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A B S T R A C T   

The utilization of industrial biomanufacturing has emerged as a viable and sustainable alternative to fossil-based 
resources for producing functional chemicals. Moreover, advancements in synthetic biology have created new 
opportunities for the development of innovative cell factories. Notably, Yarrowia lipolytica, an oleaginous yeast 
that is generally regarded as safe, possesses several advantageous characteristics, including the ability to utilize 
inexpensive renewable carbon sources, well-established genetic backgrounds, and mature genetic manipulation 
methods. Consequently, there is increasing interest in manipulating the metabolism of this yeast to enhance its 
potential as a biomanufacturing platform. Here, we reviewed the latest developments in genetic expression 
strategies and manipulation tools related to Y. lipolytica, particularly focusing on gene expression, chromosomal 
operation, CRISPR-based tool, and dynamic biosensors. The purpose of this review is to serve as a valuable 
reference for those interested in the development of a Y. lipolytica microbial factory.   

1. Introduction 

The study of oleaginous microorganisms has garnered significant 
interest due to its application to produce valuable fatty acids and de-
rivatives [1]. Moreover, the resulting biodiesel derived from them are 
particularly important in terms of promoting clean energy while 
reducing the pollution associated with fossil fuels. Because of these 
benefits, oleaginous microorganisms are considered a highly promising 
option for sustainable renewable oil production. Among them, Yarrowia 
lipolytica is the most extensively studied, which possesses desirable 
qualities, such as high lipid content, robust cell growth, and compati-
bility with various substrates [2] (see Table 1, Figs. 1–3). 

Noticeably, Y. lipolytica is a non-conventional oleaginous yeast that 
holds the generally regarded as safe (GRAS) status [3]. It exhibits unique 
biochemical and metabolic characteristics, such as efficient acetyl-CoA 
metabolic pathway, the high flux of TCA cycle, and remarkable lipid 
accumulation, distinguishing it from Saccharomyces cerevisiae [4,5]. 
Y. lipolytica also possesses the ability to utilize a diverse array of 
low-cost, renewable substrates, including alkanes, fatty acids, organic 
acids, and proteins [6–8]. These distinguishing features make 
Y. lipolytica an ideal candidate for the biomanufacturing applications. In 

particular, strains W29 (CLIB89) and its derived strains Po1d, Po1f, 
Po1g, and Po1h, have been commonly employed as platforms for engi-
neering research and industrial applications [9,10]. Moreover, note-
worthy advantages of these strain series include: i) high levels of protein 
expression and secretion; ii) efficient utilization of inexpensive carbon 
sources; iii) the elimination of the endogenous alkaline extracellular 
protease to safeguard the degradation of expressed exogenous proteins. 

Currently, with the rapid development of synthetic biology, various 
innovative methods and strategies have been successfully implemented 
for gene regulation in Y. lipolytica. Moreover, genome editing tech-
niques, such as Cre/loxP and CRISPR, have been effectively developed 
for use in Y. lipolytica. These genetic tools and strategies enable re-
searchers to optimize cellular performance and confer the ability to 
synthesize novel chemicals. In this review, we emphasized the genetic 
manipulation tools and strategies developed in Y. lipolytica, including 
gene expression, chromosomal operation, CRISPR-based tools, and dy-
namic biosensors for metabolic engineering. Additionally, we discussed 
the limitations and challenges that need to be overcome, and explore 
emerging opportunities for Y. lipolytica in the context of synthetic 
biology and industrial applications. 

Peer review under responsibility of KeAi Communications Co., Ltd. 
* Corresponding author. 

** Corresponding author. 
E-mail addresses: dongshguo@163.com (D. Guo), guyang@nnu.edu.cn (Y. Gu).  

Contents lists available at ScienceDirect 

Synthetic and Systems Biotechnology 

journal homepage: www.keaipublishing.com/en/journals/synthetic-and-systems-biotechnology 

https://doi.org/10.1016/j.synbio.2024.05.003 
Received 14 January 2024; Received in revised form 6 May 2024; Accepted 7 May 2024   

mailto:dongshguo@163.com
mailto:guyang@nnu.edu.cn
www.sciencedirect.com/science/journal/2405805X
http://www.keaipublishing.com/en/journals/synthetic-and-systems-biotechnology
https://doi.org/10.1016/j.synbio.2024.05.003
https://doi.org/10.1016/j.synbio.2024.05.003
https://doi.org/10.1016/j.synbio.2024.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.synbio.2024.05.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Synthetic and Systems Biotechnology 9 (2024) 618–626

619

2. Gene expression and multi-gene assembly 

Y. lipolytica lacks a native plasmid expression system. However, to 
address this drawback, an artificial plasmid expression system has been 
developed. Furthermore, a diverse range of gene expression elements 
has been developed, including promoters and terminators. 

2.1. Promoter 

Promoter plays a critical role in accurately controlling gene expres-
sion, which has changeable transcriptional capacities and required 
characteristics. In particular, the eukaryotic promoters are structurally 
complex, spanning thousands of bases from the start site and controlling 
the intensity and timing of gene transcription. As of now, a variety of 
promoters, including both inducible and constitutive ones, have been 
isolated and characterized in Y. lipolytica [11]. For instance, the pXPR2 
promoter, induced by peptone, was isolated in 1987 [12]. However, its 
industrial applications were impeded by the complicated regulation and 
expensive inducer. Currently, the most widely used promoter is the 
strong constitutive pTEF, which is responsible for the translation elon-
gation factor EF-1α [13]. Notably, it was found that a 122 bp spliceo-
somal intron was present in the pTEF which greatly affects the 
corresponding gene expression. Therefore, a platform for high expres-
sion was established by Tai et al. [14] using the intron-containing 
translational extension TEF promoter, and it was demonstrated that 
this expression system was able to increase gene expression. Further-
more, Wong et al. [15,16] characterized 12 endogenous promoters by 
means of a sensitive luciferase reporter, and reported that pTEF showed 
the highest activity. Also, this luciferase reporter system was utilized to 
screen and characterize 81 other endogenous promoters, ranging in 
strength from 0.06% to 1.60 times that of pTEF [17]. Besides, 22 lipo-
genic promoters have been characterized to facilitate the development 
of structure-based dynamics models, and gain insight into the process of 
lipogenesis in Y. lipolytica [18]. 

On the other hand, hybrid promoter engineering has been employed 
to enhance the strength and adjustability of existing promoters in 
Y. lipolytica. The strength of eukaryotic promoters is influenced by 
different factors, such as the core promoter, the TATA cassette sequence, 
proximal promoter sequence and upstream activating sequence (UAS) 
[19]. One particular focus has been on engineering hybrid promoters, 
which involve combining duplicated UASs with truncated downstream 
minimal promoters [20–22]. Madzak et al. [23] utilized the distal UAS 
(UAS1) element to create a hybrid promoter consisting of four consec-
utive UAS1 copies located upstream of a minimal LEU2 promoter. This 
recombinant promoter, known as hp4d, exhibits almost no dependence 
on environmental conditions and maintains an activity similar to that 
observed under inducing conditions. Furthermore, a tandem duplicate 
UAS1B (a 105-bp distal UAS fragment, aka UAS1XPR2) was made by 
Blazeck et al. [20] to drive expression of GFP from two minimal 
constitutive promoters, pTEF and pLEU. This study revealed that the 

Table 1 
Summary of synthetic biology tools in Yarrowia lipolytica.  

Tools Characteristics Application References 

Promoter 
pTEF, 

pMnDH2, 
pPHO89 

Endogenous 
promoters; 
constitutive; strong 

/ [13,17] 

hp4d, 
nUAS1XPR2- 
LEU, 
nUAS1XPR2- 
TEF 

Hybrid promoters; 
derived from pXPR2; 
carries several 
tandem copies of 
UAS1XPR2 

/ [21,22] 

hybrid RNA 
polymerase 
III 
promoters 

Hybrid promoters Improve sgRNA 
expression and CRISPR- 
Cas9 function 

[71] 

pXPR2 Inducible promoters; 
induced by peptone 

/ [23] 

pEYK1 Inducible promoters; 
induced by erythritol 
and erythrulose 

/ [26] 

pMT-1 to pMT- 
6 

Inducible promoters; 
induced by Cu2+

/ [28] 

Terminator 
XPR2t, LIP2t, 

PHO5t 
Endogenous 
terminators 

Commonly utilized for 
the heterologous gene 
expression 

[22] 

Synth1t- 
synth30t 

Synthetic 
terminators; short; 
easily cloned 

Improve expression of 
heterologous genes 

[32] 

Multi-gene assembly 
One-step 

assembly 
Obtain multiple 
expression cassettes 
by overlap extension 
PCR (OE-PCR); 
simple; quick 

Integrate the β-carotene 
biosynthetic pathway 
into Y. lipolytica 
chromosome 

[37] 

Golden Gate 
assembly 

Rely on Type IIS 
restriction 
endonucleases; high 
efficiency; stable 

Assemble carotenoid 
pathway genes and 
improved the efficiency 
up to 90% 

[38] 

YaliBricks 
assembly 

Based on BioBrick 
assembly; rapid 
multi-component 
assembly 

Construct five-gene 
violacein pathway 

[15] 

Gene deletion 
Cre-loxP Sourced from the P1 

phage; composed of 
cyclized recombinase 
(Cre) and loxP sites 

Integrated a flavonoid 
pathway into Y. lipolytica 
genome, and obtained 
different flavonoids 

[56] 

TALENs Recombinant 
restriction enzymes; 
fusion of the nuclease 
to the TAL effector 
DNA binding 
domains 

Generate mutants of the 
fatty acid synthase (FAS) 
gene 

[84] 

CRISPR tools 
CRISPR/Cas9 Composed of a Cas9 

protein and the 
corresponding sgRNA 

Multi-gene targeting and 
marker-free integration 

[51,65,85, 
86] 

CRISPRi Used for gene 
repression via a 
catalytically 
deactivated Cas9 

Repress NHEJ to enhance 
HR efficiency 

[70] 

CRISPRa Fusing dCas9 to 
transcriptional 
activators 

Activate the target genes [87] 

Genetic biosensors 
Fatty acyl-CoA 

biosensor 
Fatty acids as 
response factors; 
transcription factor 
FadR and 
manipulator fadO 
were derived from 
E. coli 

Regulate the cytochrome 
P450 enzymes that 
convert palmitate to 
ω-hydroxypalmitate 

[88] 

Naringenin 
biosensor 

Naringenin as 
response factors; 
flavonoid-sensing 

Improved cell fitness and 
pathway yield 

[79]  

Table 1 (continued ) 

Tools Characteristics Application References 

transcriptional 
activator FdeR; 
manipulator fdeO 

Xylbiosensor Xylose as response 
factors; the activation 
factor XylR and the 
operator xylO were 
derived from E. coli 

Modulate naringenin 
synthesis with a yield of 
(715.3 ± 12.8) mg/L 

[80] 

Light- 
controlled 
biosensor 

Light as the response 
factor; fast response; 
non-destructive 

Application to the 
dynamic regulation of the 
biosynthesis and 
synthetic pathways of 
coumaric acid and 
naringenin 

[82]  
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core promoter and the tandem elements UAS1 function independently, 
and that the strength of the promoter increases with the number of UAS1 
tandem elements. In addition, Dulermo et al. [24] demonstrated that 
promoter strength is not always correlate with optimal protein expres-
sion and activity. Therefore, promoter libraries with different strengths 
make it easy to identify the best promoter for a particular protein of 
interest. Zhao et al. [25] constructed a hybrid promoter library to 
optimize the expression of the biosynthetic pathway of isoamyl alcohol 
in Y. lipolytica. As a result, the isoamyl alcohol titer was increased 
1.1–30.3-fold over the control strain Y. lipolytica Po1g ΔKU70. 

Moreover, several inducible promoters have been characterized and 
developed in Y. lipolytica. Marion et al. [26] successfully isolated an 
inducible promoter called pEYK1, which drives the transcription of the 
EYK1 gene encoding erythrulose kinase. It was shown that this promoter 
is affected in media containing glucose and glycerol, but its induction 
level is significantly increased when erythritol and erythrulose are 
present. The upstream activation sequence of the pEYK1 promoter, 
UAS1 (UAS1EYK1), was identified. Subsequently, a hybrid promoter 
containing tandem repeats of UAS1EYK1 or UAS1XPR2 was developed, and 

the expression level is higher compared to the native pEYK1 promoter. 
Furthermore, Vidal et al. [27] discovered an erythritol-inducible bidi-
rectional promoter (pBDP) situated in the intergenic region between 
gene EYK1 and EYL1. They utilized this pBDP to co-express RedStarII 
and YFP fluorescent proteins, demonstrating that its strength was 
2.7–3.5-fold higher when oriented towards EYL1 compared to EYK1. 
Consequently, a hybrid erythritol-inducible bidirectional promoter 
(pHBDP) containing five copies of UAS1EYK1 was developed, increasing 
expression levels by 8.6–19.2 times. More recently, Xiong et al. [28] 
isolated 11 copper-inducible promoters with different expression effects. 
Compared with constitutive promoters, the copper-repressed promoters 
exhibit higher activity under non-repressing conditions, and their ac-
tivity can be almost completely inhibited by supplementation with only 
low concentrations of Cu2+. To expand their dynamic regulation range, 
these six copper-inducible promoters were engineered with the tandem 
UAS. This modified approach successfully constructed an efficient 
pathway for producing wax ester, surpassing the productivity achieved 
using both the constitutive promoter and copper-inducible promoter. 

Fig. 1. Genetic technology applicable in Yarrowia lipolytica. A. Gene expression and multi-gene assembly strategies, including promoter and terminator engi-
neering, plasmids expression system, and multi-gene assembly operation. B. Genomic chromosomal operations, including integrated expression, gene deletion, and 
CRSPR tools. C. The modification, performance, and application genetic biosensors. HR, homologous recombination. NHEJ, the nonhomologous end-joining. TF, 
transcription factor. 
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2.2. Terminator 

Similarly, terminators also play a crucial role in controlling gene 
expression and can impact protein yield by controlling the half-life of 
mRNA [29]. Native terminators, such as XPR2t, LIP2t, and PHO5t, are 
commonly utilized for the heterologous gene expression in Y. lipolytica 
[22]. Nonetheless, synthetic terminators with shorter sequences may 
offer greater portability compared to native terminators, facilitating 
vector design, expression cassette construction, and minimizing the risk 
of homologous recombination [20,30,31]. Moreover, it also has been 
shown that synthetic terminators have significant effects on various 
yeast species, exhibiting good interspecific transferability. For instance, 
Curran et al. [32] demonstrated the functionality of synthetic designs for 
S. cerevisiae in Y. lipolytica, resulting in a 60% increase in fluorescent 
protein production compared to common endogenous terminators. 
However, terminators in Y. lipolytica have not received as much atten-
tion as promoters, highlighting the promising future of terminator 
studies in this organism. 

2.3. Plasmids expression system 

The episomal plasmids play an essential role in genome editing and 
recombinant protein production. However, Y. lipolytica lacks a natural 
episomal plasmid. Consequently, artificial plasmids have been devel-
oped using Y. lipolytica’s chromosomal autonomously replicating 
sequence/centromere (ARS/CEN) replication origins. Unfortunately, 
this system is difficult to maintain genetic stability and produces high 
copy number [33,34]. To overcome these challenges, the origins of 
mitochondrial DNA (mtDNA) replication in Y. lipolytica were charac-
terized by Cui et al. [35]. They confirmed that a 516-bp sequence of 
mtDNA, known as mtORI, enables the autonomous replication of cir-
cular plasmids with high protein expression levels and genetic stability. 
Moreover, Liu et al. [36] engineered a CEN plasmid by incorporating 
different promoters upstream of the centromeric region, expanding its 
regulatory mechanisms and functionality. This modification led to an 
80% improvement in gene expression level and copy number, as well as 
a dynamic range of nearly 2.7 times. 

2.4. Multi-gene assembly operation 

Various techniques for constructing multigene cassettes are currently 
available. The first application of a multi-gene assembly method in 
Y. lipolytica was reported in 2014 using the one-step integration method 
[37]. This method enabled the integration of the β-carotene biosynthesis 
pathway into the rDNA locus of the Y. lipolytica chromosome with a 
reported maximum efficiency of 21%. Recently, Golden Gate assembly 
has significantly improved pathway assembly and construction effi-
ciency, considered one of the most robust techniques for multi-gene 
assembly [38,39]. Therefore, Celinska et al. [40] developed a versatile 
and robust DNA assembly platform for Y. lipolytica using the Golden 
Gate modular cloning. They constructed a wide range of destination 
vectors and interchangeable building blocks. Using these elements, the 
β-carotene pathway was successfully assembled with efficiencies 
ranging from 67% to 90%, demonstrating the validity of the Golden Gate 
assembly in Y. lipolytica. Furthermore, Larroude et al. [41] presented a 
new Golden Gate toolkit that includes selective markers and genome 
integration sequences to one-step assemble three transcription units. 
This toolkit enables rapid transformation and construction of multiple 
DNA elements, which were subsequently applied to assemble a 
three-gene pathway that complemented the availability of xylose. In 
addition, Tong et al. [42] constructed a library of violacein-producing 
defatted Y. lipolytica strains on the basis of the Golden Gate assembly 
method. In this library, three promoters of different strength control 
each gene expression in the violacein pathway. 

Instead of the Golden Gate assembly strategy, multi-component 
modular assembly suitable with BioBrick standards called YaliBricks 
has also been developed and tested. Wong et al. [15] developed an 
effective luciferase reporter and identified 12 native promoters to 
expand the genetic toolbox for transcriptional regulation in Y. lipolytica. 
Furthermore, Holkenbrink et al. [43] presented the EasyCloneYALI gene 
toolkit, which simplifies strain construction and improves the efficiency 
of genome editing in Y. lipolytica by using the CRISPR/Cas9. They 
demonstrated that transformation using non-replicating DNA repair 
fragments achieved genome editing efficiencies of more than 80%. 

3. Genomic chromosomal operation 

3.1. Integrated expression 

To enable stable expression of heterologous DNA, integrating it into 
the genome is often preferred [44]. The most commonly used method for 
this is homologous recombination (HR), which allows for DNA exchange 
between regions with identical sequences, playing a crucial role in 
cellular processes like repairing double strand breaks (DSBs) and facil-
itating horizontal gene transfer [45]. However, when it comes to 

Fig. 2. The CRISPR/Cas genome editing platform for Yarrowia lipolytica. 
A. CRISPR/Cas9 method for gene knock-out/knock-in. When the sgRNA rec-
ognizes the targeted sequence, which is located before a protospacer adjacent 
motif (PAM) site, the Cas9 protein will catalyze the formation of a double- 
strand break (DSB) in the targeted DNA. B. CRISPR/dCas9 based gene edit-
ing. C. CRISPR/Cpf1 based gene editing. D. CRISPR/dCpf1 based gene editing. 
E. CRISPRi and CRISPRa methods for gene interference and activation. A 
catalytically deactivated Cas9 (dCas9), which has no cleavage activity, can be 
fused with different effector domains to control gene expression. When the 
targeted region is recognized, the dCas9 fusion protein with the transcriptional 
repressor domain binds the DNA to repress gene expression. Similarly, the 
fusion protein of dCas9 and the transcriptional activator domain binds to tar-
geted regions to improve the gene expression level. CRISPRa, CRISPR/Cas 
based gene activation; CRISPRi, CRISPR/Cas based gene interference; crRNA, 
CRISPR RNA; DSB, DNA double strand breaks; PAM, protospacer adjacent 
motif; RNA P, RNA polymerase; sgRNA, single-guide RNA; TF, transcrip-
tion factor. 
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Y. lipolytica, the HR efficiency is quite low, which limits its application 
for targeted integration [46]. To surmount this constraint, certain pro-
teins such as Lig4 or Ku70 should be deleted [47]. Specifically, it was 
found that knockout of Ku70 resulted in a significant increase in 
HR-mediated integration 56%, even though the homologous arms of the 
5′-and 3′-flankers are short to 500 bp. Moreover, hydroxyurea (HU) has 
also been observed to induce homologous recombination, which can 
bring growing cells together into the S phase of cell growth. Researchers 
such as Jang et al. demonstrated that HU-mediated cell growth syn-
chronization in Y. lipolytica lacking Ku70 was highly effective in pro-
moting HR [48]. Recently, the development of CRISPR-Cas9 technology 
has brought about dramatic changes in gene editing. With this approach, 
a new HR strategy based on the CRISPR technology has been developed 
for specific multilocus integration in Y. lipolytica, eliminating the need 
for marker recovery. Schwartz et al. [49] utilized the RNA polymerase III 
synthetic promoters to enhance the efficiency of CRISPR/Cas9-based 
genome editing, achieving a markerless HR efficiency of 70% with the 
donor DNA and 100% in strains with disrupted non-homologous end 
joining (NHEJ) repair. 

Apart from HR-based genomic integration, NHEJ can also be utilized 
for gene integration in Y. lipolytica. Cui et al. [50] developed a modular 
expression library to optimize biosynthetic pathways in Y. lipolytica by 
employing NHEJ-mediated random integration. Furthermore, they also 
created a CRISPR/NHEJ-based specific gene integration tool in 
Y. lipolytica, which allows for the DNA fragments integration without the 

requirement of homologous arms [51]. More recently, Liu et al. [52] 
employed fluorescence-activated cell sorting (FACS) to construct an 
NHEJ-based GFP stochastic expression library. By screening the 
highly-expressed strains and analyzing possible integration sites, they 
identified new gene integration sites in Y. lipolytica [53,54]. These sites 
exhibited both high gene expression and integration efficiency, thus 
demonstrating the effectiveness of CRISPR/Cas9 gene editing for 
achieving successful integration in Y. lipolytica. In order to further in-
crease DNA assembly capabilities in Y. lipolytica, Li et al. [55] estab-
lished a Golden Gate modular cloning system called YALIcloneNHEJ. 

However, there are some challenges with NHEJ-mediated random 
genome integration, such as the need for selection markers for gene 
expression and the potential disruption of important endogenous genes 
[52]. Therefore, researchers are actively seeking additional genetic tools 
and integration sites. Lv et al. [56] developed a versatile framework by 
combining the high recombination efficiency of the Cre-loxP system 
with the high integration rate of 26s rDNA in Y. lipolytica. This frame-
work allows for the iterative integration of multicopy metabolic path-
ways. In this work, they successfully revealed the efficient genomic 
integration of multicopy plant flavonoid pathway. Moreover, Guo et al. 
[57] took a different approach by designing and developing a totally 
synthetic Y. lipolytica-specific artificial chromosome (ylAC). Besides, 
they introduced an intact xylose and cellobiose co-utilization pathway 
using this artificial chromosome. These advancements in genetic tools 
and integration sites are significant in increasing the versatility and 

Fig. 3. Dynamic regulation of gene circuits through biosensors in Yarrowia lipolytica. A. Transcription factor-based biosensor. Repressor-based biosensors. TF 
suppresses the expression of target gene expression. Activator-based biosensors. TF activates the expression of a target gene in the presence or absence of the target 
metabolite. The solid red line indicates inhibition and the green realized arrow indicates activation. B. Characterization of changes in the target metabolite con-
centration. C. Application of TF-based biosensor in Y. lipolytica. 
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efficiency of gene expression in Y. lipolytica. 

3.2. Gene deletion 

One such technique is the Cre-loxP system, which is sourced from the 
P1 phage. Composed of two parts: the cyclization recombination enzyme 
(Cre) and the loxP site, which facilitate gene deletion at specific genomic 
sites. This conventional recombination method mediated by Cre-loxP 
has been efficiently used for marker-free gene integration in 
Y. lipolytica. The disruption cassette is integrated into the targeted locus 
with an average efficiency of 45% [58]. When the Cre recombinase is 
expressed, excision of the marker by recombination between the two lox 
loci at a 98% frequency [58]. Interestingly, Vandermies et al. [59] later 
improved the construction of the disruption cassette by substituting 
asymmetric SfiI locus for I-SceI, making the assembly of cassette ele-
ments simpler and faster. 

In Y. lipolytica, the URA3 gene encodes orotidine 5′-phosphate 
decarboxylase, which is the key enzyme in uracil synthesis. This enzyme 
catalyzes the conversion of 5-fluoroorotic acid (5-FOA) into a toxic 
substance. Knockdown of the URA3 gene prevents the formation of the 
toxic 5-fluorouracil nucleotide from 5-fluoroorotic acid (5-FOA), which 
is resistant to 5-FOA, and its pyrimidine nutrition can be supplemented 
by adding uracil to the culture medium through a remedial pathway [56, 
58]. Because of the potential it offers to aid in the screening of trophic 
transformants as well as counter-selection, URA3 is widely used as a 
routine selection marker for yeasts, including fat-soluble yeasts. Huang 
et al. [60] blocked the degradation and competition module using URA3 
counter-selection. Subsequently, through the expression of functional 
genes in multi-module combinations, they successfully constructed a 
non-degradation, non-byproducts Y. lipolytica for the production of high 
titer erythritol from glycerol. 

Additionally, nucleases-based tools like CRISPR (see CRISPR tools 
section) and transcription activator-like effector nucleases (TALENs) 
have also been employed in Y. lipolytica. TALENs are developed by 
converging the FokI endonuclease catalytic domain and transcription 
activator-like effectors (TALEs). By formulating the TALE DNA binding 
domain, targeted DNA double-strand breaks can take place at a specific 
locus [61]. Rigouin et al. utilized TALEN-based technology to generate 
mutants of the fatty acid synthase (FAS) gene and demonstrated high 
efficiency in inducing targeted modifications in the genome [44]. Mu-
tants were generated by repair of error-prone non-homologous end 
joining at the target sites in 97% of transformants. 

3.3. CRISPR tools 

CRISPR-Cas systems are categorized into two major classes (Class I 
and Class II), six types (Type I, Type II and Type III, Type IV, Type V and 
Type VI) and different sub-types [62]. Particularly, Class II CRISPR/Cas 
can perform cleavage function through a single multifunctional domain 
of Cas proteins with high cleavage efficiency [63]. Among them, 
CRISPR/Cas9, CRISPR/Cas12a (Cpf1) and CRISPR/Cas13a are the most 
representative and widely applied. As the first Class II CRISPR/Cas 
system to be discovered and characterized [64], the CRISPR/Cas9 sys-
tems are mainly composed of Cas9 proteins and corresponding single 
guide RNAs (sgRNAs) [65]. The Cas9 is a DNA endonuclease induced by 
crRNA and trans-activating crRNA (tracrRNA) [66]. In contrast, Cas12a 
has both DNA and RNA endonuclease activity and processes precursor 
crRNAs into mature crRNAs without relying on tracrRNAs [64]. 
Furthermore, Cas13a, an RNA-guided nuclease targeting RNA, can be 
used to editorially manipulate another important genetic material–RNA 
[67]. 

Recently, Schwartz et al. successfully adapted the CRISPR/Cas9 
system of Streptococcus pyogenes to marker-free gene integration and 
disruption in Y. lipolytica [49]. Notably, they achieved the integration of 
numerous genes at different sites without marker recovery. However, 
different integration sites influence the efficiency of gene integration. 

Among the 17 tested sites, 5 demonstrated high frequencies (48–62%) of 
CRISPR/Cas9-based integration [68]. In addition, an alternative method 
for CRISPR-Cas9 gene editing in Y. lipolytica was developed by Gao et al. 
[69] to express human codon-optimized Cas9 variants and gRNA 
flanked by ribozymes through the RNAP II promoter with 86% efficiency 
after four days of growth. 

Furthermore, the CRISPR technique has been further developed for 
the control of gene expression in Y. lipolytica. Schwartz et al. [70] 
applied CRISPRi and CRISPRa systems in Y. lipolytica to modified the 
sgRNA target loci in the promoter region, which can lead to cascading 
changes in gene expression levels [71]. Besides, the CRISPRi system can 
be used to inhibit NHEJ in Y. lipolytica. By targeting ku80 and ku70, 
NHEJ can be repressed, resulting in HR efficiencies of up to 90% [70]. 
Zhang et al. [72] applied a CRISPRi system to suppress genes using 
DNase-deactivated Cpf1 (dCpf1), deactivated Cas9 (dCas9), and two 
fusion proteins (dCpf1-KRAB and dCas9-KRAB). Due to the difficulty of a 
single gRNA element to achieve a strong level of inhibition and to find an 
effective target site, a multiplex gRNA strategy based on one-step 
Golden-brick assembly was employed. When targeting gene gfp at 
three different sites, the gene repression efficiency exceeded 80%. On 
the other hand, Schwartz et al. [73] discovered that VPR transcriptional 
activators yielded the highest activation rates. They characterized 
multiple target locus and four different activation domains in the pro-
moter region. By selecting gRNA target sites upstream from the core 
promoter and incorporating the VPR activation domain into dCas9, they 
successfully activated BGLI and BGLII, two β-glucosidase genes, enabling 
to grow on cellobiose. 

4. Genetic biosensors 

Biosensors are biological components capable of converting certain 
chemical or physical signals into detectable quantities such as fluores-
cence or gene expression. Depending on the principle, they can be 
categorized into transcription factor-based, aptamer-based and protein- 
based biosensors [74,75]. Different types of biosensors have different 
sensitivities, ranges of action, and response thresholds, and the design of 
appropriate biosensors can effectively enhance detection efficacy [76]. 
Recently, genetically encoded biosensors have garnered significant 
attention in the field of biosynthesis for valuable products. These bio-
sensors are developed and created through rational design, machine 
learning, or directed evolution, allowing for the effective regulation of 
gene expression levels in microorganisms in response to specific chem-
icals or signals. As a result, this regulation leads to a substantial 
improvement in overall production by altering metabolic flow [77]. 

One example of such biosensors is the fatty acyl-CoA biosensor 
constructed by Park et al. in Y. lipolytica [78]. In their study, the pro-
moters containing bacterial FadR-binding sequences were developed to 
activate the ω-hydroxylating pathway in response to increase free fatty 
acids (FFAs) concentrations. Similarly, Lv et al. developed a naringenin 
biosensor using the distinctive transcriptional factor FdeR and the spe-
cific DNA binding site FdeO [79]. When naringenin acts as the specific 
effector, FdeR binds to the FdeO site, activating transcription of the 
reporter gene. Also, Lv et al. demonstrated that this naringenin 
biosensor could be induced by naringenin within a regulatory range of 0 
mg/L to 50 mg/L [79]. Furthermore, Wei et al. established a 
xylose-inducible biosensor (xylbiosensor) in Y. lipolytica [80]. This xyl-
biosensor comprise the activation factor XylR from E. coli, fusion the 
hybrid promoter with the operator xylO, and activation domain VPRH. 
Addition of xylose can activate target genes, including xylose and the 
mcherry reporter genes, in Y. lipolytica engineered strain containing 
xylbiosensor. Besides, Qiu et al. utilized the erythritol-sensitive tran-
scription activator EryD to construct a sensor conditioning system for 
rapid identification and screening of erythritol overproducers77. Its 
specificity, sensitivity and dynamic response range were improved by 
further optimizing the structure, and the response to erythritol ranged 
from 5 to 250 mmol/L [81]. 
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In addition to using substrates or intermediate metabolites as signals, 
a light-controlled biosensor has also been established in Y. lipolytica. 
Light as a response factor offers advantages such as high sensitivity, non- 
destructiveness, reversibility, and spatial specificity. Zhang et al. [82] 
developed a light-responsive expression system in Y. lipolytica that 
successfully increased the titer and efficiency of naringenin and p-cou-
maric acid. They constructed the light-control complex CarH-VPRH, the 
core component of the light control system, containing the green light 
response factor CarH and the transcription activator VPR-HSF1. Under 
green light irradiation conditions, the CarH-VPRH complex cannot 
polymerize, thus impeding the regulation of target gene transcription 
and expression. Besides, another light-controlled biosensor was con-
structed in Y. lipolytica [83]. The light-responsive element constructed 
from the transcriptional activator VP16 and the blue photosensitive 
protein EL222 is the core of this blue light-inducible system. Utilizing 
this light-controlled system, the functional validation and synthesis of 
the BleoR protein were realized. These results demonstrate the potential 
of this system for gene regulation, construction of synthetic networks, 
and large-scale production of desired products [83]. 

5. Challenges and prospects 

The engineering of microbial chassis cells for efficient synthesis of 
high-value products has garnered broad attention. The unconventional 
oleaginous yeast, Y. lipolytica, have unique biochemical and physiolog-
ical properties, including an intrinsic mevalonate pathway, a broad 
substrate range, and a high degree of tolerance to extreme environments 
[1,2]. These features make Y. lipolytica an increasingly popular choice 
for microbial chassis cells in advanced and sustainable bio-
manufacturing. With the advancement of synthetic biology technology 
and the rapid development of gene editing tools, the metabolic engi-
neering modifications of Y. lipolytica have been rapidly improved. In 
recent years, several compounds such as organic acids, proteins, fatty 
acids, polyketides and flavonoids have been successfully produced using 
unconventional yeast as chassis cells. However, compared with tradi-
tional model microorganisms (e.g., E. coli, Saccharo introns myces cer-
evisiae, etc.), Y. lipolytica still suffers from the problems of fewer tools, 
low efficiency, and cumbersome operation, and several challenges 
remain in systematic modification of the chassis and optimization of 
complex pathways assembly. 

Firstly, new synthetic biology components need to be further 
explored, such as new promoter and terminators. Although several 
hybrid and wild-type promoters have been developed, endogenous 
promoters in Y. lipolytica remain incompletely characterized. Different 
regulatory behaviors of promoters were found under different growth 
conditions. Therefore, rigorous studies of isolated promoters are needed 
under the standard conditions, including regulatory behavior and pro-
moter strength using different carbon sources. Moreover, introns widely 
distributed in biological genomes have been shown to potentially 
enhance gene expression. For instance, the introns in pTEF, pEXP1, and 
pTDH1 all lead to an increase in promoter activity [51]. However, the 
concrete mechanism of intron is still unclear. Therefore, to guide the 
rational design of effective promoters and accurate regulation of bio-
logical processes, more accurate and detailed understanding of the 
regulatory mechanisms of expression-enhancing introns is needed. 
Furthermore, inducible promoters that introduce exogenous transcrip-
tion factors could eliminate the metabolic burden caused by the reuse of 
natural regulatory elements in pathway engineering. Therefore, there is 
a need to continue exploring inducible promoters for the introduction of 
exogenous transcription factors to enable dynamic regulation of 
Y. lipolytica. 

Secondly, the development and established of the CRISPR/Cas sys-
tem has certainly accelerated the pace of genetic engineering for the 
improvement of Y. lipolytica. However, there are still some problems. For 
example, the efficiency of multi-gene editing is yet to be improved, 
mutations in the genome need to be localized more precisely, and high- 

throughput screening techniques after gene editing need to be devel-
oped. In addition, compared with the knockout/insertion-oriented 
CRISPR/Cas9, CRISPRi and CRISPRa are still in their infancy, both of 
which have been used sparingly in Y. lipolytica. Therefore, there is a need 
to further improve the application of CRISPRa and CRISPRi systems in 
metabolic engineering research, and the off-target effects remain a 
challenge to be solved. 

Thirdly, constructing diverse biosensors allows for the regulation 
and detection of intracellular metabolites, resulting in targeted modifi-
cation of metabolic pathways to improve both yield and quality. Over 
the past few decades, various chemical induction systems have been 
employed to regulate gene expression in yeast. However, these systems 
have limitations such as easy diffusion, difficult removal, and high cost, 
making them ill-suited for large-scale industrial production. In contrast, 
light serves as an ideal gene inducer that can be precisely regulated in 
terms of timing and location. Light-induced sensors have been devel-
oped and applied to some extent in the synthesis of natural products, 
enabling dynamic and real-time regulation of cellular response to green 
light for the production of p-coumaric acid and naringenin. Neverthe-
less, the current level of shake flask fermentation does not match the 
yields reported in other studies. Thus, further optimization is required in 
terms of light intensity, duration, and strategies for zonal compart-
mentalization of metabolic synthesis to enhance the production of target 
compounds. Furthermore, the sensor’s signal output and strategies for 
enhancing signal strength warrant further investigation. 

In conclusion, Y. lipolytica has made important progress in the min-
ing of synthetic biology components and the development of genetic 
tools. With the further development of synthetic biology, more novel 
tools and regulatory methods will be developed, which will accelerate 
the construction of Y. lipolytica cell factories with the function of pro-
ducing high-value products. 
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