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Abstract
1.	 Coastal resilience is threatened as storm‐induced disturbances become more 

frequent and intense with anticipated changes in regional climate. After severe 
storms, rapid recovery of vegetation, especially that of dune‐stabilizing plants, is 
a fundamental property of coastal resilience. Herbivores may affect resilience by 
foraging and trampling in disturbed areas. Consequently, assessing the impacts of 
herbivores on recovering vegetation is important for coastal land management.

2.	 We combined imagery classification, wildlife monitoring, and trend analysis to in‐
vestigate effects of white‐tailed deer on recovery rates of vegetation four years 
poststorm in nine overwashed areas. We estimated local deer density with trail 
cameras, how it relates to an index of primary productivity, and assessed the rela‐
tionship between deer density and rates of vegetation recovery in overwash fans.

3.	 Prestorm vegetation cover consisted of shrubs and sporadic patches of beach 
grass. Poststorm cover was dominated by beach grass. At current rates, vegeta‐
tion coverage will return to prestorm conditions within the decade, though com‐
munity transition from grasses to shrubs will take much longer and will vary by site 
with dune formation.

4.	 The effect of deer on rates of vegetation recovery was negative, but not statisti‐
cally significant nor biologically compelling. Although effects of deer trampling on 
beach grass are evident in classified imagery, deer foraging on beach grass had 
little effect on its rate of spread throughout overwash fans.

5.	 While the rate of spread of the primary dune‐building grass was not deleteriously 
affected by deer, locally high deer densities will likely affect the future establish‐
ment and development of herbs and shrubs, which are generally more palatable to 
deer than beach grass.
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1  | INTRODUC TION

Barrier islands have persisted for thousands of years despite fre‐
quent disturbance (Ehrenfeld, 1990; Feagin et al., 2010; Snyder & 
Boss, 2002). During storm events, foredunes along the ocean‐coast 
of barrier islands erode and serve as natural defense against disrup‐
tion of inland ecosystems (Durán & Moore, 2013; Hapke, Brenner, 
Hehre, & Reynolds, 2013; Sallenger, 2000). Where erosion rates are 
high, vegetation communities often remain disturbed and vulnerable 
to future storms (Roman & Nordstrom, 1988). In the absence of sub‐
sequent disturbance, a positive feedback between plants and sand 
entrapment begins to form a new foredune (Maun, 2009; Vinent & 
Moore, 2015).

Postdisturbance vegetation growth mediates dune forma‐
tion and subsequent coastal vulnerability to future storm impacts 
(Brantley, Bissett, Young, Wolner, & Moore, 2014; Durán & Moore, 
2013; Olson, 1958; Pendleton, Williams, & Thieler, 2004; Vinent & 
Moore, 2015). In the northeastern United States, Ammophila brevili‐
gulata, American beach grass, is the dominant plant species responsi‐
ble for foredune growth (Maun, 1985, 2009; Stuckey & Gould, 2000) 
since it is tolerant of salt spray and its growth is enhanced by sand 
burial. Growth and expansion rates of A. breviligulata are often quite 
high in areas with consistent sand deposition (Kent, Owen, Dale, 
Newnham, & Giles, 2001; Maun, 2009; Olson, 1958). Consequently, 
annual mapping of the expansion of A. breviligulata and other plants 
after a disturbance can increase our understanding of the factors 
that impinge on vegetation recovery and aid in developing poten‐
tial mitigation strategies. Mapping plant cover is facilitated through 
use of digital imagery and digital classification methods (Boyle et al., 
2014; Kilheffer, 2018).

Factors that affect coastal vegetation recovery rates, including 
herbivory (Carruthers et al., 2013; Keiper, 1990; Seliskar, 2003) and 
trampling (Bowles & Maun, 1982; Santoro et al., 2012; Šilc, Caković, 
Küzmič, & Stešević, 2017), have the potential to also affect resilience 
to future storms (Houser et al., 2015; Vinent & Moore, 2015). In this 
manuscript, we define resilience as the system's ability to respond to 
disturbance without losing ecological function (Klein, Smit, Goosen, 
& Hulsbergen, 1998). Due to the dynamic nature of dune systems, 
multiple states of equilibrium often exist after a disturbance (Zinnert, 
Stallins, Brantley, & Young, 2016), so resilience captures the ability of 
the system to return to a state of equilibrium, though that state may 
differ from predisturbance conditions.

Hyper‐abundant populations of large herbivores may reduce 
barrier island resilience by impeding rates of vegetation recovery 
through the combined effects of browsing, grazing, and tram‐
pling. Over the last several decades, populations of native and 
exotic large herbivores have irrupted to numbers that pose seri‐
ous challenges to the management of natural resources on barrier 
islands (Art, 1987; Carruthers et al., 2013; Forrester, Leopold, & 
Underwood, 2006; Porter, DePerno, Krings, Krachey, & Braham, 
2014; Sherrill, Snider, & DePerno, 2010; Wood, Mengak, & Murphy, 
1987). Ungulates seek highly productive patches of forage (Bakker, 
Ritchie, Olff, Milchunas, & Knops, 2006; Bråthen et al., 2007; 

Lezama et al., 2014; Oksanen, Fretwell, Arruda, & Niemela, 1981; 
Ritchie, Tilman, & Knops, 1998), especially in nitrogen‐limited en‐
vironments like most habitats on barrier islands (Ehrenfeld, 1990). 
In response to variation in net primary productivity, the spatial 
distribution of herbivores could exert disproportional effects on 
recovering vegetation communities and compromise barrier island 
resilience.

The purpose of this study was to better understand the effects 
of locally abundant white‐tailed deer (Odocoileus virginianus) popula‐
tions on poststorm vegetation recovery rates and, therefore, barrier 
island resilience. Our main objectives were to (a) estimate vegeta‐
tion recovery rates for nine overwash fans through use of imagery 
classification and (b) explore the relationships between local deer 
density, net primary productivity, and prestorm vegetation cover on 
poststorm vegetation cover.

2  | MATERIAL S AND METHODS

2.1 | Study area

The focal study area is on Fire Island, New York, USA (40.703586 N, 
72.952014 W). Fire Island is a barrier island located approximately 
6  km from the south shore of Long Island (Figure 1). Fire Island 
National Seashore is unique within the National Park Service net‐
work because it encompasses the Otis Pike Fire Island High Dune 
Wilderness Area (OPWA), the only federally designated wilderness 
area in the state of New York. This research focused on the OPWA, 
which was designated a federal wilderness area in 1980 (FIIS, 2015). 
On October 29, 2012, Hurricane Sandy, a posttropical cyclone with 
a massive wind radius (>185 km), caused significant storm surge and 
inundation of coastal areas along the northeastern United States 
(Blake, Kimberlain, Berg, Cangialosi, & Beven, 2013; Hapke et al., 
2013), including a breach of Fire Island. Before Hurricane Sandy, 
foredunes in the OPWA were 4–15 m high (Hapke et al., 2010). Many 
stretches of foredune in Fire Island's OPWA were overwashed by 
Hurricane Sandy's high storm surge, which deposited large volumes 
of sand inland, effectively removed the foredune, and left overwash 
fans ranging in size from 0.60 to 3.24 ha.

Deer in the OPWA have consistently exhibited densities of ap‐
proximately 25  ±  8  deer/km2 since the mid‐1980s based on aerial 
and ground surveys (O'Connell & Sayre, 1989; Underwood, 2005). 
Trampling by deer results in structural damage to above‐ground and 
below‐ground vegetation, leaving a legacy network of trails lacking 
vegetation throughout the OPWA (NOAA, 2012; NYSC, 2010). Deer 
graze grasses and herbs in overwash fans of the OPWA (Kilheffer, 
2018). However, the degree to which deer exert an impact on the 
composition, structure, and recovery rate of recovering vegetation in 
overwash fans after storms like Hurricane Sandy remains speculative.

2.2 | Vegetation cover assessment

We obtained digital orthoimagery for the OPWA before Hurricane 
Sandy (NYSC, 2010), in the aftermath of Hurricane Sandy (NOAA, 
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2012), and in the third and fourth growing seasons after Hurricane 
Sandy (AG, 2015; NYSC, 2016). Imagery resolutions were between 
0.15 and 1 m, and we used ArcGIS tools to mosaic orthoimagery tiles 
into one contiguous image (version 10.5; ESRI, Redlands, CA). We 
used random forest (RF) image classification to characterize vegeta‐
tion cover in and around nine post‐Hurricane Sandy overwash fans 
in the OPWA. The RF method is widely considered the most accu‐
rate machine‐learning technique available (Breiman, 2001; Cutler et 
al., 2007; Xie, Sha, & Yu, 2008). Random forest uses multiple clas‐
sification trees in a regression framework to classify land cover from 
spectral, geographic, or other user‐defined raster layers. Similar to 
maximum likelihood classification methods, the user trains samples 
from imagery (Lillesand, Kiefer, & Chipman, 2014). Instead of strictly 
using spectral information to identify land cover, classification trees 
use linear combinations of input layers and decision trees to parti‐
tion the image into regions that are increasingly homogeneous.

We identified 20 visually distinct land cover categories over the 
entire mosaicked image for each year to account for differences in 
atmospheric correction and spectral signature. We used the Train 
Random Trees classifier in ArcGIS to define classification trees using 
red, green, blue, and near‐infrared spectral bands (Kilheffer, 2018) 
and smoothed boundaries between classes with the Boundary Clean 
function in ArcGIS. We then aggregated land cover into water, sand, 
marsh grass, beach grass, shrubs, and trees.

We assessed classification accuracy by calculating confusion 
matrices of user's and producer's accuracies proportionally for each 
class (n = 500 points) in each year and kappa statistics (Stehman & 
Czaplewski, 1998; Van Deusen, 1996; Xie et al., 2008). User's accu‐
racy measures the probability that a randomly selected point clas‐
sified in a category actually depicts that category on the ground. 
Producer's accuracy measures error of omission by comparing the 
number of points classified in a category to the number of points 
actually within that category in the image (Congalton, 2005). Kappa 

statistics between 0.61 and 0.80 indicate substantial agreement be‐
tween the classified image and true land cover, and >0.81 are be‐
lieved to be nearly perfect (Landis & Koch, 1977).

Finally, we compared total classified vegetation cover with that 
estimated from a lattice of 1‐m2 plots extending the length and 
width of each overwash fan (Kilheffer, 2018). We regressed average 
vegetation cover in each overwash fan on total classified vegetation 
cover pooled between 2015 and 2016. We tested the statistical 
hypothesis of a slope not significantly different from unity and in‐
tercept not significantly different from zero to assess potential bias 
in recovery rate estimation because imagery was captured in spring 
before the growing season when field data were collected.

2.3 | Vegetation recovery rates

We reclassified each image into a binary raster of vegetation cover 
(grass, shrubs, trees  =  1; sand, water  =  0). We then used Zonal 
Statistics in ArcGIS with overwash fan boundaries as zones to cal‐
culate the sum of pixels of vegetation cover. We divided the sum of 
vegetation pixels by the total number of pixels processed in each 
overwash fan to obtain percent vegetation coverage. We ln‐trans‐
formed average percent coverage values for each year and overwash 
fan and used ordinary linear regression to estimate the exponential 
recovery rate.

We used the Normalized Difference Vegetation Index (NDVI) as 
a proxy for vegetation productivity in overwash fans. We obtained 
Landsat 7 ETM+ Surface Reflectance imagery for the OPWA for 
the following dates: June 15, 2012, July 04, 2013, June 21, 2014, 
June 24, 2015, June 26, 2016, and June 29, 2017 (courtesy of United 
States Geological Survey). Two overwash fans (i.e., 3 and 8) did not 
have Landsat imagery available on any dates between June 01 and 
August 30, 2017, so NDVI was calculated from 2012 to 2016 only. 
Landsat 7 sensors were replete with gaps in data after a Scan Line 

F I G U R E  1   Fire Island National 
Seashore is located off the southern 
coast of Long Island, New York, USA, and 
contains the Otis Pike Fire Island High 
Dune Wilderness Area
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Corrector failed in 2003 (Andrefouet, Bindschadler, & Colstoun, 
2003). To compensate for gaps in imagery data, we used imagery 
from July 12, 2016 where necessary. We used the Image Analysis 
tools in ArcGIS to create a composite of the red, green, blue, and 
near‐infrared bands and calculated NDVI. We calculated NDVI using 
the following equation:

NDVI values range from −1 to +1, where negative values typically 
correspond to pixels with no green vegetation present and positive 
values correspond to pixels with highly productive (i.e., photosyn‐
thetic) green vegetation present (Pettorelli et al., 2005). We used 
Zonal Statistics in ArcGIS (version 10.2) to calculate average NDVI 
within each overwash fan.

2.4 | Local deer density in overwash fans

We used nine Reconyx brand Hyperfire Covert‐IR HC600 cameras 
to monitor local deer density (i.e., number of deer using each over‐
wash fan) in the OPWA. We programmed trail cameras to take photo‐
graphs every hour during peak deer activity periods (Kammermeyer & 
Marchinton, 1977), from 0400 to 1000 and from 1700 to 2300 each 
day, and to take three photographs at one‐second intervals when 
motion was detected, including at night using an infrared sensor. We 
positioned each trail camera near a deer trail crossing in overwash 
fans. Cameras were monitored biweekly from August to November 
in 2015 and 2016.

We used methods described by Sanderson and Harris (2013) 
to calculate total effort per camera, species activity patterns, and 
density uncorrected for imperfect detection. We created encoun‐
ter histories for every identifiable deer in each overwash fan from 
August 1 to November 24 of each year and calculated an estimate 
of local abundance (Jacobson, Kroll, Browning, Koerth, & Conway, 
1997). Identifiable deer were differentiated through (a) presence of 
a uniquely colored radio collar or (b) antler points and conformation 
for males. We used the “species abundance by location by year by 
month” from DataAnalyze (Sanderson & Harris, 2013) as the total 
number of deer observations. We calculated a population factor as 

the proportion of uniquely identifiable deer to the number of iden‐
tifiable deer observations. We assumed the proportion of times that 
identifiable deer appeared in overwash trail cameras was the same for 
unidentifiable deer over the same duration. We calculated the total 
number of deer in each overwash fan using the population factor and 
the total number of deer recorded in camera images, including deer 
that were not uniquely identifiable. We predicted total abundance for 
two overwash fans during 2015 with no identifiable deer from a re‐
gression of total abundance on the numbers of deer recorded in cam‐
era images from 2016. We then divided total abundance of deer into 
the area of each overwash fan to obtain local deer density. We treated 
local deer density as representing the average number of resident an‐
imals using each overwash fan during the growing season and not as 
global estimates as many deer used more than one overwash fan.

We used the lm function in R (R Core Team, 2013) to assess the 
relationship between local deer density and average NDVI for each 
overwash fan in 2015 and 2016 through analysis of covariance. 
Finally, we used the general linear model (i.e., glm in R) to assess 
the relationship between average local deer density between years 
and pre‐Sandy (2010) vegetation cover on the estimated rates of 
vegetation recovery for each overwash fan. We assessed model fit 
using analysis of residuals, inspection for outliers, and coefficient of 
determination (R2). Equations for these two analyses are as follows:

NDVI=
NIR−RED

NIR+RED

lm(DeerDensity∼Year+NDVI+Year×NDVI)

glm(RecoveryRt∼ InitialCover+AvgDeerDensity)

F I G U R E  2   Image classifications for 
Overwash fan #1, an area overwashed 
by Hurricane Sandy in the Otis Pike Fire 
Island High Dune Wilderness Area, New 
York. Trails where vegetation does not 
grow, predominantly as a result of deer 
trampling, are evident in prestorm (2010) 
and recovering (2015, 2016) imagery in 
overwash fans

TA B L E  1   Accuracy assessments for classified imagery from 
2010, 2012, 2015, and 2016 in the Otis Pike Fire Island High Dune 
Wilderness Area, New York, including user's accuracies (UA), 
producer's accuracies (PA), overall accuracies (OA), and kappa 
statistics. Kappa statistics >0.61 indicate substantial agreement 
between the classified image and true land cover. See text for 
details

Year UA PA OA Kappa

2010 0.78 0.79 0.81 0.75

2012 0.90 0.88 0.92 0.89

2015 0.95 0.96 0.98 0.96

2016 0.93 0.89 0.95 0.92
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3  | RESULTS

3.1 | Vegetation cover assessment

Random forest classification of satellite and aerial imagery produced 
detailed maps of storm‐induced impacts to vegetation and subse‐
quent recovery in overwash fans (Figure 2). Overall accuracy cal‐
culated for each year was between 81% and 98%, indicating strong 
agreement between the classification and visible land cover (Table 1). 
In 2010, vegetation cover in overwash fans varied between 23.6% 
and 72.0% (Table 2) and contained mostly shrubs with small patches 
of A. breviligulata (Appendix S1). The regression of average vegetation 
cover derived from plot sampling on classified cover was significant 
(F = 32.7; df = 1, 16; p < .0001), predictive (R2 = 0.67) and relatively 
precise (CV  =  19.1%). The regression slope was not different from 
unity (β1 = 0.97; SE = 0.17) but the intercept was significantly differ‐
ent from zero (β0 = 16.8%; SE = 3.3%).

3.2 | Vegetation recovery rates

Vegetation cover decreased by 96%–99% in areas overwashed by 
Hurricane Sandy and only small patches of shrubs remained intact 
after the storm surge. By the third growing season post‐Hurricane 
Sandy (i.e., 2015), all overwash fans had established vegetation 
communities dominated by A.  breviligulata (6%–21% land cover) 
with small patches of shrubs (<1% land cover). Vegetation cover‐
age continued to increase in 2016 in most overwash fans (11%–
37% land cover). However, two overwash fans (i.e., 1 and 2) with 

slowly recovering foredunes experienced significant inundation 
and coastal erosion between 2015 and 2016 resulting in roughly 
one‐quarter of their land areas returning to predominantly bare 
sand. Exponential rates of vegetation recovery ranged from 1.5% 
to 2.2% year−1 (Table 2).

Net primary productivity, as interpreted from the NDVI, varied 
among overwash fans. Average NDVI decreased between 2012 
and 2013, increased from 2013 to 2015, and decreased from 2015 
to 2016 (Figure 3). The maximum and range of NDVI values were 
greater in 2015 than 2016.

3.3 | Local deer density in overwash fans

We identified three female and 22 male deer from trail camera 
photographs taken in 2015, but we were unable to identify indi‐
vidual deer photographed in overwash fans 1 and 2. We calculated 
between 10 and 39 total deer using each overwash fan in 2015 
(Table 3). We identified three adult females and 31 adult males from 
trail camera photographs taken in 2016, and calculated between 5 
and 63 total deer using overwash fans. Averaged across both years, 
local deer density ranged from 4 to 78 individuals/ha in overwash 
fans. Average local deer densities appeared higher among overwash 
fans in 2016 than in 2015 though the effect was not significant (year: 
F = 1.8; df = 1, 15; p = .21). There was a positive trend in local deer 
density with increasing NDVI, though the effect was not significant 
(NDVI: F = 3.5; df = 1, 15; p = .08).

Linear regression of vegetation recovery rates on pre‐Sandy veg‐
etation cover and local deer density was significant (F = 6.5; df = 2, 6; 

  OW1 OW2 OW3 OW4 OW5 OW6 OW7 OW8 OW9

2010 72.0 61.9 68.8 41.8 55.2 56.1 57.7 59.3 23.6

2012 1.7 1.0 1.5 2.0 1.2 1.9 4.0 1.8 2.3

2015 20.0 6.2 7.9 5.6 13.5 8.1 21.3 21.4 5.7

2016 23.9 12.7 29.6 14.0 22.2 20.1 27.7 37.2 11.3

Slope 2.0 1.9 2.0 1.6 2.1 1.8 1.7 2.2 1.5

Intercept 1.8 1.0 1.4 1.9 1.3 1.8 4.1 1.9 2.2

Yeara 2018 2019 2018 2019 2018 2019 2018 2017 2019

aYear in which total vegetation coverage (not species composition) is predicted to return to 
prestorm conditions. 

TA B L E  2   Percent total vegetation 
cover from classified digital imagery of 
overwash fans (OW) in the Otis Pike Fire 
Island High Dune Wilderness Area, New 
York, before Hurricane Sandy (2010), 
in the aftermath of Hurricane Sandy 
(2012), and in the third (2015) and fourth 
(2016) growing seasons after Hurricane 
Sandy and back‐transformed rates of 
change and initial total vegetation cover 
(%) in overwash fans among years since 
Hurricane Sandy

F I G U R E  3   Average Normalized 
Difference Vegetation Index (NDVI) and 
standard error bars for nine overwash 
fans (OW) from 2012 to 2017 in the Otis 
Pike Fire Island High Dune Wilderness 
Area, New York. Data are unavailable for 
overwash fans 3 and 8 in 2017

0.0

0.2

0.4

0.6

0.8

1.0

2012 2013 2014 2015 2016 2017

N
D

V
I

Year

OW 1

OW 2

OW 3

OW 4

OW 5

OW 6

OW 7

OW 8

OW 9



     |  11747KILHEFFER et al.

p  =  .03, R2  =  0.68). Standardized regression coefficients revealed a 
positive and significant effect of pre‐Sandy vegetation cover (β = 0.18; 
t = 3.2; p = .02), and a negative but statistically insignificant effect of 
local deer density (β = −0.08; t = −1.5; p = .19) on vegetation recovery 
rates.

4  | DISCUSSION

Prestorm vegetation coverage was the best predictor of poststorm 
recovery rates in overwash fans created by Hurricane Sandy. We 
did not find a significant effect of local deer density on the rates of 
vegetation recovery in storm‐induced overwash fans of the OPWA. 
While the estimated coefficient associated with local deer density 
was negative, the effect was neither statistically significant nor 
compelling. Since Hurricane Sandy, vegetation recovery in overwash 
fans has increased at an exponential rate of ~2% year−1 and coverage 
is dominated by A. breviligulata.

The RF classifier performed adequately in capturing changes in 
important land cover in and around overwash fans of the OPWA. Plot 
data recorded on average 16.8% more vegetation cover than image 
classifications. Imagery used for this study was collected in April be‐
fore the beginning of the growing season and ground methods were 

conducted in September during the growing season, so differences 
in total vegetation cover we observed were unsurprising. Bias in esti‐
mated recovery rates was not evident, however, because the regres‐
sion slope between total cover measured using ground methods and 
image classification was not different from unity.

Vegetation coverage was greater in 2016 than 2015, but NDVI 
was greater in all overwash fans in 2015. A drought spanning most of 
the northeastern United States in 2016 (NOAA, 2016) likely contrib‐
uted to reduced productivity of A. breviligulata in all overwash fans 
despite increases in cover. Photosynthetic rates of Ammophila spe‐
cies are sufficient for growth in water‐limited periods (Alessio, Lillis, 
Brugnoli, & Lauteri, 2004; Dixon, Hilton, & Bannister, 2004; Gratini, 
Varone, & Crescente, 2009; Pavlik, 1983), and drought alone did 
not reduce experimental growth of Ammophila breviligulata (Emery, 
Thompson, & Rudgers, 2010; Marshall, 1965). Marshall (1965) sug‐
gested that decline in vigor of Ammophila arenaria, a coastal grass 
closely related to A. breviligulata, occurs due to increased competi‐
tion for water and decreased sand accretion. Disraeli (1984) found 
significantly lower concentrations of chlorophyll in A.  breviligulata 
plants where burial was minimal (e.g., 2.5‐cm) than in areas where 
burial was great (e.g., 32.5‐cm), and changes in chlorophyll increased 
exponentially with increases in burial. The presence of budding fore‐
dunes on the ocean‐side of overwash fans reduces the amount of 

TA B L E  3   Local deer densities calculated from trail cameras in overwash fans (OW) in the Otis Pike Fire Island High Dune Wilderness 
Area, New York, in 2015 and 2016. Many deer were observed in multiple overwash fans, so values are not population estimates

  OW
Number 
unique deer

Number 
of obs.

Pop. 
factor

Total number of 
deer observed

Number of deer 
using OW OW area (ha)

Local deer density 
(deer/ha)

2015 1 0 0 – 32 19a 3.2 6

2 0 0 – 13 10a 2.6 4

3 5 24 0.21 58 12 0.7 18

4 3 3 1.00 34 34 1.1 32

5 6 23 0.26 71 19 1.4 14

6 8 18 0.44 66 29 0.7 44

7 11 93 0.12 266 31 0.6 52

8 10 18 0.56 70 39 1.4 28

9 9 44 0.20 105 21 0.8 27

2016 1 2 4 0.50 10 5 3.2 2

2 2 2 1.00 23 23 2.6 9

3 8 15 0.53 48 26 0.7 38

4 5 5 1.00 14 14 1.1 13

5 9 21 0.43 63 27 1.4 20

6 11 23 0.48 68 33 0.7 49

7 18 74 0.24 259 63 0.6 104

8 3 4 0.75 15 11 1.4 8

9 10 38 0.26 54 14 0.8 18

Note: Number of obs. = Number of unique deer observations.
Pop. factor = Population factor from Jacobson et al. (1997).
Number of deer using OW = Population factor × Total number of deer observed.
Local deer density = Number of deer using OW/OW area.
aValues imputed from regression using the number of unique deer (Y) and total number of deer observed (X) in each of the other overwash fans. 
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sand reaching farther inland (Brenner et al., 2018; Kilheffer, 2018; 
Maun, 2009), potentially contributing to reduced vigor of A. brevil‐
igulata in our study. Because NDVI calculates productivity based 
upon greenness of imagery pixels, a decrease in this productivity 
index indicates less greenness, or less chlorophyll, in A. breviligulata 
in our sites as foredunes continue to limit sand movement inland 
(Kilheffer, 2018).

Shrub encroachment in overwash fans has been attributed to the 
absence of subsequent storm events (Schroder, Hayden, & Dolan, 
1979) and is enhanced by dense grass cover where soil nutrients are 
present (Young, Shao, & Porter, 1995). In a coastal system in Florida, 
estimated time required for shrub encroachment into A. breviligu‐
lata‐dominated overwash fans ranged from 19 to 52 years (Johnson, 
1997). Because overwash fans 1 and 2 remain highly vulnerable to 
continued inundation, they may never transition from grass‐dom‐
inated to shrub‐dominated communities. In overwash fans that 
sustain foredune growth, plant communities are likely to return to 
shrub‐dominated swales with sporadic grasses and herbs over time 
(Ehrenfeld, 1990; Johnson, 1997; Maun, 2009). However, anthropo‐
genic impacts (i.e., visitors recreating in overwash fans; Lemauviel 
& Rozé, 2003) and changes in regional climate (i.e., precipitation 
and temperature patterns; Maun, 2009) could alter the resilience of 
plant communities and their successional transitions from grasses to 
shrubs in the OPWA.

The local deer densities we documented in overwash fans were 
unprecedented, exceeding the average density for the OPWA 
(Underwood, 2005) by 1–3 orders of magnitude. While we ob‐
served more deer in overwash fans exhibiting higher productivity, 
other factors may have contributed to their utilization by deer. For 
example, proximity to the salt marsh may facilitate deer utilization 
of overwash fans (Kilheffer, 2018). Nevertheless, the rate of spread 
of A.  breviligulata was not deleteriously affected by deer foraging 
and trampling in overwash fans. Although we occasionally recorded 
evidence of deer foraging on green and growing shoots, A.  brevil‐
igulata was mainly consumed by deer during the nongrowing sea‐
son when more palatable fodder was not readily available (Kilheffer, 
Underwood, Ries, Raphael, & Leopold, 2019). Gadgil (2002) reported 
similar findings regarding the effects of herbivores on A. arenaria, a 
closely related beach grass present on European beaches.

Additionally, A.  breviligulata is very sensitive to the effects of 
trampling (USDA, 2018) due to sandy substrates. At OPWA, deer 
trails are clearly evident in pre‐Sandy classified land cover images 
(Figure 2). Pellerin, Huot, and Côté (2006) found that deer trampling 
decreased ground vegetation cover, increased coverage of bare 
peat, and subsequently prevented future establishment of plants in 
peatlands. Similar legacy effects of vegetation disturbance persist 
throughout the OPWA from the Burma Road, a long‐abandoned 
(>50  years) vestige of anticipated development along the island 
(USNPS, 2016).

Regional climate, a strong driver of barrier island systems 
(Zinnert et al., 2016), has changed since the Hurricane of 1938, the 
last catastrophic storm event that caused extensive overwash on 
Fire Island. Sea level rise has led to increased vulnerability of barrier 

islands to damage (Horton, Little, Gornitz, Bader, & Oppenheimer, 
2015; NAST, 2001; Sallenger, 2000; Vinent & Moore, 2015) by caus‐
ing storm surges to encroach farther inland than they did only de‐
cades ago (Psuty, Grace, & Pace, 2005). Sea level rise in New York 
has been much greater than the global average (Sallenger, Doran, & 
Howd, 2012) and evidence suggests that the rate has been increas‐
ing (Horton et al., 2015; Psuty et al., 2005). Frequent high water 
events may hinder vegetation recovery between storms (Vinent 
& Moore, 2015) and further increase erosion (Houser & Hamilton, 
2009), limiting the island's natural resilience.

At current rates, vegetation coverage will return to pre‐Sandy 
conditions within the decade for most overwash fans. However, 
transition from grasses to shrubs and small trees will take much lon‐
ger and depends on how quickly a protective dune forms (Ehrenfeld, 
1990; Kilheffer, 2018; Tilman, 1990). Due to the short time frame 
of our study, we can only speculate on the future development of 
the vegetation community in overwash fans, especially as regional 
climate continue to change. Though deer may not impact the rate of 
A. breviligulata recovery in overwash fans, they may ultimately im‐
pact the successional trajectory from grasses to shrubs and herbs, 
particularly if local deer densities remain high. Continued monitor‐
ing of plant communities and local deer densities is advised to more 
fully assess the role of deer in long‐term resilience of Fire Island's 
wilderness.
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