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ABSTRACT
To maintain energy supply to the brain, a direct energy source called adenosine triphosphate 
(ATP) is produced by oxidative phosphorylation and aerobic glycolysis of glucose in the 
mitochondria and cytoplasm. Brain glucose metabolism is reduced in many neurodegenerative 
diseases, including Alzheimer’s disease (AD), where it appears presymptomatically in a 
progressive and region-specific manner. Following dysregulation of energy metabolism in AD, 
many cellular repair/regenerative processes are activated to conserve the energy required for 
cell viability. Glucose metabolism plays an important role in the pathology of AD and is closely 
associated with the tricarboxylic acid cycle, type 2 diabetes mellitus, and insulin resistance. 
The glucose intake in neurons is from endothelial cells, astrocytes, and microglia. Damage 
to neurocentric glucose also damages the energy transport systems in AD. Gut microbiota 
is necessary to modulate bidirectional communication between the gastrointestinal tract and 
brain. Gut microbiota may influence the process of AD by regulating the immune system and 
maintaining the integrity of the intestinal barrier. Furthermore, some therapeutic strategies 
have shown promising therapeutic effects in the treatment of AD at different stages, including 
the use of antidiabetic drugs, rescuing mitochondrial dysfunction, and epigenetic and dietary 
intervention. This review discusses the underlying mechanisms of alterations in energy 
metabolism in AD and provides potential therapeutic strategies in the treatment of AD.
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INTRODUCTION

The brain, accounting for approximately 
2% of  the adult body weight, consumes 
over 20% of  energy under physiological 
conditions.[1] Brain energy metabolism 
mainly relies on adenosine triphosphate 
(ATP), which is used by Na+/K+-ATPase 
and Ca2+-ATPase to maintain transmem-
brane ion gradients during neuronal signal 
transduction.[2, 3] Among the brain neurons, 
excitatory (glutamatergic) neurons utilize 
80%–85% of  the brain’s total ATP, while 
the remaining neurons are inhibitory.[1, 4] 

ATP released from neurons, astrocytes, 
and microglia is also involved in a mul-
titude of  processes including immune 
response, axonal transport, microglial 

motility, DNA repair, and protein produc-
tion.[5] Ninety-five percent or more of  the 
ATP in the brain is produced by glucose 
metabolism, which is absorbed from the 
neurovascular unit, including brain capil-
lary endothelial cells, pericytes, astrocytes, 
oligodendrocytes, microglia, and neurons.[6]  

In normal conditions, glucose uptake is 
driven by the energy requirements of  the 
activated neurons in different regions of  
the brain. Glucose transport in the cortex, 
hippocampus, and cerebellum is associated 
with glucose transporters including glucose 
transporter 1 (GLUT1) (the capillary en-
dothelium, membrane of  astrocytes, and 
oligodendrocytes), GLUT2 (plasma mem-
brane of  astrocytes), GLUT3, and GLUT4 
(neurons).[7-9] Glucose reaches the neurons 
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either by diffusing directly or by being channeled by the 
end-feet of  astrocytes surrounding the capillary walls. In 
astrocytes, glucose is metabolized to ATP or converted 
to lactate, an alternative energy source.[10] The ATP is 
predominantly generated by oxidative phosphorylation of  
glucose via the tricarboxylic acid cycle (TCA cycle) within 
the mitochondria.[11]

Research has shown that aberrant brain energy metabolism 
is involved in the progression of  disorders of  the central 
nervous system (CNS), such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease (HD), 
and frontotemporal dementia (FTD).[12-14] AD is the most 
common neurodegenerative disease and is characterized 
by extracellular senile plaques composed of  amyloid-β 
(Aβ) and intracellular neurofibrillary tangles (abnormal 
phosphorylated tau aggregates) within the neocortex.[15] 

Additional pathological changes, beyond Aβ and tau, are 
incompletely understood. Evidence has demonstrated 
that impaired brain energy metabolism is involved in the 
progression of  AD, and may occur before clinical symptoms 
arise, driving, and being driven by cognitive dysfunction 
in a destructive cycle.[16, 17] For example, positron emission 
tomography (PET) studies showed that glucose uptake is 
10%–12% lower in the entorhinal cortex and parietal lobes 
of  patients with mild cognitive impairment (MCI), which 
becomes anatomically widespread in the progression of  
AD.[1] Lower glucose uptake, TCA activity, mitochondrial 
function, and energetic transport of  astrocytes and 
oligodendrocytes are associated with AD; therefore, weight 
loss and type 2 diabetes mellitus (T2DM) are considered 
a particular type of  AD.[18, 19] Neuroinflammation is one 
of  the pathological features of  AD, rapidly consuming 
glucose and depleting energy to the neurons.[20, 21] The 
regional brain metabolism impairment may distinguish 
AD from other pattern dementia, including FTD, PD, or 
Lewy body disease.[22]

ENERGY BALANCE OF NERVE CELL 
MICROENVIRONMENT IN AD

Neuron
The brain, one of  the most energy-dependent organs 
in the body, relies primarily on glucose for its energy 
requirements under physiological conditions. Dysfunction 
of  energy supply has been demonstrated in CNS disorders, 
including AD. Cerebral glucose metabolism in patients 
with AD is significantly diminished compared to that in 
controls. However, cognitive dysfunction is correlated with 
a reduced glucose metabolism in the regions dependent 
on glucose metabolism such as the posterior cingulate 
and parietal, temporal, and prefrontal cortices.[18, 23] In AD, 
energy-related metabolisms, such as TCA cycle, oxidative 

phosphorylation, ATPase, glycolysis, ketone body, and 
creatine metabolisms, are significantly dysregulated.[18, 24] 

Increasing evidence has shown that syndrome components 
including T2DM display increasing risk of  MCI and 
AD.[25, 26] Insulin resistance plays an important role in the 
progression of  T2DM, which is observed in approximately 
80% of  the patients with AD.[27] Insulin signaling pathways, 
including altered levels of  insulin and insulin-like growth 
factor (IGF), are impaired in the brains of  AD patients.[28, 29] 
Insulin-related signaling pathways play a key role in energy 
homeostasis, neuronal survival, and memory processes, all 
of  which are critical for learning and cognitive functions 
in the cortical and hippocampal areas.[30] Thus, insulin 
may directly modulate cognitive ability. Insulin signaling 
dysfunction impairs Aβ degradation or vice versa and 
contributes to neurotransmitter release, neuronal survival, 
and cognitive damage, thereby leading to AD.[31] Soluble 
Aβ oligomers bind to membrane insulin receptors in the 
neurons, leading to cytotoxicity.[32] The insulin-degrading 
enzyme (IDE) degrades both insulin and Aβ and has a 
higher affinity to bind to insulin. In mice lacking IDE, 
Aβ degradation was reduced, leading to Aβ deposits in 
the brain.[33] In addition to Aβ metabolism, insulin and 
IGF1 regulate the expression and phosphorylation of  
tau by activation of  related kinases,[34, 35] including 
the tau kinases (glycogen synthase kinase[GSK]-
3β, c-Jun N-terminal kinase [JNK], and adenosine 
5’-monophosphate-activated protein kinase [AMPK]) 
and the tau phosphatases (PP2A and PP1), which play 
an important role in tau pathology.[36] In insulin receptor 
substrate 2 (IRS-2)-deficient mice, tau phosphorylation is 
increased by disrupting the tau kinases.[37] Altered insulin 
signaling in the brain promotes tau cleavage and restricts 
alternative splicing of  tau.[38-40]

A number of  energy-related enzymes, which play an 
important role in the function of  the TCA cycle, are 
dysregulated in AD. The dysfunction of  the AMPK 
signaling pathway may be involved in AD as AMPK is a 
key sensor and regulator of  energy metabolism. Increased 
AMPK phosphorylation has been observed in the brains 
of  patients with AD and mice models.[41, 42] Neurofibrillary 
tangles, aggregates of  hyperphosphorylated tau protein, are 
the main pathological markers of  AD and are regulated 
at numerous sites by AMPK.[43, 44] In contrast, activation 
of  AMPK decreases the accumulation of  Aβ both in vitro 
and in vivo.[45] Thus, AMPK modulates energy metabolism, 
affecting both tauopathy and amyloidogenesis in AD. 
The mammalian target of  rapamycin (mTOR) signaling 
pathway also regulates protein synthesis, mitochondrial 
function, and energy homeostasis, which affect aging and 
neurodegeneration. Several studies have shown that the 
mTOR signaling pathway is aberrantly upregulated in the 
brains of  patients with AD and mouse models during 
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neurodegeneration, resulting in association with Braak 
stages and/or cognitive decline in patients with AD.[46-48] 
The upstream signaling pathway of  mTOR, PI3K/Akt 
axis, was also impaired in AD.[49, 50] Reports have shown 
that continuous activation of  PI3K/Akt/mTOR signaling 
in neurons inhibits the insulin receptor substrate 1 (IRS1) 
in the brains of  MCI, patients with AD, and AD models, 
demonstrating energy metabolism dysfunction in AD 
pathology.[51, 52] Poly(ADP-ribose) polymerase-1 (PARP-1) 
plays an important role in maintaining genome stability, 
transcriptional regulation, and long-term potentiation.[53]  
Under pathological conditions, excessive activation of  
PARP-1 results in nicotinamide adenine dinucleotide 
(NAD+) depletion, inducing abnormal energy metabolism 
in the mitochondria by regulating the expression of  
mitochondrial proteins.[54] PARP-1 activity and PAR 
accumulation are enhanced in AD, particularly in the 
neurons of  the frontal and temporal lobes.[55] In the 
mitochondria, Aβ contributes to PARP-1 over-activation, 
inducing energy metabolism dysfunction and alterations in 
mitochondrial membrane potential by superoxide radical 
production.[56, 57] Also, TCA substrates prevent PARP-1-
mediated neuronal damage by inhibiting the oxidative stress 
induced by Aβ.[58, 59]

Recent studies have shown that vascular mechanisms 
also play an important role in the metabolic alterations in 
AD. [60-62] In aged individuals, cerebral amyloid angiopathy 
occurs in the brain vasculature and is more severe in AD.[63] 
The neurovascular unit consists of  neurons, astrocytes, 
and vasculature. It is required to maintain basic energy 
metabolism and brain function. In AD, Aβ, which is 
involved in vascular pathology, induces progressive 
neurovascular unit dysfunction, characterized by vascular 
reactivity failure, smooth muscle cell loss, and vessel 
integrity breakdown.[64] Functional hyperemia, which 
disturbs neurodegeneration, is also perturbed in AD.[65, 66]

In the adult brains of  animals and humans, neurogenesis 
is mainly located in the subventricular zone (SVZ) of  the 
lateral ventricle and the subgranular zone (SGZ) of  the 
dentate gyrus (DG) in the hippocampus.[67-69] Hippocampal 
neurogenesis contributes to the progression of  learning 
and memory and inhibition of  neurogenesis hampers 
trace-related memory formation.[70, 71] Energy metabolism 
affects the proliferation of  neural stem cells and the 
differentiation of  newborn cells, modulating neurogenesis 
in the AD brain.[72, 73] In neurogenesis, the expression of  
energy metabolism-related proteins, including insulin-like 
growth factor binding protein 3, cytochrome c oxidase, 
and acetyl-coenzyme A synthetase 1, is dysregulated in 
AD.[74-76] These data indicate that abnormal metabolism in 
neurons, related to energy-related enzymes, may facilitate 
the process of  AD.

Vascular endothelial cells
To sustain tissue homeostasis, blood vessels formed 
by endothelial cells (ECs) contribute to the delivery of  
oxygen and nutrients and the removal of  metabolites.[77]  
To meet the energy requirements of  tissue cells, ECs 
migrate from existing vessels forming new blood vessels 
in a process called angiogenesis.[78] In nutrient exchange, 
various organotypic metabolism mechanisms occur, for 
example, the brain and skeletal muscles rely on glucose as 
the main energy substrate, whereas the heart and brown 
adipose tissue favor fatty acids.[79] In the brain vasculature, 
nutrients are transported in the form of  a continuous, 
nonfenestrated, tightly sealed endothelium.[80]

The main components of  the neurovascular system, the 
ECs, play an important role in maintaining the integrity 
of  the blood–brain barrier (BBB). In AD, neurovascular 
system impairment leads to reduced brain perfusion and 
disruption to the BBB leading to the entry of  neurotoxic 
metabolites, resulting in synapse loss.[81, 82] It is also 
associated with the upregulation of  angiogenic factors 
and receptors, including ETS-related gene (ERG), FMS-
related tyrosine kinase 1 (FLT1), and von Willebrand factor 
(VWF).[83] The ECs fuel their own energy from glycolytic 
breakdown of  glucose or lactate, even under quiescent 
conditions.[84] The GLUT1 in ECs facilitates glucose 
diffusion, which is regulated by vascular endothelial growth 
factor(VEGF).[85] Levels of  GLUT1 in the BBB are higher 
than those in other organs, and reduced GLUT1 levels lead 
to decreased glucose delivery and lower cerebrospinal fluid 
(CSF) glucose levels.[86, 87]  Reduced GLUT1 levels may 
be characterized by seizures, movement disorders, and 
neurodevelopmental delays.[87, 88] The downregulation of  
GLUT1 is related to microvascular impairment and BBB 
dysfunction, exacerbating AD.[89, 90] Growing evidence 
suggests that mitochondrial dysfunction precedes the 
onset of  AD,[91] by causing vascular degeneration and 
hypoperfusion, and cognitive dysfunction.[92] Mitochondrial 
dysfunction produces reactive oxygen species (ROS), 
which contributes to ECs apoptosis, BBB damage, and 
degeneration.[93] The activation of  NADPH oxidase(NOX) 
may also contribute to EC dysfunction.[93, 94] For example, 
NOX2 knockout in ECs abrogates ROS production and 
vascular dysfunction in AD.[95, 96] In conclusion, vascular 
endothelial cells transport energy elements and metabolic 
waste bidirectionally between the blood and the brain in a 
receptor-dependent manner, modulating the development 
of  AD.

Astrocyte
Astrocytes, structure support cells, play critical roles in 
contacting neurons and maintaining a milieu for proper 
neuronal function, such as regulating ion channels, 
providing metabolites for neurons, and sustaining the 
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integrity of  the BBB.[97] Communication between astrocytes 
and neurons contributes to the regulation of  brain signaling 
and synaptic functions. Astrocytes also release nutrients, 
such as the bioenergetic substrate lactate, glycogen-
derived lactate, and pyruvate, which protect neurons from 
nutritional damage and maintain homeostatic synaptic 
plasticity.[4, 98, 99] Aging results in a shift of  brain energy 
metabolism into an age-dependent astrocytic metabolic 
form.[100] Lactate released from anaerobic glycolysis in 
astrocytes becomes the main energy source for neurons.[2, 101] 
However, the age-dependent astrocytic metabolic shift 
exacerbates the brain hypometabolic state, which is caused 
by mitochondrial oxidative metabolism in astrocytes.[102] 

In the hippocampus and cerebellum, the transport and 
metabolism of  glucose are faster in astrocytes than those 
in neurons. Therefore, astrocytes may have a greater impact 
on glucose metabolism in the brain than neurons.[103]  

Glucose metabolism is the main energy source for brain 
function. However, glucose transport and utilization 
dysfunction are found in cognitively normal individuals 
with AD risk genes and in patients diagnosed with early 
AD.[104, 105] Although the precise mechanisms contributing 
to the disorder of  glucose metabolism in AD is still unclear, 
the GLUT1 in astrocytes may play an important role in 
glucose transport. The GLUT1 is reduced in the brain of  
patients with AD [106] exacerbating the pathophysiological 
progression of  AD.[89] However, increasing the expression 
of  GLUT1 in AD mice decreased the Aβ content.[89]

The change in the morphology and function of  astrocytes 
in the brains of  AD mice and humans is known as 
astrogliosis. The Aβ may be responsible for the activation 
of  glial cells.[107, 108] Studies showed that a reduction in 
glucose metabolism contributes to plaque formation. In 
astrocytes, glycolysis plays an important role in amyloid 
accumulation and cytotoxicity, and the inhibition of  
glycolysis leads to the accumulation of  Aβ and Aβ-
induced cytotoxicity.[109] In postmortems of  the brain 
tissue of  patients with AD, astrocytes were surrounded by 
plaques,[110] which may reduce amyloid plaque deposits.[111]  

Bioenergetic dysfunction in astrocytes may contribute 
to amyloid accumulation and cytotoxicity via glycolysis, 
and inhibition of  astrocytic 6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 3 (PFKFB3) may lead to Aβ 
accumulation and cytotoxicity.[109] Astrocytes can internalize 
different forms of  Aβ into lysosome-like granules, as 
shown in the brain tissue of  patients with AD.[112, 113]

Cholesterol synthesis in astrocytes is maintained at a low 
rate due to the BBB. Astrocytes have higher cholesterol 
levels in their membranes, crucial for cholesterol 
metabolism, than neurons.[114] The higher cholesterol 
content in the astrocyte membrane is susceptible to an 
Aβ-induced Ca2+-dependent influx.[115] Consequently, the 

increased production of  nicotinamide adenine dinucleotide 
phosphate (NADPH)-oxidase and free radicals activates 
PARP, thereby impairing the NAD+ cycle. [116, 117] 

Apolipoprotein E (ApoE) is secreted mainly from 
astrocytes and plays an important role in both cholesterol 
metabolism and the degradation and clearance of  Aβ. 
The uptake of  Aβ may be associated with surface ApoE 
receptors, including low-density lipoprotein receptors 
(LDLR) and low-density lipoprotein receptor-related 
protein 1 (LRP-1),[107] ultimately leading to oxidative stress 
and neuronal degeneration. Thus, metabolic dysfunction 
in astrocytes leads to Aβ accumulation, oxidative stress, 
and damage to cholesterol metabolism, contributing to 
AD.

Microglia
As the resident macrophages, microglia prevents damage 
to the neurons by clearing toxic proteins, such as toxins, 
infectious agents, and pathogens. The hyperactivation 
of  microglia plays a key role in neuroinflammation, 
neurodegenerative diseases, and neuronal energy 
dysfunction.[118, 119] Energy from microglia is rooted 
in oxidative phosphorylation; however, a shift to an 
aerobic glycolysis-predominant phenotype occurs in 
neurodegenerative diseases via the upregulation of  GLUT1 
and GLUT4 expression.[120, 121] When neuroinflammation 
is sustainably induced, activated microglia require 
more energy, thereby reducing the available energy to 
the neurons.[122] Recent studies showed that microglia 
dysfunction is correlated with an increased risk of  AD, whereas 
microglia recovery may slow disease progression.[123, 124] 

Unlike astrocytes, microglia do not directly provide energy 
to neurons. However, during inflammation, local neurons 
retrieve lactate from the activated microglia.[125]

Increasing evidence indicates that neuroinflammation and 
oxidative stress as a consequence of   microglial activation 
are associated with AD pathophysiology.[123] In AD, the 
role of  microglia is dynamically regulated depending on 
the stage of  the disease.[126] However, the relationship 
between microglial bioenergetics, neuroinflammation, and 
brain energy in AD is poorly understood. Studies using 
multiple-tracer PET showed that glucose hypermetabolism 
of  inflammatory cells was observed in the brains of  patients 
with AD and not in healthy individuals.[127] Microglial energy 
metabolism contributed to neuroinflammation by regulating 
glycolytic flux and enzyme expression in mitochondria.[64] 
Furthermore, the triggering receptor expressed on myeloid 
cells 2 (TREM2) was identified as a risk factor for AD 
in coding variants.[128] Microglia TREM2 mice exhibited 
dysfunctional ATP levels and biosynthetic pathways, altering 
the cellular energetic and biosynthetic metabolism processes 
in AD.[129] These results demonstrated that microglia energy 
metabolism dysfunction limits the energy available to 
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neurons and activates neuroinflammation, accelerating the 
pathology of  AD.

GUT–BRAIN AXIS DYSFUNCTION IN 
ENERGY METABOLISM OF AD

The gut microbiota modulates the overall energy 
homeostasis, inhibits intestinal surface pathogen adhesion, 
synthesizes vitamin K, salvages energy from short-chain 
fatty acid production, regulates the immune system, and 
maintains the integrity of  the intestinal barrier.[130, 131] 
Recent studies demonstrated that gut microbiota plays 
pivotal roles in adjusting bidirectional communication 
between the gastrointestinal tract and the brain.[132, 133] 
Studies showed that exogenous butyrate generated by the 
gut microbiota facilitated the confirmation of  dendritic 
spines, long-term potentiation, and cognitive formation.[134] 
Gut microbiota also synthesizes neurotransmitters essential 
for brain activity, including gamma-aminobutyric acid, 
butyrate, 5-hydroxytryptamine, dopamine, serotonin, and 
histamine, which can be released into the bloodstream and 
can cross the BBB.[135-138] Disruptions and changes in the gut 
microbiota (dysbiosis) are involved in the pathogenesis of  
many CNS diseases, including autism, PD, schizophrenia, 
multiple sclerosis, and AD.[139-141] In individuals with AD, 
reduced microbiota levels can decrease the level of  the 
by-product, butyrate, in the brain, aggravating cognitive 
dysfunction.[142] In AD mouse models, the Firmicutes 
numbers were reduced and the Bacteroides numbers 
increased in the intestine, leading to amyloid deposition. [143]  
Correspondingly, Aβ pathology was alleviated in the 
cerebrum in germ-free AD mice.[143] Several species 
of  gram-negative bacteria produce lipopolysaccharide 
(LPS), contributing to the prolonged elevation of  Aβ in 
the hippocampus of  AD patients, resulting in cognitive 
dysfunction.[144] Recently, studies showed that treatment 
with a probiotic mixture containing Bifidobacterium longum 
and different Lactobacillus strains positively influenced the 
cognitive function and metabolic status of  patients with 
AD.[145] In addition, Helicobacter pylori (H. pylori) induced 
high levels of  amino acids, activating the mammalian target 
of  rapamycin complex 1 (mTORC1), modulating AD.[146] 
Furthermore, H. pylori modulates the hyperphosphorylation 
of  tau proteins in AD.[147] Thus, the gut–brain axis provides 
another potential explanation for energy metabolism 
dysfunction in AD.

POTENTIAL THERAPIES FOR 
AD BASED ON BRAIN ENERGY 
METABOLISM

At present, there are many different metabolic pathways 
and processes that reduce brain energy metabolism 

dysfunction in AD, including supporting mitochondrial 
function, maintaining the stability of  the TCA cycle, 
increasing insulin sensitivity, and restoring downstream 
signaling.[1] A proprietary tricyclic pyrone, CP2, enhanced 
mitochondrial biogenesis by binding to and inhibiting 
complex I, thereby improving cognitive function in 
transgenic AD mice.[148] In AD, mitochondrial division 
decoupled from the normal fission–fusion cycle is 
increased, and inhibiting mitochondrial fission improves 
mitochondrial biogenesis thereby improving functioning 
of  complex I.[149] The ratio of  NAD+/NADH is also a 
marker of  brain energy status, reflecting the redox state 
of  cells. Furthermore, a higher ratio of  NAD+/NADH 
or NAD+ precursor nicotinamide riboside mitigates 
cognitive impairment in AD by improving the energetic 
status of  the brain.[17, 150] Clinical trials demonstrated that 
patients with AD following ketogenic diets containing 
medium-chain triglycerides and very low carbohydrate 
ketogenic diets showed increased cognitive ability in most 
adherent patients, in contrast to the control group.[151, 152] The 
mechanisms might be associated with the retrieval of  TCA 
cycle activity, which increases the levels of  acetyl-CoA, 
thereby fueling aerobic glycolysis in the AD brain.[153-155] 

Peripheral insulin sensitivity, which depends on energy 
intake or use, is correlated with energy metabolism in the 
brain. Liraglutide is a GLP1 receptor agonist approved for 
the treatment of  insulin resistance, obesity, and T2DM.[156] 

Liraglutide enhances glucose uptake in the brain; however, 
it has no effect on cognitive outcomes.[157] Dipeptidyl 
peptidase 4 (DPP4) inhibitors, other T2DM medications, 
prolong the activation of  GLP1, and sitagliptin improves 
cognitive damage in older individuals suffering from 
diabetes with or without AD.[158, 159]

CONCLUSION

Here, we demonstrated that brain energy metabolism 
dysfunction, including reduced glucose uptake, insulin 
resistance, impaired TCA cycle, and glycolysis, is involved 
in the pathology of  AD, which impairs axonal transport, 
mitochondrial function, and ATP production. In addition, 
brain energy metabolism may serve as a potential biomarker 
for AD treatment. Based on the multiple brain energetic 
pathways, many pharmacological agents targeting metabolic 
enzymes, receptors, or proteins are used to ameliorate 
cognitive function by enhancing the energy metabolism 
level in AD. This simultaneously clears aggregated Aβ/
tau and/or suppresses the reactive oxygen response and 
neuroinflammation.[160, 161] Metformin and ketone-based 
interventions restored brain energy metabolism and 
delayed the onset and progression of  AD by improving 
neuronal integrity, synaptic remodeling, and neuronal–glial 
interactions.[162-164] Hormone-based interventions delayed 
the onset of  neuropathology and cognitive decline by 
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modulating appetite and energy expenditure, and epigenetic 
modification strategies have shown promising effects in 
improving brain energetics.[19, 165] Further investigations 
using imaging, metabolite, and hormone approaches will 
provide a precise understanding of  the AD pathology.[166, 167]

In conclusion, aberrant energy metabolism in the brain 
plays a critical role in cognitive dysfunction in patients 
with AD, while maintaining energy homeostasis might be 
a promising treatment to delay the onset and progression 
of  AD. 
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