exon, but hypomethylated at gene bodies (Supplementary Fig. 1E).
Fig. 2. Locus-specific alterations of 5hmC and total methylation in lung ca
probes by CGI status. C. Significant 5hmC probes by genomic features. D. S
5000 significant 5hmC probes. F. Heatmap using the top 5000 significant 5
Locus-specific alterations of 5hmC in lung cancers

We identified 25,611 differentially methylated loci for 5hmC at
FDR < 0.05, among them 21,251 loci (83.0%) were hypomethylated; as
compared to 5modC, there were 34,975 differentially methylated loci at
FDR < 0.05. among them 30,616 loci (87.5%) were hypomethylated.
Further examination of the distribution pattern of significant 5hmC loci
by CGI status revealed that significant hypomethylated 5hmC loci were
overrepresented in opensea (OR = 2.22, 95% CI = 2.15–2.28) whereas
hypermethylated 5hmC loci were enriched in CGI (OR = 4.26, 95%
CI = 4.01–4.52) (Fig. 2A). With regards to genomic features, hypomethy-
lated 5hmC loci were more likely to distribute at gene bodies (OR = 1.54,
95% CI = 1.50–1.59), whereas hypermethylated 5hmC loci were more
ncers. A. Significant 5hmC probes by CGI status. B. Significant 5modC
ignificant 5modC probes by genomic features. E. Heatmap using the top
modC probes.



Fig. 3. Comparison of 5modC and 5hmC profiling. A. Scatter plot of bs between TAB-EPIC (5hmC) and Bis-EPIC (5modC) at CpG sites with
significant differential hydroxymethylation. B. Scatter plot of bs between TAB-EPIC (5hmC) and Bis-EPIC (5modC) at CpG sites with significant
differential total methylation. C. Scatter plot of average methylation difference between TAB-EPIC (5hmC) and Bis-EPIC (5modC). D. Scatter plot of
average methylation difference between Bis-EPIC (5modC) and MethylSeq (5modC). E. Venn diagram comparing the CpG sites with significant
differential total methylation and differential hydroxymethylation.
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Fig. 4. Difference observed and expected number of significant pathways
in major Gene Ontology Biological Process.
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frequent at gene promoter regions (OR = 2.07, 95% CI = 1.95–2.21),
50UTR (OR = 1.55, 95% CI = 1.42–1.70), and the 1st exon
(OR = 2.57, 95% CI = 2.31–2.87) (Fig. 2C). Using the top 5000 signif-
icant probes for 5hmC, we could clearly distinguish normal and tissue
samples with hierarchical clustering (Fig. 2E), and the discriminatory
power of 5hmC model appeared to be superior than the total methylation
model (Fig. 2F).

Comparison of 5hmC and 5modC profiling

We further compared the 5hmC and 5modC profiling measured by
different methods. As 5hmC was considered as an intermediate of DNA
demethylation, we examined the correlation between 5hmC and 5modC
across CpG sites with significant differential hydroxymethylation
(N = 25,611) (Fig. 3A) and across CpG sites with significant differential
total methylation (N = 34,975) (Fig. 3B). The 5hmC levels at the signif-
icant CpG sites showed poorly correlation with the total methylation, sug-
gesting potential distinct epigenetic function of 5hmC that is independent
of 5mC. The average differences of 5hmC between tumor and normal tis-
sues were also poorly correlated (r = 0.11) with the average difference of
5modC across genome (N = 656,768), though the average differences in
5modC measured by different methods (EPIC and MethylSeq) showed
fairly high concordance (r = 0.74). The Venn diagram comparing the sig-
nificant 5hmC loci (N = 25,611) and the significant 5modC loci
(N = 34,975) found only 1441 (2.4%) overlapping CpG sites for both
biomarkers, and among them 1288 loci (89.4%) were hypomethylated
for both 5hmC and 5modC (Fig. 3E).

Exploring biological relevance of 5hmC loci

We aggregated probes into regions and identified 26 regions with dif-
ferentially methylated 5hmC at FDR < 0.01, and 875 regions with differ-
entially methylated 5modC at FDR < 0.05. Supplementary Table 1 shows
the top 10 differential methylation regions (DMRs) for 5hmC and 5-
modC. Though globally hypomethylated, 5hmC were hypermethylated
at the upstream (gene promoter regions and 50UTR) of top genes such
as DYNLRB1, ALS2, CCNYL1, ATAD1, and STX16.

We conducted gene set analysis (GSA) to understand the biological
processes that the differentially methylated probes/regions are involved
in. In total, 430 and 189 GOBP pathways were significant for 5hmC
and 5modC at FDR < 0.05 level, respectively. The top 10 significant path-
ways for 5hmC and 5modC are shown in Supplementary Table 2. We fur-
ther explored the biological relevance of 5hmC by categorizing the GOBP
pathways into 17 top-level categories (cellular process, biological regula-
tion, metabolic process, multicellular organismal process, developmental
process, response to stimulus, localization, cellular component organiza-
tion or biogenesis, multi-organism process, signaling, immune system pro-
cess, reproduction, locomotion, cell population proliferation, growth,
biological adhesion, and behavior). For each category, we calculated the
expected number of significant pathways and compared with the observed
number of significant pathways in each category (Fig. 4). We found that
the differentially methylated 5hmC genes were more likely to congregate
at pathways involved in cellular process, biological regulation, and meta-
bolic process, whereas the differentially methylated 5modC genes were
more frequent among pathways related to localization, signaling, and mul-
ticellular organismal process.
Discussion

Though the incidence of lung cancer has decreased by 3% per year in
men and 1.5% per year in women from 2011 to 2015 in the US [46], it
remains to be the most common type of cancer and the leading cause of
cancer-related death globally [10]. What's more, the current five-year rel-
ative survival of 19% is lower than most common cancers and has only
improved slightly from 12% over the past three decades [37]. Therefore,
sensitive and specific biomarkers for lung cancer are in urgent needs to
improve diagnosis and long-term survival.

Due to the high tissue specificity and availability of high-throughput
method for quantification, DNA methylation has been considered as a
promising cancer biomarker and has been studied extensively in most can-
cers [17]. However, most studies on DNA methylation and cancer are
based on bisulfite conversion methods, which cannot distinguish between
5hmC and 5mC. In this study, we applied a start-of-the-art technique of
TET-Assisted Bisulfite (TAB) array with Illumina MethylationEPIC
(EPIC) BeadChip, and quantified the novel 5hmC marker at �850,000
CpG sites across human genome.

In this study, we observed a global depletion of 5hmC with most CpG
sites hypomethylated in tumors, which agrees with previous studies
[15,22,27,30,51]. Notably, we found hypermethylation of 5hmC among
tumors that were enriched in gene upstream (e.g. promoters), and previous
in vitro studies reported that the presence of 5hmC at the promoter
strongly suppressed transcription [43].

Though historically considered as an intermediate of DNA demethyla-
tion, the locus-specific 5hmC levels at differentially methylated CpG sites
do not correlate with the 5modC levels, indicating that 5hmC may not
simply be a demethylation intermediate. Moreover, comparison of the sig-
nificant 5hmC loci with the significant 5modC loci found very few over-
laps, and the differentially methylated 5hmC and 5modC genes were
enriched in different biological systems, suggesting the potential of
5hmC as a new, independent biomarker for lung cancer diagnosis.
Conclusion

In this exploratory study, we analyzed the epigenome-wide 5hmC pro-
files among paired tumor and normal tissues using the TAB array – EPIC
approach. We observed global hypomethylation of 5hmC in lung cancers,
and hypermethylated 5hmC were enriched in CpG islands and gene
upstream. We found that the genome-wide 5hmC levels do not correlate
with total methylation, and gene set analysis revealed different biological
functions of 5hmC. Overall, our results indicated the potential of
5hmC as a novel biomarker for lung cancer, and further work is needed
to validate differentially methylated loci for cancer diagnosis and prognosis
and to explore the functional role of 5hmC in lung cancer etiology.
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