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Abstract: Interleukin 1 receptor-like 1 (IL1RL1) is gaining in recognition due to its involvement in immune/inflamma-

tory disorders. Well-designed animal studies have shown its critical role in experimental allergic inflammation and human 

in vitro studies have consistently demonstrated its up-regulation in several conditions such as asthma and rheumatoid ar-

thritis. The ligand for IL1RL1 is IL33 which emerged as playing an important role in initiating eosinophilic inflammation 

and activating other immune cells resulting in an allergic phenotype. 

An IL1RL1 single nucleotide polymorphism (SNP) was among the most significant results of a genome-wide scan inves-

tigating eosinophil counts; in the same study, this SNP associated with asthma in 10 populations. 

The IL1RL1 gene resides in a region of high linkage disequilibrium containing interleukin 1 receptor genes as well as in-

terleukin 18 receptor and accessory genes. This poses a challenge to researchers interested in deciphering genetic associa-

tion signals in the region as all of the genes represent interesting candidates for asthma and allergic disease. 

The IL1RL1 gene and its resulting soluble and receptor proteins have emerged as key regulators of the inflammatory proc-

ess implicated in a large variety of human pathologies We review the function and expression of the IL1RL1 gene. We 

also describe the role of IL1RL1 in asthma, allergy, cardiovascular disease, infections, liver disease and kidney disease. 
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INTRODUCTION 

 Interleukin 1 receptor-like 1 (IL1RL1), also called T1, 
ST2, DER4 and FIT-1, is a member of the interleukin 1 su-
per-family [1] but does not bind interleukin 1 (IL1) [2]. 
IL1RL1 was an orphan receptor until the description of its 
ligand, interleukin-33 (IL33) in 2005 [3]. Since then, IL33 
binding to IL1RL1 has been associated with a variety of dis-
ease states and in particular to inflammatory processes as 
outlined in recent reviews [4, 5]. In the present review, we 
will focus mainly on the genetic associations of IL1RL1 with 
disease.  

IL1RL1 GENE AND PROTEINS 

 The IL1RL1 gene is located in chromosome 2q12 and is 
composed of 11 exons [6]. A number of IL1 family members 
reside in the immediate vicinity of the IL1RL1 gene namely 
IL1R2, IL1R1, IL1RL2, IL18 receptor 1 (IL18R1) and IL18 
receptor accessory protein (IL18RAP). The region spans 
about 300 kb and is in high linkage disequilibrium (LD) 
(Fig. 1). There is evidence for the involvement of the genes 
surrounding IL1RL1 in human and experimental disease, and 
therefore the causal locus responsible for genetic association 
signals from this region is difficult to determine. 
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 The IL18R1 and IL18RAP genes code for the components 
of the heterodimeric IL18 receptor (the  and  chains, 
respectively). The cytokine IL18 is a modulator of innate and 
adaptive immune responses that acts by inducing T helper 
type 1 (Th1) cell differentiation and T and NK cell matura-
tion or by activating IgE production and T helper type 2 
(Th2) cell differentiation under specific cytokine milieus 
[10-12]. High levels of IL18 mRNA and protein were ob-
served in lungs of smokers and COPD patients [13] and ex-
pression of an alternatively-spliced variant of IL18R1 was 
associated with atopy [14]. IL18R1 expression was also 
higher in human primary keratinocytes derived from skin 
lesions of psoriasis and atopic dermatitis patients compared 
with healthy controls [15]. IL18 signaling has been impli-
cated in host defense [16] and rheumatoid arthritis [17]. Ad-
ditionally, genetic association data have implicated the IL18 
receptor genes in asthmatic and allergic phenotypes [18, 19].  

Expression of IL1RL1 

 The gene transcription is initiated at two separate pro-
moters: a proximal promoter and a distal promoter. The al-
ternative usage of these two promoters leads to differential 
3’ processing of the mRNA isoforms [7, 8]. Three known 
isoforms are produced: isoform 1 which codes for IL1RL1 
isoform A (aka ST2L), a long membrane-bound protein, iso-
form 2 which codes for IL1RL1 isoform B (aka sST2), a 
short soluble protein and a third isoform which codes for 
IL1RL1 isoform C (aka vST2) [9], a variant membrane-
anchored form of the protein. The soluble form of IL1RL1 
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corresponds to the extra-cellular domain of IL1RL1 isoform 
A except for nine amino-acids in the C-terminal region. 

 IL1RL1 isoform A is mainly expressed on cells of hema-
topoietic provenance, mainly T cells [20]. It has been shown 
that binding of IL1RL1 isoform A with its ligand on the sur-
face of basophils, eosinophils and mast cells promotes their 
activation [21], increased adhesion and survival [22] and 
degranulation [23], respectively. IL33/IL1RL1 isoform A 
has also been shown to play a role in activating macrophages 
[24, 25]. 

 The short form, IL1RL1 isoform B, is expressed by vari-
ous cells including epithelial cells, endothelial cells, fibro-
blasts and smooth muscle cells. This expression is aug-
mented upon stimulation with IL1 , IL1 , TNF , LPS and 
other factors inducing cell stress such as cardiac infarction 
and hypoxia [26]. The tissue distribution of IL1RL1 isoform 
B seems to be relatively ubiquitous, with the highest levels 
of the secreted form found in the lung followed by the heart 
and the brain [27]. 

 Several studies show that the membrane-bound IL1RL1 
protein acts as a specific marker for Th2 cells [20]. In vitro 
blockade of IL1RL1 signaling with recombinant IL1RL1 
protein to compete with the endogenous receptor resulted in 
the abrogation of differentiation to and activation of Th2, but 

not Th1, effector cells [28]. Interestingly, IL1RL1 has been 
found to play a considerable role in a newly discovered im-
mune type2 effector leukocytes, known as nuocytes [29]. An 
IL13-GFP mouse model was utilized to define these as cells 
not corresponding to a previously known leukocyte lineage 
that express ICOS, IL1RL1 and IL25R [29]. The nuocytes’ 
function included the innate immune response to helminth 
infection with Nippostrongylus brasiliensis by secretion of 
high levels of IL13 in response to IL25 and IL33. 

 The ligand for IL1RL1 is a recently discovered member 
of the interleukin 1 family: IL33 [3]. The signaling of 
IL1RL1 isoform A binding to IL33 results in the activation 
of the Mitogen-Activated Protein kinases ERK1, ERK2 and 
p38 and the subsequent activation of NF B [3, 23]. IL1RL1 
isoform B corresponds to the extra-cellular domain of iso-
form A and in vitro studies have shown that it can also bind 
IL33 and act as a decoy receptor inhibiting the activation of 
NF B [30] and the subsequent inflammatory response. This 
was confirmed in an animal model where introduction of 
soluble IL1RL1 decreased pro-inflammatory cytokine (IL4, 
IL5 and IL13) production in a murine asthma model after 
treatment with IL33. It was shown that this protective effect 
of the soluble IL1RL1 seems to be IL10 dependent in an 
animal model of ischemia reperfusion injury [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Linkage disequilibrium in IL1RL1 and surrounding genes on chromosome 2q12 (102280 kb to 102500 kb) in the CEU HapMap 

population. 
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IL1RL1 IN DISEASE 

Asthma and other Respiratory Diseases 

 Increased eosinophil count is a phenotype associated with 
the majority of asthma cases and correlates with severity of 
the disease as well as response to glucocorticoid treatment 
[32]. Using asthma mouse models, it was shown that eosino-
philic inflammation is significantly decreased following al-
lergic stimuli in animals subjected to treatments with recom-
binant IL1RL1 or antibodies directed against the membrane-
anchored protein [33, 34]. Soluble IL1RL1 has been shown 
to be sufficient to reduce experimental allergic airway in-
flammation using an intravenous IL1RL1 gene transfer 
mouse model [34], perhaps by acting as a decoy receptor. In 
addition, a ST2

-/- 
knockdown mouse model of asthma 

showed decreased airway inflammation [35].  

 IL1RL1 expression has been shown to increase in murine 
[35] and human [36] asthmatic lungs; soluble IL1RL1 has 
been shown to increase in the serum of asthmatic patients 
during acute attacks, and this increase correlated with lung 
function decrease as well as an increase in the serum levels 
of the inflammatory cytokine IL5 [37]. Other in vivo studies 
of airway allergic inflammation demonstrated a clear in-
volvement of soluble IL1RL1 protein in regulating a Th2 
response after allergen challenge [35] as well as in the reso-
lution of allergen-induced inflammation as assessed by air-
way hyper-responsiveness [38].  

 Since the late 1990s, genetic studies have shown linkage 
of chromosome 2 with asthma, lung function (as assessed by 
FEV1%VC, a common clinically-useful index for airflow 
limitation), eosinophilia and IgE levels [39-41]. 

 Polymorphisms in IL18R1, a gene in tight LD with 
IL1RL1, were associated with asthma, atopic asthma and 
airway hyper-responsiveness using a candidate gene ap-
proach in a Danish population and the association consis-
tently replicated in two other European populations [18]. In 
the same year, another candidate gene association study 
documented significant genetic association of the gene clus-
ter containing IL1RL1, IL18R1 and IL18RAP with asthma 
and atopy in a Dutch population [19]. Additional association 
evidence was reported by the same group using pathway 
analysis to detect gene-gene interactions in the Toll Like 
Receptor (TLR)-related pathway. IL1RL1 isoform B has 
been shown to down-regulate gene expression of TLR4 and 
TLR1 in vitro after treatment with LPS and in vivo in a LPS-
induced shock mouse model [42]. 

 Twenty-nine genes implicated in TLR regulation were 
selected for a pathway analysis in Dutch populations [43]. 
IL1RL1 SNPs were associated with allergy and asthma phe-
notypes as single SNPs although the significance did not 
survive multiple testing correction. In addition, when gene x 
gene interactions were tested using the multifactor dimen-
sionality reduction approach, IL1RL1 SNPs were identified 
as interacting factors in analyses of IgE phenotypes [43]. 

 In a study performed by our group in collaboration with 
others, we investigated three Canadian and one Australian 
populations but failed to detect any significant association 
with IL1RL1 that survived correction for multiple compari-
sons [44]. The same cohorts, in addition to one American 

population, were used in an association study of genes in the 
vitamin D pathway with asthma and atopy phenotypes. 
IL1RL1 SNPs were selected for this study based on the fact 
that IL1RL1 was shown to be transcriptionally regulated by 
vitamin D [45]. The genotyping covered more variants of 
IL1RL1 than the initial study and the number of candidate 
genes was substantially less (11 versus 120 genes). Signifi-
cant associations of these variants were observed with 
asthma and atopy phenotypes [46].  

 Given the role of eosinophils in the pathogenesis of 
asthma, alleles that associate with increased eosinophil count 
could be detrimental in terms of asthma risk and severity. In 
a Genome Wide Association Study (GWAS) of eosinophil 
count in an Icelandic population, a SNP in IL1RL1 
(rs1420101) showed the most significant association. The A 
allele of rs1420101 associated with increased eosinophil 
count and in further analyses with increased serum IgE as 
well as with three asthma phenotypes (asthma, atopic 
asthma, non atopic asthma) in nine European populations 
and one east Asian population [47]. rs1420101 is an intronic 
SNP which is in high LD (r

2 
greater than 80%) with a large 

number of other variants in IL1RL1, IL18R1 and IL18RAP; 
this group of SNPs contains mostly intronic SNPs in addition 
to a coding-synonymous and a few 3’ and 5’ UTR SNPs. No 
functional studies have been performed thus far to determine 
the association-causing SNP. 

 It is of note that an association of a SNP in IL33 
(rs3939286) with eosinophil count, asthma and atopic 
asthma was reported in same study, although the IL33 asso-
ciation with eosinophil count did not reach genome-wide 
significance. The same IL33 SNP was associated with nasal 
polyposis in a Belgian population in a candidate gene study 
[48]. 

 Wu et al. used GWAS data of childhood asthma in a 
Mexican population [49] to perform a candidate gene analy-
sis. In this study, 237 genes were selected from human and 
animal model published studies of asthma to have at least 
one SNP associated with an asthma phenotype. They re-
ported IL1RL1 among the most significant associations. Fur-
thermore, their results were subjected to multi-marker analy-
sis, which confirmed IL1RL1 as a significant finding as well 
as IL18R1. 

 Collectively, there is strong evidence for genetic associa-
tion of IL1RL1 with asthma and related phenotypes. This 
association is certainly very well supported by the biology of 
IL1RL1 and related proteins. IL33 is secreted by the airway 
epithelium in response to stress such as allergens or viruses, 
and binds to IL1RL1 isoform A on the surface of immune 
cells. There are excellent reviews about the central role of 
the epithelium in initiating and sustaining immune responses 
[50]; IL33/ IL1RL1 isoform A plays a crucial role in that 
process.  

 The binding of IL1RL1 isoform A and its ligand IL33 
triggers the NF B signaling pathway, which leads to the 
transcription of cytokines needed for a Th2 immune re-
sponse. However, the role of IL1RL1 isoform B remains 
unclear. Several animal models and in vitro studies show that 
IL1RL1 isoform B prevents the IL33/ IL1RL1 isoform A 
signaling and consequently attenuates inflammation, indicat-
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ing its role as a negative regulator of the pro-inflammatory 
IL33/ IL1RL1 isoform A axis. Human data on the other hand 
clearly demonstrate a consistent increase of IL1RL1 isoform 
B in an array of pathological conditions as well as the corre-
lation of this increase with severity. Additionally, there was 
a report of an animal study showing that mice deficient in 
IL1RL1 showed attenuated airway inflammation after chal-
lenge with an allergen [51], suggesting that IL1RL1 isoform 
B might be participating in the excessive inflammation ob-
served in asthma. However, the model used for this study 
was the transgenic TCR-mouse model; these animals are pre-
disposed to autoimmune disorders because they carry rear-
ranged TCR  and  genes from a diabetogenic T cell clone. 

 The above studies do not seem to be consistent with the 
antagonist role of IL1RL1 isoform B but rather indicate a 
possible involvement in the pathology. An alternative expla-
nation would be that the increase of IL1RL1 isoform B is a 
means of preventing an exaggerated immune response but 
either occurs too late or is insufficient to remedy to the 
pathological state. 

 Evidently, soluble IL1RL1 plays a role in the regulation 
of the immune response, notably in severe disease. Exactly 
what that role is and the mechanisms underlying it need to be 
clarified in order to develop efficient strategies for develop-
ing therapeutics using the IL1RL1 proteins. 

 Recent human data in Chronic Obstructive Pulmonary 
Disease (COPD) seem to indicate an involvement of soluble 
IL1RL1 in the early stages of COPD [52]. This study how-
ever involved a small number of patients and needs replica-
tion. 

Allergy and Immune Disorders 

 A SNP in the distal promoter region of IL1RL1, 

rs6543116 (-26999G/A), was associated with increased risk 

for atopic dermatitis and up-regulation of gene expression 

[53]. This study suggested a functional effect of rs6543116 

as the A allele correlated with an up-regulation of the gene 

transcription as well as serum levels. The same group re-

ported the association of serum levels of IL33 and SNPs in 

the IL33 gene with Japanese cedar pollinosis, the most com-

mon form of allergic rhinitis in Japan [54]. In addition, Cas-

tano et al. found a protective association of IL1RL1 SNPs 

with chronic rhinosinusitis using a cohort of surgery-

unresponsive chronic rhinitis patients, this association was 
stronger in more severe disease [55]. 

 IL33 signaling through IL1RL1 was shown to be in-

volved in anaphylactic shock in an animal model study ex-

amining the response of IgE-sensitized mice to IL33 treat-

ment [23]. The same authors had shown elevated IL33 levels 

in the serum of atopic patients undergoing surgery; this ef-

fect was demonstrated to derive purely from innate immunity 

as T or B cells were not required. The pathological effect 

could be prevented by treatment with anti-IL33 antibody or 
soluble IL1RL1 and was not observed in ST2

-/-
 animals [23].  

 IL1RL1 and closely linked genes have been implicated in 

an array of autoimmune diseases. Levels of IL1RL1 isoform 

B have been shown to be increased in various conditions 

such as Systemic Lupus Erythematosus (SLE), sclerosis, and 

rheumatoid arthritis (RA) [56]. Mok et al. found that ele-

vated serum IL1RL1 isoform B levels in SLE patients corre-

lated with disease activity [57]. To date, GWAS performed 

in Chinese and European populations have not found asso-
ciation of IL1RL1 SNPs with RA [58, 59]. 

 Studies in animal models demonstrated that recombinant 
IL1RL1 isoform B protein, or anti-IL1RL1 antibody could 
significantly attenuate the severity of experimental arthritis 
[60, 61] and IL1RL1 knock-out mice were shown to develop 
less severe form of disease and had reduced pro-
inflammatory cytokine production. Additionally, human 
studies have shown increased levels of IL33 and IL1RL1 in 
RA synovium paralleling increased inflammation [62]. Stud-
ies in animal models strongly suggest that the involvement 
of IL33/IL1RL1 in RA is through triggering mast cell de-
granulation in the RA synovium [63]. Although there is good 
evidence for a role of IL33/IL1RL1 in human and experi-
mental arthritis, no SNPs in these genes were found associ-
ated with susceptibility to RA in GWAS data [64]. 

 The IL1RL1/IL33 signaling axis was implicated in in-
flammatory bowel disease (IBD) for the first time in two 
recent studies characterizing IL1RL1 and IL33 protein and 
mRNA expression in IBD patients [65]. There was an in-
crease in soluble IL1RL1 levels in the gut, which was mainly 
associated with the active state of ulcerative colitis, indicat-
ing a possible negative regulation of the IL1RL1/IL33 path-
way in order to dampen the inflammation. Pastorelli et al. 
confirmed the observation of elevated levels of IL1RL1 and 
IL33 in the serum and mucosa of IBD patients; they also 
showed that anti-TNF decreased IL1RL1 isoform A levels 
and increased the soluble isoform making more decoy recep-
tor available in order to sequester IL33 and reduce the in-
flammation [66]. 

 A SNP 1.5 kb downstream of IL18RAP (rs917997) was 
associated with susceptibility to IBD in a Dutch population; 
the same SNP was associated with celiac disease in three 
European populations [67]. rs917997 along with another 
SNP in the intergenic region between IL1RL1 and IL18R1 
(rs13015714) were associated with celiac disease in a 
GWAS of a UK population [68]. The same SNP downstream 
of IL18RAP (rs917997) was associated with Crohn's disease 
in a GWAS [69]. 

 These genetic and mechanistic data suggest that 
IL1RL1/IL33 plays a role in the gut mucosa similar to the 
airway epithelium i.e. IL1RL1 isoform A/IL33 eliciting a 
Th2 immune response and IL1RL1 isoform B serving as a 
negative regulator. 

 There is evidence that IL1RL1 directly acts on macro-
phages to suppress their ability to produce pro-inflammatory 
cytokines [42]. Macrophages are instrumental in diabetes 
pathogenesis. In an animal model of diabetes (multiple low-
dose streptozotocin-induced diabetes), Mensah-Brown et al. 
[70] showed that specific disruption of the IL1RL1 gene sig-
nificantly enhanced inflammation in their mouse model as 
estimated by an increase in cellular infiltration in pancreatic 
islets and a reduction in cells immuno-positive for insulin. 
Recently, a genetic linkage study demonstrated linkage of 
chromosome 2 with type 2 diabetes with a LOD score of 4.5 
[71]. Follow-up genetic studies are warranted to narrow 
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down the linkage signal and investigate specific SNP asso-
ciations. This may lead to the identification of novel path-
ways in diabetes. 

 In summary, the available data on the involvement of 
IL1RL1 and its ligand IL33 in immune and autoimmune 
disorders are reasonably consistent; a clearer understanding 
of the balance between IL1RL1 isoform A/IL33, IL1RL1 
isoform B/IL33 and its regulation is needed in order to make 
that axis a more attractive target for therapeutic intervention. 

Cardiovascular Disease 

 In vitro and animal model studies have demonstrated that 
IL33/IL1RL1 isoform A signaling protects cardiomyocytes 
from apoptosis by suppressing Caspase 3 activity and pro-
moting the expression of anti-apoptotic proteins in vitro and 
improves survival in experimental myocardial infarction 
(MI) animals [72]. Human studies have shown an increase of 
soluble IL1RL1 after myocardial stress or injury, and MI 
[26, 73]; the levels correlated with diastolic load [74], car-
diac abnormalities on electrocardiogram (ECG) and poor 
prognosis in dyspneic and MI patients [75-77]. In a study 
following 150 patients admitted to hospital with acutely de-
stabilized heart failure, multiple serum samples were col-
lected between admission and discharge and soluble IL1RL1 
levels were measured. The results showed that IL1RL1 iso-
form B levels were a powerful predictor of 90-day mortality. 
Indeed, IL1RL1 isoform B serum levels are considered a 
reliable biomarker for heart failure [78, 79] as delineated by 
a recent review by Moore et al. [80]. A more recent study 
demonstrated for the first time that IL1RL1 isoform B could 
be used to predict left ventricular and infarct recovery after 
acute MI [81]. 

 The company Critical Diagnostics in collaboration with 
the Brigham and Women’s Hospital in Boston has developed 
a diagnosis kit called Presage that uses soluble IL1RL1 lev-
els for diagnosis and prognosis of cardiovascular disease. 
However, this kit is not yet approved by the FDA for clinical 
use. Many U.S. and international patents protect the use of 
IL1RL1 for the diagnosis and prognosis in cardiovascular 
disease. 

 The fact that increased level of IL1RL1 is correlated with 
poor prognosis in different instances of cardiovascular dis-
ease points to a role of soluble IL1RL1 as marker for the 
severity of the immune response. Increased IL1RL1 isoform 
B is indicative of an overwhelming immune response that is 
hard to control and thus leads to unfavorable outcome in 
cardiovascular disease patients, such as after an MI. 

Infections 

 IL1RL1 isoform B levels correlate with sepsis severity 
and outcome [82]. A possible mechanism was recently de-
scribed by Alves-Filho et al. [83]. Using the cecal ligation 
and puncture model in Balb-c mice [83], a widely used 
model for experimental sepsis, this group demonstrated that 
IL33 treatment was protective from peritonitis and enhanced 
bacterial clearance. Their data also show that the protective 
effect of IL33 treatment was achieved via the inhibition of a 
TLR-signaling-induced protein, GRK2. GRK2 plays a 
prominent role in sepsis as it down-regulates CXCR2 (a re-

ceptor for IL8, a chemokine that attracts neutrophils to infec-
tion sites) thus leading to inefficient clearance of bacteria. 

 In agreement with the role of IL1RL1 proteins in the 
promotion of Th2 responses, mRNA levels of both receptor 
and soluble forms of the IL1RL1 transcript were shown to be 
up-regulated in an animal model of Toxoplasma gondii para-
sitic infection and this up-regulation correlated with protec-
tion from the infection [84]. In addition, ST2

-/-
 knockout 

mice demonstrated increased susceptibility and more severe 
disease compared to wild type mice as assessed by weight 
loss, increased parasite transcript levels and typical disease 
pathology [84]. In 2008, a small study of a Somali popula-
tion reported an association of a SNP in the 3’UTR of 
IL18R1 (rs3213733) with variability in Rubella vaccine-
induced humoral immunity [85]. It is interesting that the 
same SNP was recently shown to be associated with asthma 
in two different studies, in Mexican and Japanese popula-
tions [47, 86]. As LD patterns differ between populations, 
this suggests a potential functional role of this SNP in regu-
lating gene expression/function.  

 Additional evidence for a role of the IL33/IL1RL1 axis in 
host defense comes from an animal study showing the pro-
tective role of IL33 in intestinal infection with nematodes 
[87].  

 In summary, IL1RL1 confers protection from infection, 
which is consistent with its involvement in the Th2 immune 
response. The increase in IL1RL1 signaling skews T cells to 
Th2 and prevents a parasite-specific Th1 polarized response. 

Liver and Kidney Disorders 

 In a candidate gene association study of the course of 
Hepatitis C in a Japanese population, 103 genes including 
IL1RL1 and IL18R1 were investigated [88]. SNPs in both 
these genes as well as other genes involved in immune re-
sponses were significantly associated with serum levels of 
alanine aminotransferase (ALT). ALT levels are routinely 
used as a diagnostic test of liver function and elevated levels 
are an indicator of infections and other disorders. Neverthe-
less, this group’s data were not corrected for multiple testing 
and need to be replicated in other populations.  

 An over-expression of IL1RL1 and IL33 mRNA in fi-
brotic liver was reported using mouse and human tissue sec-
tions [89]. 

CONCLUDING REMARKS 

 The IL1RL1 gene and its resulting soluble and receptor 
proteins have emerged as key regulators of the inflammatory 
process implicated in a large variety of human pathologies 
(see summary Table 1).  

 IL1RL1 is important for both innate and adaptive immu-
nity as IL1RL1 isoform A binding with its ligand IL33 leads 
to polarization of T helper cells into Th2 and also activates 
and promotes the degranulation of mast cells. The resulting 
inflammation is down-regulated by the soluble form of 
IL1RL1; levels of the latter are recognized as biomarkers for 
the severity of various conditions. Except for the functional 
analysis of the IL1RL1 SNP rs6543116 associated with 
asthma and atopic dermatitis [36, 53], there has been no 
functional analysis of the disease-associated variants in 
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Table 1.  

Gene SNP Chr. Loc. SNP Location Disease/Phenotype pValue Study Population N Refs. 

IL1RL1 rs949963 102769786 5' near-gene Childhood asthma 0.033 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL1R1 rs3917289 102781911 intronic Childhood asthma 0.022 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J  

Allergy 

Clin 

Immunol 

2010 

IL1RL1 rs11685424 102926981 5' near-gene Childhood asthma 0.04 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL1RL1 rs11685480 102927086 5' near-gene Specific IgE egg 1-2 years 0.02 

Candidate gene 

study-gene-gene 

interaction analy-

sis Dutch 

3062 children 

(birth cohort) 

Reijmer-

ink et al. 

- Allergy 

2010 

IL1RL1 rs6543116 102927726 promoter Atopic dermatitis 0.000007 

Candidate SNP 

study Japanese 

452 cases / 

636 controls 

Shimizu 

et al. - 

Hum Mol 

Genet 

2005 

IL1RL1 rs1420089 102938389 intronic Asthma  0.033 

Candidate gene 

study 

French-

Canadian 

founder 

population 72 families 

Bossé et 

al. - 

Respir 

Res 2009 

IL1RL1 rs13431828 102954653 5' UTR Chronic rhinosinusitis 0.008 

Candidate gene 

study 

French-

Canadian 

206 cases / 

196 controls 

Castano 

et al. - 

Am J 

Rhinol 

Allergy 

2009 

IL1RL1 rs13431828 102954653 5' UTR Childhood asthma 0.0002 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL1RL1 rs1041973 102955468 

Cod.non.syn 

(78Ala>Glu) Atopy 0.046 

Candidate gene 

study 

Canadian 

birth cohort  98 families 

Bossé et 

al. - 

Respir 

Res 2009 

IL1RL1 rs1041973 102955468 

Cod.non.syn 

(78Ala>Glu) Course of hepatitis C 0.004 

Candidate gene 

study Japanese 238 cases 

Saito et 

al. - 

Biochem 

Biophys 

Res 

Commun 

2004 
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(Table 1). Contd….. 

Gene SNP Chr. Loc. SNP Location Disease/Phenotype pValue Study Population N Refs. 

IL1RL1 rs1041973 102955468 

Cod.non.syn 

(78Ala>Glu) Childhood asthma 0.00035 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL1RL1 rs1420101 102957716 intronic Eosinophil count 5.3 x 10-14 GWAS Icelandic 

9392 indi-

viduals 

Gudbjarts

son et al. 

- Nat 

Genet 

2009 

IL1RL1 rs1420101 102957716 intronic Asthma 5.5 x 10-12 

Candidate gene 

study_follow-up 

to GWAS 

9 European + 

1 East Asian 

populations 

7996 cases / 

44890 con-

trols 

Gudbjarts

son et al. 

- Nat 

Genet 

2009 

IL1RL1 rs2160203 102960824 3' UTR Chronic rhinosinusitis 0.03 

Candidate gene 

study 

French-

Canadian 

206 cases / 

196 controls 

Castano 

et al. - 

Am J 

Rhinol 

Allergy 

2009 

IL1RL1 rs1946131 102961929 intronic Asthma / Atopy 0.015 / 0.050 

Candidate gene 

study 

French-

Canadian 

founder 

population 

53 / 42 fami-

lies 

Bossé et 

al. - 

Respir 

Res 2009 

IL1RL1 rs17027006 102965332 intronic Total IgE  0.02 

Candidate gene 

study-gene-gene 

interaction analy-

sis Dutch 

3062 children 

(birth cohort) 

Reijmer-

ink et al. 

- Allergy 

2010 

IL1RL1 rs1921622 102966067 intronic Specific IgE egg 1-2 years 0.04 

Candidate gene 

study-gene-gene 

interaction analy-

sis Dutch 

3062 children 

(birth cohort) 

Reijmer-

ink et al. 

- Allergy 

2010 

IL1RL1 rs1921622 102966067 intronic BHR / asthma / Total IgE 

0.014 / 0.038 

/ 0.027 

Candidate gene 

study Dutch 

212 / 193 / 

276 families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 

IL1RL1 rs10208293 102966310 intronic Chronic rhinosinusitis 0.03 

Candidate gene 

study 

French-

Canadian 

206 cases / 

196 controls 

Castano 

et al. - 

Am J 

Rhinol 

Allergy 

2009 

IL1RL1 rs10208293 102966310 intronic 

Specific IgE indoor aller-

gens 6-8 years 0.03 

Candidate gene 

study-gene-gene 

interaction analy-

sis Dutch 

3062 children 

(birth cohort) 

Reijmer-

ink et al. 

- Allergy 

2010 
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IL1RL1 rs1861246 102966783 intronic BHR / asthma / Total IgE 

0.021 / 0.05 / 

0.02 

Candidate gene 

study Dutch 

175 / 163 / 

230 families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 

IL1RL1 rs1861245 102966906 intronic Asthma  0.032 

Candidate gene 

study 

French-

Canadian 

founder 

population 101 families 

Bossé et 

al. - 

Respir 

Res 2009 

IL1RL1 rs4988957 102968075 cod.syn Chronic rhinosinusitis 0.03 

Candidate gene 

study 

French-

Canadian 

206 cases / 

196 controls 

Castano 

et al. - 

Am J 

Rhinol 

Allergy 

2009 

IL1RL1 rs10204137 102968212 Cod.non.syn Chronic rhinosinusitis 0.04 

Candidate gene 

study 

French-

Canadian 

206 cases / 

196 controls 

Castano 

et al. - 

Am J 

Rhinol 

Allergy 

2009 

IL1RL1 rs10204137 102968212 Cod.non.syn Childhood asthma 0.013 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL1RL1 rs10192157 102968356 Cod.non.syn Childhood asthma 0.013 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL1RL1 rs10206753 102968362 Cod.non.syn Childhood asthma 0.013 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL1RL1 / 

IL18R1 rs13015714 102971865 intergenic Coeliac disease NS 

Candidate gene 

study_follow-up 

to GWAS 

European 

(Swedish, 

Norwegian) 325 families 

Amund-

sen et al. 

- Genes 

Immun 

2010 

IL1RL1 / 

IL18R1 rs12999364 102974129 intergenic BHR / asthma  0.016 / 0.021 

Candidate gene 

study Dutch 

198 / 185 

families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 

IL18R1 rs2287037 (C-69T) 102979028 5' near-gene 

Coal workers' pneumoco-

niosis  NS 

Candidate gene 

study French 

200 individu-

als 

Nadif et 

al. - Eur 

Respir J 

2006 
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IL18R1 rs2287037 102979028 5' near-gene Asthma 0.024 

Candidate gene 

study 

European 

(Danish, 

British, 

Norwegian) 736 families 

Zhu et al. 

- Eur J 

Hum 

Genet 

2008 

IL18R1 rs1420099 102980543 intronic Asthma / Atopic asthma 

0.00069 / 

0.00008 

Candidate gene 

study 

European 

(Danish, 

British, 

Norwegian) 736 families 

Zhu et al. 

- Eur J 

Hum 

Genet 

2008 

IL18R1 rs1420098 102984279 intronic Asthma 0.037 

Candidate gene 

study 

European 

(Danish, 

British, 

Norwegian) 736 families 

Zhu et al. 

- Eur J 

Hum 

Genet 

2008 

IL18R1 rs1362348 102984624 intronic 

Asthma / Atopic asthma / 

BHR 

0.0013 / 

0.00024 / 

0.048 

Candidate gene 

study 

European 

(Danish, 

British, 

Norwegian) 736 families 

Zhu et al. 

- Eur J 

Hum 

Genet 

2008 

IL18R1 rs1558627 102984684 intronic BHR / Total IgE 0.049/.028 

Candidate gene 

study Dutch 

180 / 238 

families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 

IL18R1 rs2058622 102985424 intronic Atopic asthma 0.045 

Candidate gene 

study 

European 

(Danish, 

British, 

Norwegian) 736 families 

Zhu et al. 

- Eur J 

Hum 

Genet 

2008 

IL18R1 rs3771170 102985980 intronic 

Humoral immunity to 

Rubella 0.0003 

Candidate gene 

study Somali 

89 individu-

als 

Dhiman 

et al. - 

Tissue 

Antigens 

2008 

IL18R1 rs3771166 102986222 intronic Childhood asthma 0.011 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL18R1 rs1974675 102986375 intronic 

Asthma / Atopic asthma / 

BHR 

0.00005 / 

0.00001 / 

0.036 

Candidate gene 

study 

European 

(Danish, 

British, Nor-

wegian) 736 families 

Zhu et al. 

- Eur J 

Hum 

Genet 

2008 

IL18R1 rs1465321 102986618 intronic 

Humoral immunity to 

Rubella 0.009 

Candidate gene 

study Somali 

89 individu-

als 

Dhiman 

et al. - 

Tissue 

Antigens 

2008 
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IL18R1 rs2270297 102992675 intronic 

Humoral immunity to 

Rubella 0.0002 

Candidate gene 

study Somali 

89 individu-

als 

Dhiman 

et al. - 

Tissue 

Antigens 

2008 

IL18R1 rs2270297 102992675 intronic BHR 0.048 

Candidate gene 

study Dutch 185 families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 

IL18R1 rs3213733 102997884 intronic 

Humoral immunity to 

Rubella 0.009 

Candidate gene 

study Somali 

89 individu-

als 

Dhiman 

et al. - 

Tissue 

Antigens 

2008 

IL18R1 rs3213733 102997884 intronic Asthma 0.0035 

Candidate gene 

study Japanese 

288 cases / 

1032 controls 

Imada et 

al. - 

BMC Res 

Notes 

2009 

IL18R1 rs3213733 102997884 intronic Childhood asthma 0.0054 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL18R1 rs1035130 103001402 cod.syn BHR / asthma 0.048 / 0.046 

Candidate gene 

study Dutch 

174 / 159 

families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 

IL18R1 rs3755274 103002395 intronic 

Humoral immunity to 

Rubella 0.009 

Candidate gene 

study Somali 

89 individu-

als 

Dhiman 

et al. - 

Tissue 

Antigens 

2008 

IL18R1 rs2241117 103003043 intronic 

Humoral immunity to 

Rubella 0.001 

Candidate gene 

study Somali 

89 individu-

als 

Dhiman 

et al. - 

Tissue 

Antigens 

2008 

IL18R1 rs3771161 103003961 intronic 

Humoral immunity to 

Rubella 0.009 

Candidate gene 

study Somali 

89 individu-

als 

Dhiman 

et al. - 

Tissue 

Antigens 

2008 

IL18R1 rs4851004 103009537 intronic Childhood asthma 0.0079 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 
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IL18R1 rs2287033 103011237 intronic Childhood asthma 0.0063 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL18R1 rs3732127 103013750 3' UTR 

Humoral immunity to 

Rubella 0.009 

Candidate gene 

study Somali 

89 individu-

als 

Dhiman 

et al. - 

Tissue 

Antigens 

2008 

IL18R1 rs1420094 103015687 3' UTR Childhood asthma 0.0063 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL18R1 rs1420094 103015687 3' UTR Atopic asthma 0.0063 

Candidate gene 

study 

European 

(Danish, 

British, Nor-

wegian) 736 families 

Zhu et al. 

- Eur J 

Hum 

Genet 

2008 

IL18R1 / 

IL18RAP rs1035127 103019919 intergenic Crohn's disease 1.2 x 10-4 GWAS 

Caucasian 

(American, 

Canadian, 

Belgian, 

French, Brit-

ish) 

2325 cases / 

1809 controls 

+ 1339 

families 

Barrett et 

al. - Nat 

Genet 

2008 

IL18RAP rs1420106 103035044 5' near-gene BHR / Total IgE 0.023 / 0.012 

Candidate gene 

study Dutch 

184 / 234 

families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 

IL18RAP rs1420100 103037002 intronic 

Lumbar disc signal inten-

sity 0.005 

Candidate gene 

study Finnish 

588 individu-

als 

Videman 

et al. - 

Arthritis 

Rheum 

2009 

IL18RAP rs2272127 103039873 intronic 

Schizophrenia+Herpes 

seropositivity 0.03 

Candidate gene 

study 

Caucasian 

(Amercican) 

478 cases / 

501 controls 

Shirts et 

al. - Am J 

Med 

Genet B 

Neuro-

psychiatr 

Genet 

2008 

IL18RAP rs917997 103070568 intergenic Coeliac disease 8.49 x 10-10 

Candidate gene 

study_follow-up 

to GWAS 

Northern 

European 

767 cases / 

1422 controls 

Hunt et 

al. - Nat 

Genet 

2008 
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IL18RAP rs917997 103070568 intergenic Type 1 diabetes 8.03 x 10-5 

Candidate gene 

study 

Caucasian 

(Irish, British, 

American, 

Romanian, 

Danish, 

Norwegian, 

Finnish) 

8064 cases / 

9339 controls 

Smyth et 

al. - N 

Engl J 

Med 

2008 

IL18RAP rs917997 103070568 intergenic Crohn's disease 2.2 x 10-6 

Candidate gene 

study European 

1689 cases / 

6197 controls 

Wang et 

al. - Hum 

Mol 

genet 

2010 

IL18RAP rs917997 103070568 intergenic IBD 1.9 x 10-8 

Candidate gene 

study Dutch 

1851 cases / 

1936 controls 

Zher-

nakova et 

al. - Am J 

Hum 

Genet 

2008 

Chr 2 - - - Type 2 diabetes LOD=4.53 

Genetic linkage 

study 

African-

American 580 families 

Elbein et 

al. - 

Diabetes 

2009 

IL18RAP 6 Tag SNPs - - Cardiovascular disease NS 

Candidate gene 

study European 

1416 cases / 

1772 Con-

trols 

Grisoni et 

al. - 

BMC 

Med 

Genet 

2009 

IL18R1 5 Tag SNPs - - Cardiovascular disease NS 

Candidate gene 

study European 

1416 cases / 

1772 Con-

trols 

Grisoni et 

al. - 

BMC 

Med 

Genet 

2009 

IL1RL1 / 

IL18R1 

Haplo: 

rs10206753/rs12999364/rs14

20099 - - BHR 0.006 

Candidate gene 

study Dutch 179 families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 

IL18R1 

Haplo:rs1420099/rs1558627/r

s2270297 - - Asthma 0.002 

Candidate gene 

study Dutch 180 families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 

IL1RL1 

Haplo:rs1921622/rs1861246/r

s10206753 - - BHR / asthma / Total IgE 

0.0009 / 

0.0008 / 

0.007 

Candidate gene 

study Dutch 

192 / 170 / 

245 families 

Reijmer-

ink et al. 

- J Al-

lergy Clin 

Immunol 

2008 
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IL18R1 / 

IL18RAP 22 candidate SNPs - - Cardiovascular mortality NS 

Candidate gene 

study German 

142 cases / 

1142 controls 

Tiret et 

al. - 

Circula-

tion 2005 

IL1RL1 multimarker (11) - - Childhood asthma 2.2 x 10-4 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

IL18R1 multimarker (9) - - Childhood asthma 9 x 10-3 

Candidate gene 

study_follow-up 

to GWAS Mexican 

492 cases + 

both parents 

Wu et al. 

- J Al-

lergy Clin 

Immunol 

2010 

Abbreviations  

IBD Inflammatory bowel disease 

BHR Bronchial hyper-responsiveness 

GWAS Genome-wide association study 

Chr.Loc Chromosal location based on NCBI build 37.1 

Chr 2 Chromosome 2 

Haplo Haplotype 

NS Non significant 

Cod.non.syn Coding non synonymous SNP 

Cod.syn Coding synonymous SNP 

Same SNPs are highlited with the same color; different colors are merely for ease of viewing, and are inconsequential. 

 

IL1RL1; functional characterization of genetically-associated 
variants is necessary to determine the causal pathways lead-
ing to expression and/or function changes in the proteins. 

 As shown by numerous animal model studies, targeting 
the IL1RL1/IL33 axis is potentially a very promising thera-
peutic avenue for lung, heart and other immune and inflam-
matory disorders. In order to move the field forward, it will 
be important to investigate genetic association of the IL1RL1 
region (including the surrounding genes) in different popula-
tions with different LD patterns; this will permit a better un-
derstanding of the biology behind this region’s involvement 
in immune and inflammatory disorders and thus facilitate 
and focus future therapeutic targeting efforts.  
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