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ABSTRACT: Misfolding and aggregation of the protein remain some of the most
common phenomena observed in neurodegeneration. While there exist multiple
neurodegenerative disorders characterized by accumulation of distinct proteins, what
remains particularly interesting is the ability of these proteins to undergo a
conformational change to form aggregates. TDP-43 is one such nucleic acid binding
protein whose misfolding is associated with many neurogenerative diseases including
amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD).
TDP-43 protein assumes several different conformations and oligomeric states under the
diseased condition. In this review, we explore the intrinsic relationship between the
conformational variability of TDP-43 protein, with a particular focus on the RRM
domains, and its propensity to undergo aggregation. We further emphasize the probable
mechanism behind the formation of these conformations and suggest a potential
diagnostic and therapeutic strategy in the context of these conformational states of the
protein.

■ NEURODEGENERATION AND PROTEIN
AGGREGATION

All cells, including neurons, experience death. In particular,
neurodegeneration involves a gradual loss of specific neurons,
which coincides with the clinical syndromes witnessed typically
in a rapidly aging population. Neurodegeneration is an
umbrella term used to define a variety of diseases, some of
which include Alzheimer’s disease (AD),1,2 Parkinson’s disease
(PD),3 Huntington’s disease (HD),4 Guam-Parkinsonism,5

amyotrophic lateral sclerosis (ALS),6 and fronto-temporal
lobar degeneration (FTLD).7 Each of these distinct diseases
involves the deposition or aggregation of distinct proteins in
different anatomical regions of the brain, often reflecting the
symptoms of the diseases. For example, in AD, we observe
major deposition of Aβ and tau protein in the medial temporal
lobe and neocortical structures, and nonfunctionality of this
region results in cognitive impairment, including memory loss,
difficulty in reading and writing, loss of impulse control, etc.8,9

In contrast, for ALS, the deposition of the TAR DNA binding
protein is primarily seen in the upper and lower motor
neurons. The degeneration of the upper motor neuron gives
rise to hyper-excitability and spasticity, while the degeneration
of the lower motor neuron results in muscle weakness,
fasciculation, and muscular atrophy, etc.10 Among the causative
factors that have been consistently observed in neuro-

degenerative diseases are chronic environmental stress,
deposition of protein aggregates, and inefficient clearance of
the protein aggregates from the cell due to dysfunctional
ubiquitin-proteasome system, nonfunctional autophagosomal/
lysosomal system, excitotoxic insult, synaptic failure, mitochon-
drial dysfunction, and neuroinflammation.11 Compelling
evidence suggests that oligomerization of the proteins leading
to the deposition of amyloids is the fundamental cause of
neuronal loss and degeneration.12,13 Different diseases show
deposition of different proteins such as Aβ and tau in
Alzheimer’s, α-synuclein in Parkinson’s, polyglutamine protein
in Huntington’s disease, and TDP-43 in ALS and FTLD.
Despite the differences in their primary sequence and overall
structural fold of the soluble precursor protein, the aggregates
are characterized by highly ordered cross-β sheet rich
structure.14,15 Therefore, there appears to be a common
underlying mechanism that might populate generic conforma-
tional states along the energy landscape of aggregation-prone
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proteins. Characterization of these conformational states and
understanding the kinetic barriers between them could shed
light on new avenues to detect and target pathological protein.
In this review, we discuss how alterations in local

environmental conditions influence the conformational plasti-
city of proteins in general, mainly examining this phenomenon
through the lens of energy landscape. Our discussion centers
on the TDP-43 protein with a particular focus on under-
standing the role of RRM domains in aggregation and lists out
the potential mechanisms involved behind the formation of
different conformational states for TDP-43 protein.

■ TDP-43 IS A MAJOR PROTEIN AGGREGATE IN ALS
AND FTLD

The gene coding for TAR DNA binding protein is well
conserved among Drosophila, human, mouse, and Caeno-
rhabditis elegans.16 The 43 kDa protein, TDP-43, was first
discovered in 1996 for its role in binding to the TAR DNA of
HIV and repressing the transcription process.17 TDP-43 was
later studied for its role as an exon-skipping promoter during
the splicing of apolipoprotein A-II (apoA-II) and cystic fibrosis
transmembrane regulator (CFTR) transcripts. Despite its
various vital functions, TDP-43 protein was found to be a
major protein deposited in the spinal cord and brain of patients
suffering from ALS and FTLD.18,19 Since then, several
neurodegenerative diseases such as Alzheimer’s, Parkinson’s,
Huntington’s, Guam-Parkinsonism dementia, and Perry’s
syndrome have shown intraneuronal deposition of TDP-43
aggregates.20−23 More recently, limbic-predominant age-
related TDP-43 encephalopathy-neuropathological change
(LATE-NC) was recognized as a brain disorder affecting
older adults showing accumulation of TDP-43.24 Together,
these diseases showing deposition of TDP-43 protein were
termed TDP-43 proteinopathies.25

■ TDP-43 IS A NUCLEIC ACID BINDING PROTEIN
WITH AN INTRINSICALLY DISORDERED REGION

Structurally, TDP-43 protein has four major domains, an N-
terminal domain: NTD (aa, 1−76), two RNA recognition
motif domains: RRM1 (amino acids 104−176) and RRM2
(amino acids 192−262) linked via a linker region, and a C-
terminal domain: CTD (aa 274−414).26−29 The protein has
two signal sequences: a nuclear localization signal (NLS; aa
82−98) and a nuclear export signal (NES; aa 239−250),
through which it shuttles between the nucleus and cytoplasm
to perform its function.30 TDP-43 is primarily a nuclear
protein but in the case of ALS, the protein is redistributed,
showing an increased deposition in the form of inclusions in
the cytoplasm.31 Due to high aggregation propensity and poor
solubility, the complete structure of TDP-43 remains
unresolved until now, but the role of individual domains in
aggregation is being addressed.
Experimental evidence suggests that TDP-43 protein

remains in a monomer−dimer equilibrium inside the cell
under normal conditions.32,33 The process of dimerization is
shown to be facilitated by the N-terminal domain of TDP-
43.34−36 It has been reasoned that the dimeric NTD enhances
the solubility of the protein through its pre-mRNA splicing
activity and protects against inclusion formation.37 In contrast
to this idea, studies have also suggested that dimerization may
be involved in the aggregation of the protein.32−34 These
studies imply that the N-terminal region may increase the local

concentration of the protein which can serve as a prerequisite
for aggregation reaction.38,39 The C-terminal domain of TDP-
43 consists of a glycine-rich region and a segment containing
polar uncharged amino acids, such as glutamine and asparagine
(Q/N). This domain architecture is highly comparable to the
prionlike domains of several proteins such as Sup35, Fused-In-
Sarcoma (FUS), TATA-box binding protein associated factor
15 (TAF-15), and Ewing sarcoma breakpoint region 1
(EWSR1) and heterogeneous nuclear ribonucleoproteins
(hnRNPs) family of proteins.40 A vast number of studies in
the literature focus on the contribution of the CTD toward the
aggregation of the protein. A chief reason for using the C-
terminal region as a model domain is because it harbors the
majority of the mutations and phosphorylation sites.41−44 A
detailed review of the CTD of TDP-43 and its involvement in
the diseased condition has been reviewed previously.45,46

Additionally, it has also been seen that C-terminal fragments of
sizes ∼25−35 kDa are observed in the inclusion bodies.47,48

Cleavage of these fragments occurs at the caspase site located
on the RRM2 domain of TDP-43 protein,47 prompting us to
hypothesize that partial unfolding of the RRM domain might
also be pivotal in the aggregation process.

■ ROLE OF RRM DOMAINS OF TDP-43 IN
FUNCTION AND AGGREGATION

RRM is a Well-Folded Nucleic-Acid Binding Domain.
RNA recognition motifs present in the RNA binding proteins
(RBPs) are among the most abundant and conserved domains
in the eukaryotes.49−51 The RRM domains of TDP-43 contain
a conserved set of amino acids that bind to nucleic acids and
perform a host of different functions such as mRNA
transcription and splicing, mRNA transport, mRNA matura-
tion and stability, and mRNA translation.52−55 TDP-43 has
two RRM domains separated by 15 amino acid residue linker,
folded into 5 β-stranded sheets and 2 α-helices arranged in a
β1-α1-β2-β3-α2-β4-β5 pattern.26 Unlike the typical 4 strands
present in an RRM domain,55 there is an additional β strand
present in TDP-43, which is believed to give stability to the
protein.56 The two RRM domains can bind to UG- and TG-
rich sequences.26,27 RRM1 binds to UG6 with a Kd of 65.2 nM
while RRM2 binds to UG3 with a Kd of 379 nM. RRM1
contains a longer loop3 region as compared to RRM2, which is
believed to contribute to RRM1’s higher affinity for nucleic
acid interaction.57 However, when both the RRM domains
bind to UG6, there is a synergistic binding effect that drastically
increases binding affinity and reduces the Kd to 14.2 nM.27

Interestingly, the TDP-43 RRM domains bind to RNA in a
reverse manner, unlike the typical RRM domains that usually
bind in a 3′-to-5′ direction.26 This reverse interaction allows
the 15 residue linker to participate more extensively with the
nucleic acid targets.26 Apart from playing an important role in
function, binding to nucleic acid has also been shown to rescue
the protein from undergoing aggregation.58−60

■ CONFORMATIONAL CHANGES WITHIN THE RRM
DOMAINS OF TDP-43 DURING STRESS
CONDITIONS: FORMATION OF OLIGOMER WITH
MOLTEN GLOBULELIKE STRUCTURE

An NMR study, coupled with X-ray fiber diffraction data,
highlights a strong similarity in the structure of amyloid fibrils
formed by full-length TDP-43 and TDP-35 (90−414
residue).61 The C-terminus showed a polymorphic structure
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when forming fibrils alone or in combination with other
domains. This suggests that both the N-terminal and RRM
domains are crucial in forming the core structure of TDP-43.61

The RRM domains of TDP-43 have been studied individu-
ally62 and in tandem63,64 and shown to undergo aggregation.

Two regions within the RRM domains have been identified to
play a vital role in the aggregation process: residues 166−173
in RRM1 and residues 246−255 in RRM2.56,65

Studies from our lab showed that protonation of residue
H166 causes destabilization of the RRM domains causing it to

Figure 1. Formation of metastable, molten-globulelike oligomers that bridges the folding and aggregation energy landscapes. Reproduced from ref
63. Copyright 2019 American Chemical Society. The cartoon on the right represents the conformational changes in the RRM domains of TDP-43
driven by altered electrostatics. Reproduced from ref 68. Copyright 2023 American Chemical Society.

Figure 2. RRM domains of TDP-43 undergo a multistep structural transformation upon protonation of a buried ionizable residue, leading to the
formation of a fibrillar structure. The kinetic data presented here monitors the time scales of different structural conformations during the
aggregation process. (A) Changes in the protein’s secondary structure, monitored through far-UV circular dichroism. (B) Formation of ThT-
binding pockets. (C and D) Increase in protein assembly size as tracked by dynamic light scattering. (E) Changes in the local tertiary structure,
observed via tryptophan fluorescence for the protein before (blue line) and after (yellow line) transfer into aggregation buffer. Data from these
panels were analyzed using single or double exponential equations, and (F) the apparent rate constants derived from these fits. The black-filled
circles in panels A, B, and D indicate signal of the protein before transferring into the aggregation condition. Adapted with permission from ref 67.
Copyright 2023 John Wiley and Sons.
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partially unfold and result in the formation of nativelike
oligomers with an intact secondary structure and a broken
tertiary structure (molten globule).63,64,66 Thus, the proto-
nation−deprotonation of His166 residue regulates the
assembly disassembly of protein molecules (Figure 1).63,66

Upon prolonged stress, these oligomers can undergo a
conformational change to form ThT-positive aggregates, thus
acting as a bridge to link the native and the aggregation energy
landscape (Figure 1).67 Our time-dependent analysis of the
aggregation process uncovered a multistep structural trans-
formation (Figure 2), which we have modeled to reveal four
major steps, each characterized by varying energy barriers. The
sequence of these steps depends on the protein concentration
(Figures 2 and 3).67 Our data suggest that the initial partial
unfolding, triggered by side-chain disruption from protonation,
is sufficient to overcome the major energy barrier and drive the
protein through a series of conformational changes following a
linear (isodesmic) polymerization mechanism (Figure 3).67

Consequently, the population and stability of the different
states of protein (monomer, oligomer, or aggregates) were
shown to be highly dependent on the intramolecular and
intermolecular interactions, which are modulated by changing
the electrostatic conditions through pH and salt in the solution
(Figure 1).68,69 Several in vitro studies have demonstrated that
a change in the pH destabilizes the protein molecules and
induces a conformational change to form aggregates under
prolonged stress conditions.64,70−73 In some proteins, proto-
nation has been shown to act as a molecular switch controlling
the equilibrium between native and the partially unfolded

molecules that can prime misfolded structures.64,66,74−76

Consistent with this idea, it has been shown that assembly
disassembly is one of the most energy-efficient ways to mitigate
stress, unlike post-translational modification or degradation.77

Additionally, the time scales of formation of these higher-order
assemblies are also less, allowing the cells to quickly respond to
stress-like conditions.77 Formation of such molten globule
states were also observed for other neurodegenerative proteins
such as β2-microglobulin (β2m),78,79 prion,80 and p53.81,82

Electrostatics in the cell are often altered either by post-
translational modification of side chains or by the presence of
mutations in the protein. For example, two crucial electrostatic
mutations are present within RRM domains, P112H and
D169G.83,84 The mutation D169G in the RRM1 domain does
not affect the aggregation propensity but induces a local
conformational change due to the loss of hydrogen bond with
T115 residue.85 We also demonstrated that these mutants do
not alter the global structure of the tandem RRM domains.
However, under pH and salt stress, the aggregation kinetics of
P112H increases significantly as compared to the wild-type
sequence, while D169G remains largely comparable to the
wild-type sequence. Under oxidation stress or upon binding to
zinc ions, these domains undergo oligomerization or formation
of ThT-positive aggregates.86−88 Structural studies have also
revealed that the RRM2 domain of TDP-43 populates an
intermediate state that has been proposed to act as a link
between the folding and the misfolding energy landscape.89 All
these studies reinforce the notion that destabilization of RRM
domains through changes in protonation, oxidation, or zinc-

Figure 3. Multistep model for the aggregation of the RRM domains of TDP-43. This kinetic model is built using the apparent rate constants
obtained from Figure 2. The model illustrates how the protein concentration influences the rate-limiting step in the aggregation process. It depicts
four major stages in the aggregation process, each corresponding to a distinct change in the conformation and size of the protein assembly over
time. Adapted with permission from ref 67. Copyright 2023 John Wiley and Sons.
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binding can induce partial unfolding and expose hydrophobic
patches in the protein, leading to aggregate formation.
Conversely, stabilization of protein through RNA/DNA
binding has been shown to mitigate the process of
aggregation.58,59,66

RRM domains, in general, contribute to the architecture of
many aggregation-prone proteins such as FUS, hnRNPs, TAF-
15, and EWSR1, which are associated with various neuro-
degenerative diseases.40,90 Remarkably, around ∼240 proteins
within the human proteome contain prionlike low complexity
domain, many of which also harbor a canonical RNA
Recognition Motif.10,91 Numerous studies have focused on
the role of low complexity domain in misfolding and
aggregation, but investigations with emphasis on the role of
RRM domain in aggregation is only now evolving.92

■ CONFORMATIONAL VARIABILITY IN THE
AGGREGATES FROM BRAIN PATIENTS

TDP-43 Oligomers: Evidence from Invitro and Patient
Studies. A prevailing hypothesis for the involvement of
pathogenic proteins in neurodegenerative diseases is the
presence of oligomers and aggregates that cause the protein
to lose its normal function (loss of function) and cause
neurotoxicity (gain of function).93,94 Evidence supporting this
hypothesis has been demonstrated by the presence of TDP-43
oligomers that exhibited lower DNA binding activity and
appeared structurally different from the native TDP-43.95

These oligomers have been shown to bind to oligomer-specific
A11 antibody that has previously been shown to interact with
oligomers of Aβ, tau, and α-synuclein proteins, suggesting that
TDP-43 oligomers share a common structural homology with
other amyloids.95,96 Treatment with arsenite, a commonly used
stress-inducing agent in human neuroblastoma SH-SY5Y cells,
caused a liquid-to-gel like transition that was positive for A11
antibody.97 The occurrence of TDP-43 oligomers among the
FTLD-TDP patients was further validated by the development
of a polyclonal TDP-43 oligomer antibody, known as TDP-O,
thus confirming their presence.98 A study using an induced
pluripotent stem cell (iPSC) model found that recombinant
TDP-43 oligomers can also induce neuronal toxicity.99

Together, these studies establish the presence of a wide
spectrum of TDP-43 oligomers ranging from dimers, trimers,
and tetramers to higher molecular weight species, underscoring
their significant role in pathology.
TDP-43 As a Part of the Multimeric Structure: Stress

Granules, Nuclear Bodies, Anisosomes, and Amorphous
Inclusions. TDP-43 forms a major component of several
membraneless organelles, such as stress granules and nuclear
paraspeckles. Research has explored the critical role played by
all three domains of TDP-43. The NTD was shown to be
responsible for head-to-tail polymerization, while interactions
between helices of the LCD stabilized the LLPS.35

Furthermore, binding to RNA through the RRM domain
also promoted liquid-like granule formation in cells.100 RRM
plays a crucial role in the formation of nuclear bodies (NB) in
cells. The two RRM domains were shown to respond to
different RNA acting distinctly in the assembly of NBs.100 In
an RNA-binding deficient TDP-43, the protein was shown to
undergo a distinct type of LLPS with chaperones assembling
into a dynamic spherical shell-like structure called aniso-
somes.101 Furthermore, the ablation of RNA-binding or
acetylation-mimicking TDP-43 modification led to the
depletion of nuclear TDP-43 and enhanced the aggregation

propensity by directly affecting the solubility and mobility
dynamics of TDP-43 protein.102 Upon inducing phase
separation of the full-length TDP-43 protein, it formed
assemblies with limited internal diffusion.103 Instead of
exhibiting typical liquid−liquid phase separation (LLPS)
behavior such as coalescing, the protein formed irregular
assemblies.103 This contrasts with the characteristic LLPS
behavior observed with CTD from many independent
groups.43,44,104,105

One of the most prevalent hypotheses in the field is that the
stress granules (SG) formed in response to cellular stress might
fail to disassemble, leading to inclusion formation in the
diseased condition. Factors that affect the residence time of the
protein in SG might be influenced by post-translational
modification, pathological mutation in the protein, or
depletion of cellular ATP.106−109 However, it remains unclear
how the dynamicity of the reversible SG assembly converts
into a more mature amyloid or amorphous aggregate. For
TDP-43, multiple studies have shown that a subset of TDP-43
contains cytoplasmic inclusions that labels for SG markers such
as TIA1, eIF3, PABP, and HuR.110−115 It would be interesting
to study how the different SGs containing TDP-43 alter the
dynamicity of the protein. Further literature on the relationship
between TDP-43 and stress granules can be found in
previously published reviews.45,116,117

■ POLYMORPHISM IN THE AMYLOID FOLD OF THE
AGGREGATES

Under diseased conditions, both full-length TDP-43 and
truncated C-terminal fragments (CTFs) form granulo-
filamentous assemblies with diameters of 10−15 nm.118−121

Cryo-EM structures from two individuals suffering from ALS
with FTLD degeneration (type B) revealed an identical
double-spiral-shaped fold, distinct from those observed using
recombinant TDP-43 invitro.122−124 This ordered core was
formed by the fragment (G282−Q360) with flanking regions
forming a fuzzy coat. In contrast, TDP-43 assemblies from type
A FTLD-TDP individuals exhibited a distinct extended
structural fold resembling a chevron.125 Although the same
region contributed to the formation of the ordered core, the
authors hypothesized that the local structural variations within
individual filaments might give rise to alternative conforma-
tions. These structural differences may explain the distinct
pathologies observed in different types of FTLD-TDP, which
are characterized by the brain distribution of aggregated TDP-
43.125 The different local environmental conditions might
likely influence the conformation, giving rise to distinct
amyloid-fold.
Under in vitro conditions, different environmental con-

ditions such as pH, temperature, mechanical agitation, or ionic
strength give rise to different assemblies.126,127 However, once
a scaffold is formed, the growth continues, keeping the
atomistic order the same, even when the solution condition is
changed. A specific polymorph can seed the same type of
architecture even under different solution conditions, similar to
those observed in crystalline systems.128 This has been studied
in the case of Aβ40, where the formation of striated ribbons and
twisted fibrils formed under agitation and quiescent conditions,
respectively, when used to act as a seed, propagated similar
structures under different conditions.129 This might be due to
the intrinsic stability of the extremely ordered architecture and
the high energy barriers between the different polymorphs.
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In general, polymorphism seen in the amyloid can be
attributed to the side-chain conformation, backbone con-
formation, or supramolecular assembly. Several different
proteins such as Aβ40,130−133 α-synuclein,134−136 islet amyloid
polypeptide (IAPP),137 tau,138,139 and prion140 show poly-
morphic amyloid fibrils. A range of different conformations
adopted by the protein can often contribute distinctly to its
toxicity and transmission.141,142 Unlike a native fold which is
evolutionarily selected, the formation of an amyloid fold is not
optimized by evolutionary pressure, and hence, there is a
multitude of different arrangements that becomes accessible to
the polypeptide sequence.128

■ MODULATION OF THE ENERGY LANDSCAPE:
TARGETING THE NATIVE STATE, INTERMEDIATE,
AND THE AGGREGATED STATES OF THE PROTEIN

The energy landscape concept illustrates the conformational
space available for a polypeptide sequence to form a structure,
resembling a funnel where the ruggedness depends on various
factors (Figure 4).143,144 In a complex microenvironment, the
energy landscape will typically be rough for a multifunctional
protein, which can often be correlated to frustration in the
folding process.145 Experimental evidence suggests that for a
well-folded globular protein to undergo the formation of
amyloid or amorphous aggregates, it requires partial unfolding
and destabilization of its native structure (Figure
4).12,13,146−150 Many aggregation-prone proteins show the
formation of partially unfolded structures under destabilizing
conditions such as β2 microglobulin,76 prion,151,152 superoxide
dismutase 1 (SOD1),153 and transthyretin (TTR).154 Tran-
sient formations of such partially unfolded species allow
specific electrostatic, hydrophobic, and intermolecular inter-
actions that enable the protein to undertake key structural
rearrangements to undergo fibril formation.147

Given that the structural conformations formed early during
the aggregation process are often reversible, targeting these
conformations by stabilizing them and driving the equilibrium

away from higher-order aggregates offers an opportunity to
develop therapeutic modulators (Figure 5). For example,

tafamidis is a small molecule kinetic stabilizer that stabilizes the
native tetrameric state of TTR and is FDA-approved for TTR
amyloidosis.155 Similar kinetic stabilizers are being developed
to stabilize the native dimer of the immunoglobulin light chain,
which can form aggregation-prone conformations in the
immunoglobulin light chain amyloidosis.156 Native state
stabilization as a therapeutic strategy has more recently been

Figure 4. Folding energy landscape indicates the search for a polypeptide to achieve its native state. The aggregation energy landscape illustrated by
the dark brown color represents the different kinds of intermediates and assembly formation under stresslike conditions. The various energy
minima on the landscape represents the possibility of formation of different intermediates and their respective stability.

Figure 5. Complex multistep aggregation process and the
heterogeneity observed during the aggregation reaction. The pathway
illustrates the formation of different intermediates, both on-pathway
and off-pathway, as well as generation of different assemblies,
including oligomers. Potential therapeutic strategies include stabiliz-
ing the native state, diverting the reaction to off-pathway
intermediates, or developing small molecules that bind to the
aggregates.
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adapted for treating TDP-43 proteinopathies. Leveraging
Cryo-EM structures of TDP-43 fibrils, the study proposed to
develop a high-throughput screening assay to identify and
develop a native state stabilizer.157 One such native state
stabilizer for TDP-43 can be RNA which has been consistently
reported to stabilize the protein and prevent it from
undergoing aggregation.157

Another approach would be to target the on-pathway
oligomers and intermediates during the aggregation process
(Figure 5). For example, cysteine-reactive small molecules,
designed from conformational motifs in dimeric and hexameric
intermediates of human β2m, promote off-pathway tetramer
production that inhibits aggregation.158 Yet another approach
is to directly target the aggregates formed. Along these lines, a
recent study successfully utilized a molecule “baicalein”, a
structure-correcting agent that can convert the existing TDP-
43 aggregates into a functional oligomeric state in the disease
model.159 While baicalein was shown to effectively mitigate the
proteinopathies in the mouse model, it still remains to be seen
if it can effectively refold the TDP-43 protein into a
nonpathological conformation.160 An interesting tactic devel-
oped by Eisenberg et al. involved designing mini proteins that
could specifically target and cap the growing ends of α-
synuclein, Aβ, and tau fibrils.161 Using this approach, they were
successfully able to slow down the seeded aggregation of these
proteins in vitro, in human cells, and in C. elegans models of
AD and PD.161 Multiple studies have adapted these strategies
to specifically target the fibrillar structure and slow down or
inhibit the aggregation of proteins.162−165 More detailed
kinetic design principles used for guidance and development
of inhibitors for fibril growth can be found in a recently
published study.166

■ CONCLUSION
Given the significant variation in TDP-43 proteinopathies,
characterized by diverse conformations of the protein,
understanding and characterizing these different structures
are crucial for developing therapeutic approaches. Potential
therapeutic strategies include using natural ligands like RNA to
stabilize the protein, developing small molecules to target the
TDP-43 fibril core, or creating phosphomimetic substitutions.
This review provides a broad perspective on the various
conformational states observed for the TDP-43 protein. By
utilizing the framework of the energy landscape, we explore
how targeting these key structures could open new avenues for
treating these diseases.
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